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Introduction 

ranslating Euclid reports on an effort to transform geometry for students 
from a stylus-and-clay-tablet corpus of historical theorems to a stimulating 
computer-supported collaborative-learning inquiry experience.  

The origin of geometry was a turning point in the pre-history of informatics, 
literacy, and rational thought. Yet, this triumph of human intellect became ossified 
through historic layers of systematization, beginning with Euclid’s organization of 
the Elements of geometry. Often taught by memorization of procedures, theorems, 
proofs, geometry in schooling rarely conveys its underlying intellectual 
excitement. The recent development of dynamic-geometry software offers an 
opportunity to translate the study of geometry into a contemporary vernacular. 
However, this involves transformations along multiple dimensions of the 
conceptual and practical context of learning.  

Translating Euclid steps through the multiple challenges involved in redesigning 
geometry education to take advantage of computer support. Networked computers 
portend an interactive approach to exploring dynamic geometry as well as 
broadened prospects for collaboration. The proposed conception of geometry 
emphasizes the central role of the construction of dependencies as a design activity, 
integrating human creation and mathematical discovery to form a human-centered 
approach to mathematics.  

This book chronicles an iterative effort to adapt technology, theory, pedagogy, and 
practice to support this vision of collaborative dynamic geometry and to evolve the 
approach through on-going cycles of trial with students and refinement of 
resources. It thereby provides a case study of a design-based research effort in 
computer-supported collaborative learning from a human-centered informatics 
perspective. 
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Chapter 1.  Vision: The Cognitive 
Potential of Collaborative 

Dynamic Geometry 

Chapter Summary 
This opening chapter provides an overview of the book. It 
suggests that an approach to collaborative dynamic 
geometry can be designed to transform the teaching of 
Euclidean geometry from a rigidified procedural approach 
based on memorization of authoritative texts to a human-
centered exploration of a foundational source of informatics 
and rigorous thinking. It introduces a research project to 
explore the proposed translation of geometry education. This 
example of the redesign of a subfield of human-centered 
informatics involves multiple inter-related dimensions, 
including cognitive history, contemporary philosophy, 
school mathematics, software technology, collaborative 
learning, design-based research, CSCL theory, 
developmental pedagogy, and scaffolded practice. 

 

 

ow should one translate the classic-education approach of Euclid’s 
geometry into the contemporary vernacular of social networking, 
computer visualization, and discourse-centered pedagogy? The birth of 

geometry in ancient Greece and its systematization by Euclid played an important 
role in the development of deductive reasoning and science. As it was translated 
and refined over the centuries, however, geometry lost some of its cognitive power 
and its very nature became obscured. Recently, computer-supported versions of 
dynamic geometry have been developed, which afford visualization, manipulation, 
exploration, conjectures about constraints and construction of dependencies. 
Particularly within a context of computer-supported collaborative learning, a 
dynamic-geometry environment may be able to facilitate the experience of 
mathematical insight and understanding that was traditionally the hallmark of 
geometry.  

H 
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How should one translate the classic-
education approach of Euclid’s geometry 
into the contemporary vernacular of 
social networking, computer 
visualization, and discourse-centered 
pedagogy? 

The Virtual Math Teams (VMT) Project is pursuing a research-based approach 
that integrates design of technology and pedagogy with research into their 
effectiveness in actual practice. Focusing on the core elements of collaborative 
dynamic geometry that are now within reach, it operationalizes social networking 
as online collaboration, computer visualization as exploration through dynamic 
dragging and dynamic construction, and pedagogy as discourse about dynamic 
dependencies. 

The effective path for translating Euclidean geometry is not apparent. The original 
inspiration of the geometric enterprise is lost behind layers of distortion and 
concealment, and cannot be retrieved in its historical form. The path of 
reinvention—following a design-based research approach—involves countless 
cycles of trial and error, with evolution of a new model guided by careful analysis 
of intermediate effects and bursts of technological invention. Above all, students 
must be supported in the disruptive learning process that can break them free of 
the restrictive practices of traditional schooling. They will need a variety of 
learning resources to aid them in developing new collaboration practices and math 
practices.  

This book presents an argument about computer-supported collaborative learning 
of mathematics that has grown out of an on-going research agenda. It incorporates 
a number of specific investigations written during the current research phase and 
extends them as part of an integrative reflection that became much more than the 
sum of its individual contributions. 

The purpose of this volume is to set out an argument that was too complex to be 
spelled out persuasively in a conventional conference paper, journal article, or 
book chapter. The argument builds on historical and philosophical background as 
well as empirical evidence and analysis. It requires the reader to be transported 
along a path of imaginative vision and conceptual discovery, leading to a new 
perspective on educational research. The turns of this path have only recently 
emerged from the work reported in this publication. 

In particular, the argument for the importance of teaching students to design their 
own dynamic-geometric constructions translates the focus on dependencies from 
mathematical theory to classroom practice and the analysis of interactional 
resources supports that by providing a conceptual perspective on how to present 
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collaborative dynamic mathematics. Spanning both these themes, the ontology of 
creative discovery points the way to transform our thinking into a human-centered 
informatics. 

Much focus and clarity about these themes was achieved in the translation from 
focused discussions, reports on individual trials or topical essays into the genre of 
a more integrative volume. 

Translation 
 The term “translate” has multiple meanings. Within geometry, it is a technical 
term meaning to move an object a certain distance and direction, perhaps indicated 
by a vector of a given length and orientation (see Figure 1-1). As a form of rigid 
transformation, the translation of an object should result in an object precisely 
congruent with the original object—that is retaining the same length and angle 
measurements. 

Within linguistics, translation moves a text from one language into another, 
presumably without changing the message. As geometry has been transported 
through the epochs of history, its texts have been translated from language to 
language. In these translations, the social practice of geometry and the 
understanding of its texts have, however, changed—with weighty intellectual 
consequences.  

The principles of hermeneutics (Gadamer, 1960/1988)—which study the effects 
on interpretation of shifting historical horizons and linguistic reformulations—
teach us that we cannot hope to remove bias and misunderstanding by returning to 
some purported original meaning, but must reinterpret within our own situation, 
taking into account the history of a text’s effects. Therefore, we must return to the 
murky origins of geometry and trace the broad outlines of the subsequent evolving 
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traditions of geometry study. Then we must carefully design a revised approach, 
based on findings of research specifically targeted to this aim. 

The attempt discussed in this book to work out a vision of geometry education that 
is 

human-centered has been underway for a decade. It follows an iterative, evolving 
approach of design-based research, which never really reaches an end-point. Along 
the way, it involves many collaborators, a variety of disciplines, and an assortment 
of concepts. Necessarily interdisciplinary, the project implicates many dimensions, 
corresponding to various academic fields, addressed in the different chapters of 
this book. Moving between chapters, the discussion is translated from one 
conceptualization to another. Table 1-1 may help to keep track of the key 
terminology used in each chapter. The terms in different rows generally indicate 
distinctions between levels of analysis.  

 

Figure 1-1: Translating from the era of the clay tablet to the age of the 
digital tablet. 
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Table 1-1: Dimensions of translations from chapter to chapter. 
Ch 2 Ch 3 CH 4 Ch 5 Ch 6 Ch 7 Ch 8 Ch 9 Ch 10 Ch 11 

historical 
era 

cognitive 
level 

mode of 
creation 

 resource unit of 
analysis 

activity meaning technique mode of 
learning 

mode of 
being 

Platonic 
Idea 

individual 
cognition 

visualize dynamic 
dragging 

individual explore interpretation inquiry observation presence 

learner 
co-
creation 

group 
cognition 

represent dynamic 
construction 

small 
group 

make 
sense 

intersubjective 
shared 
understanding 

design discourse co-
presence 

systematic 
procedural  
corpus 

social 
practice 

define dynamic 
dependencies 

community establish 
definition 

member 
methods, 
math 
practices, 
resources 

proof knowledge 
building 

math 
content 

 

Following an overview of the argument in Chapter 1, the historical origins of the 
discipline of geometry—as defined in school mathematics—is reviewed in 
Chapter 2. Here we see that the discoveries of geometry were conceived as 
involving objects and truths from a Platonic realm of Ideas, rather than as results 
of human creative inventiveness. This was further reified into a systematic corpus 
of propositions and procedures to be memorized. A review of philosophical 
reflections on this history in Chapter 3 indicates that, in parallel with this 
reification, an ideology of individualism held sway, which focused on mental 
phenomena of individuals to the exclusion of cognitive processes at the group level 
and of social practices at the community level. Collaborative learning is viewed as 
an antidote to the traditional fixation on the individual. 

The approach of dynamic geometry suggests a focus on dependencies among 
geometric objects as a key to learning and understanding geometry. This is 
presented in Chapter 4, where one can see the importance of visualizing geometric 
configurations, representing relationships among the constituent parts and defining 
dependencies among objects. Then Chapter 5 describes the dynamic-geometry 
software in terms of its three primary functions: dynamic dragging, dynamic 
construction, and dynamic dependencies. 

In order to support a collaborative-learning approach to the use of dynamic 
geometry, the GeoGebra (www.geogebra.org) software application was integrated 
into the Virtual Math Teams (VMT) collaboration environment. As described in 
Chapter 6, this involved significant technical changes to make GeoGebra multi-
user, so teams of online students could work together on the same constructions 
and discuss what they were doing. Rather than geometry tasks being done by 
individuals, they could now be accomplished by small groups; the results of the 
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group work could then be shared in a larger classroom and be compared with 
accepted results in the school-math community. Chapter 7 provides several 
interaction analyses of such work: Individuals on a team each explore a problem 
by dragging points; the group makes sense of what is observed; and they are then 
able to explore dependencies through construction and to relate their group 
understanding to canonical definitions.  

Chapter 8 proposes a theory of how the levels of individual cognition, group 
cognition, and social practices can be connected by boundary-spanning resources: 
linguistic expressions, graphical representations, software tools, mathematical 
objects, etc. The primary resources for dynamic geometry involve the practices of 
dragging, construction, and determining dependencies. These resources may take 
the form of social practices that are taught, group practices that emerge during 
collaboration, or individual skills that develop through guidance and collaboration 
with others. While individuals must interpret for themselves what takes place in 
the group, the centerpiece of collaborative learning is the creation of 
intersubjective shared understanding at the small-group level. 

Given the math content, collaborative technology, and theory of resources, how 
can effective pedagogy be designed? Chapter 9 reviews the multiple dimensions 
that have to be kept in mind for supporting teams of students, who must 
simultaneously deal with learning dynamic geometry, interacting online with peers 
and using new technologies. This includes supporting student inquiry, the design 
of geometric figures and the explanation or the proof of results. Then Chapter 10 
presents sample topics to guide virtual math teams in exploring the basics of 
collaborative dynamic geometry. In the current phase of the VMT Project, this 
approach is being tried in a number of schools, in collaboration with teachers who 
received professional development training for this. Analysis of student 
interactions looks at how groups are observing dynamic figures, engaging in 
productive mathematical discourse and building geometric knowledge. As Chapter 
11 discusses, this is part of the design-based research process in which multiple 
stakeholders engage in frequent trials to advance technology, theory, pedagogy, 
analysis, and other aspects of the research. Integration of the manifold aspects is 
important. The activities designed for students must balance maintaining their 
individual presence as involved in the mathematics, supporting their co-presence 
in working collaboratively and relating to valuable content of the field of geometry. 

That is the book in a nutshell. The rest of this chapter foreshadows each chapter in 
somewhat more detail.  
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The Classic Potential 
A small community of geometers in ancient Greece established a set of discourse 
practices and inscription methods that defined subsequent literate rational thought 
in the West. Since the golden age of Greece, geometry and rationality have gone 
through many transformations. To approach the question of what form 
mathematics education should take in the 21st century, it is helpful to first 
understand what took place historically to allow geometric reasoning to unfold as 
an early form of rational thinking. 

A cognitive history of this accomplishment is documented in Netz (1999). Latour 
(2008) reviewed Netz’ analysis and suggested some of its significance. According 
to Netz, the discourse of the early geometers involved innovations:  

(i) In physical inscription technology,  

(ii) In specialized textual forms and  

(iii) In the communication and memory of propositions.  

These emerged within the intellectual ferment of ancient Greece, although 
somewhat at the periphery of that society.  

The inscriptions. Using very primitive technology—ephemeral sketches in the 
sand and more persistent and portable diagrams inscribed on papyrus, wood, wax 
or clay tablets—Euclid’s predecessors constructed intricate geometric figures 
using just straightedge and compass. The diagrams (graphical drawings 
representing the ideal geometric figures) consisted of points, line segments and 
arcs or circles. Construction sequences were used to establish dependencies among 
the components of constructed figures. Importantly, components were labeled with 
letters. The labels allowed accompanying texts to reference specific components, 
thus providing a clear visible connection between the elements of the inscription 
and specific statements in the text.  

The texts. The textual discourse of the early geometers consisted of a highly 
stylized, formulaic language. The language of geometry was derived from 
everyday written Greek, but required specialized training to be used. The language 
was geared to stating parts of propositions and proofs, such as the statement of 
given conditions, or well-known propositions that contributed to the proof, or steps 
of construction and of proof conclusions. Presentations of geometric propositions 
consisted primarily of proofs with their accompanying labeled diagrams. 

The propositions. In addition to mastering the inscription and discourse practices, 
a mathematician had to be very familiar with the corpus of established 
propositions. The knowledge of these propositions was probably passed down 
through apprenticeship in small, distributed communities of geometers. Only later, 
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Euclid compiled the theorems systematically, providing a persistent and literate 
basis for this knowledge, which spread around the world for thousands of years. 
Originally, geometry was a hobby of aristocrats with the time to concentrate on the 
mastery of a challenging task. 

The content of geometry—definitions of basic geometric objects, common 
notions, logical equivalencies, postulates, and previous propositions—was 
assumed in the presentation of proofs. Also implicit in the geometric texts was a 
practice of rational thought, which made the proof persuasive as necessarily true. 
That is, for instance, that the truth of a theorem was not dependent upon the 
particularities of the diagram, the construction process, the set of referenced 
theorems or the text of the proof. Rather, the diagram, construction, propositions, 
and argumentation were merely means for bringing the reader to a transcendent 
mathematical truth. Geometry invented the sense of “apodictic” or deductive truth: 
a form of truth that was evidenced by the procedure of the geometric proof. 

While we know very little about the people who developed geometry in the 5th and 
4th centuries BCE, we can try to imagine the intellectual effort that was required. 
Geometry was probably practiced by a small number of aristocrats scattered 
around the Mediterranean. Although individual proofs were circulated with labeled 
diagrams and proof texts, the comprehension of each new proof required accurate 
memory of a growing corpus of previous proofs, which the new proof relied upon 
in various ways. The text of the proofs was in Greek, but in an arcane written 
version of the everyday spoken language. Proofs could be quite involved and 
demanding, but the written language made them even harder to parse, as written 
words were not then separated by spaces. The language of geometry was a spin-
off of the early stages of written language using an alphabet. It is striking that the 
use of the alphabet to label geometric objects was so powerful that mathematicians 
still use Greek letters in their diagrams. 

“At the age of eleven, I began Euclid, 
with my brother as my tutor. This was one 
of the great events in my life, as dazzling 
as first love. I had not imagined that there 
was anything so delicious in the world.” 
– Bertrand Russell 

Geometry represented a towering intellectual accomplishment in the history of 
human society and has provided a profound inspiration ever since. It defined and 
epitomized logical argumentation and rational thinking—even providing the 
template for the earliest philosophic reasoning. Throughout history, 
mathematicians and philosophers have cited their first experiences with geometry 
as pivotal for their intellectual careers. The study of geometry long provided a 
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cornerstone of a classic education: a training ground for rigorous thinking. In 
particular, the experience of the Eureka moment of insight into the key connection 
in a geometric proof seems to have inspired people for millennia. 

The Failed Potential 
Unfortunately, geometry is not so often experienced as an exhilarating activity by 
most students today. Many people say that they dislike mathematics, they are not 
good at it, and they prefer to avoid the challenges that it presents. They have either 
not had the experience with geometry that mathematicians praise or they have not 
valued it in the same way. Of course, the fascination with geometry as an exciting 
way of thinking has probably never been widespread in the population at any time. 
However, it seems that the way that it is commonly presented in school misses 
much of the impetus that was there at the start. Let us see how that could have 
come about and consider how we might regain the original excitement in a way 
that is appropriate for our times. 

A major watershed in the history of geometry was the organization, 
systematization and cataloging of the propositions and their proofs. As long as the 
core knowledge of the known propositions relied on word-of-mouth 
apprenticeship and the circulation of occasional documents, access to this 
knowledge was limited to a small number of people who had the time and passion 
to devote to this study. Eventually, there were attempts to support the learning of 
geometry by compiling volumes of proofs and organizing them so that they built 
on each other sequentially. The most important of these efforts was Euclid’s 
Elements (300 BCE/2002). His set of volumes began with a list of important terms 
and assumptions, making explicit some of the tacit knowledge that had been passed 
down among the early geometers through personal demonstration.  

By reading a sequence of the assembled proofs, one could gain proficiency in the 
geometric practices. This facilitated the dissemination of geometry. Consequently, 
the compilation by Euclid was widely circulated through the centuries and 
translated into various languages. In the process, the presentation was reinterpreted 
in keeping with the different cultures (e.g., Roman) and languages (e.g., Latin). It 
became increasingly formalized and procedural. 

Reading an edition of Euclid’s Elements was considered a cornerstone of a classic 
education until the era of public education. Throughout Western history, more 
people have read Euclid’s book than any other book, except the Bible. 
Contemporary geometry textbooks for high school can still be seen as variations 
on Euclid. During the intervening 2,300 years of codification, the practices of 
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geometric discourse, inscription, labeling, construction, and proof have lost much 
of their cognitive freshness. Not all students of geometry still experience the sense 
of rational necessity as an exhilarating discovery. 

A number of prominent philosophers of the 20th century have identified broad 
intellectual changes, of which what happened with geometry could be seen as 
symptomatic. One tendency is for the products of creative human effort to be 
treated as eternal, unchanging objects that are not connected to human needs and 
activities. Another is to reduce all cognitive phenomena to mental contents of 
individuals. Together, these result in an ahistorical and individualistic view of 
knowledge and learning. It becomes impossible to consider geometry as an 
historical product of a creative community; instead, this perspective pictures 
geometry as a set of fixed facts associated with the individual mathematician, 
Euclid. The implication for learning is that individual students have to accept and 
be able to give back verbatim the propositional and procedural knowledge of 
geometry, based on acceptance of traditional authorities (Euclid, teachers, 
textbooks). Even proof—which was a major development of Greek geometry and 
which should put the path to determining validity into every student’s hands—
becomes a non-creative procedure to be followed dogmatically. 

The Vision of Potential 
To mathematicians since Euclid, geometry represents the archetype of creative 
intellectual activity. Its methods set the standard throughout Western civilization 
for rigorous thought, problem solving, and argumentation. Many educators teach 
geometry in part to instill in students a sense of deductive reasoning. Yet, too many 
students—and even some math teachers—end up saying that they “hate math” and 
that “math is boring” or that they are “not good at math” (Boaler, 2008; Lockhart, 
2009). They have somehow missed the intellectual math experience—and this may 
limit their lifelong interest in science, engineering, and technology.  

Perhaps it is time to re-invent the practices of geometry in the computer age. This 
would involve reformulating each of the practices of discourse, inscription, 
labeling, construction, and proof. This would not be the first time that the 
presentation of geometry has been reinterpreted, but could be a decisive 
opportunity for rejuvenating it.  

“Euclid alone has looked on Beauty 
bare.” – Edna St. Vincent Millay 
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The vision behind attempting this is that geometry can be turned back into a 
creative enterprise. A number of developments have taken place recently that can 
contribute to achieving this potential. One is the appearance of dynamic-geometry 
software. This software lends itself to a constructivist approach, like that of Logo 
(Papert, 1980) in the recent past. Another is the practice of computer-supported 
collaborative learning or CSCL (Stahl, Koschmann & Suthers, 2006) using 
networked digital devices, which are gradually becoming broadly available even 
in schools. 

A look at how Euclid’s propositions can be translated into dynamic geometry 
reveals that geometric findings do not have to be seen as eternal verities from some 
otherworldly realm. They can be seen as the product of visualizing the problem by 
exploring it through dragging points of a figure around the screen, representing 
relationships among objects by construction and designing the proper 
dependencies into the construction. If such a tool is put into the hands of groups of 
students working together, perhaps what took place on the shores of the 
Mediterranean 2500 years ago can be duplicated around the networked globe now. 

With the development of dynamic-geometry and dynamic-mathematics software 
environments like Geometer’s Sketchpad, Cabri, Cinderella, and GeoGebra, there 
has been a resurgence of interest in basic geometry around the world. The free 
availability of open-source GeoGebra has resulted in a burgeoning user 
community, primarily of math teachers. Although dynamic mathematics 
encourages active learning and student construction of meaning, these 
technologies have not been designed to support collaboration.  

While the importance of collaborative learning for online education may be 
obvious to CSCL researchers and its possible advantages have been well 
documented in cooperative-learning (Johnson & Johnson, 1989; Slavin, 1980) and 
CSCL research for decades (Sawyer, 2006), support for collaboration is still not 
always designed into new educational platforms. For instance, the latest hot 
approach to university instruction—massive open online courses or MOOCs—are 
generally based on the lecture paradigm, where students passively watch talking-
head videos of famous professors and are not given any sanctioned opportunities 
for interaction with peers. Similarly, the acclaimed Khan Academy offers 
thousands of YouTube videos explaining detailed topics in school mathematics, 
but students have no support for interactively exploring the topics themselves or 
discussing them with other students. These technological opportunities are 
generally not designed to incorporate constructivist learning principles (Bransford, 
Brown & Cocking, 1999). 

As noted above, the primordial math experience around Greece in 5th and 4th 
century BCE was based on the confluence of labeled geometric diagrams (shared 
visualizations) and a language of written mathematics (asynchronous 
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collaborative discourse), which supported the rapid evolution of math cognition in 
a small community of math discourse, profoundly extending mathematics and 
Western thinking. Can this Greek model of asynchronous collaborative 
communities be translated into a vision of computer-supported collaborative 
learning? 

What if one could today foster stimulating communities of math discourse in 
networks of math teachers, in classrooms of K-12 math students and in online 
communities? Is it possible to leverage the potential of networked computers and 
dynamic math applications to catalyze groups of people exploring math and 
experiencing the intellectual excitement that Euclid’s colleagues felt—refining and 
testing emerging 21st century media of collaborative math discourse and shared 
math visualization to support math discourse in both formal and informal settings 
and groupings? 

Educators who teach math teachers—and others—have found that many people 
teaching K-12 math have had little experience themselves participating in 
processes of mathematical exploration and discovery (Krause, 1986; Livingston, 
1999; Silverman & Thompson, 2008). It is necessary to provide teachers with first-
hand experiences and to mentor them in guiding their students to engage in rich 
math discourses that go beyond generating numeric answers to supply math 
reasoning and to draw conceptual connections. 

The learning sciences have transformed our vision of education for the future 
(Sawyer, 2006). New theories of mathematical cognition (Bransford, Brown & 
Cocking, 1999; Brown & Campione, 1994; Greeno & Goldman, 1998; Hall & 
Stevens, 1995; Lakatos, 1976; Lemke, 1993; Livingston, 1999) and math 
education (Boaler, 2008; Cobb, Yackel & McClain, 2000; Lockhart, 2009; Moss 
& Beatty, 2006), in particular, stress collaborative knowledge building (Bereiter, 
2002; Scardamalia & Bereiter, 1996; Schwarz, 1997), problem-based learning 
(Barrows, 1994; Koschmann, Glenn & Conlee, 1997), dialogicality (Wegerif, 
2007), argumentation (Andriessen, Baker & Suthers, 2003), accountable talk 
(Michaels, O’Connor & Resnick, 2008), group cognition (Stahl, 2006) and 
engagement in math discourse (Sfard, 2008; Stahl, 2008a). These approaches place 
the focus on problem solving, problem posing, exploration of alternative strategies, 
inter-animation of perspectives, verbal articulation, argumentation, deductive 
reasoning and heuristics as features of significant math discourse (Maher, Powell 
& Uptegrove, 2010; Powell, Francisco & Maher, 2003; Powell & López, 1989).  

To learn math is to participate in a mathematical discourse community (Lave & 
Wenger, 1991; Sfard, 2008; Vygotsky, 1930/1978) that includes people literate in 
and conversant with topics in mathematics beyond basic arithmetic. Learning to 
“speak math” is best done by sharing and discussing rich math experiences within 
a supportive math discourse community (Papert, 1980; van Aalst, 2009). By 
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articulating thinking and learning in text, students make their cognition public and 
visible. This calls for a reorientation of the teaching profession to facilitate 
dialogical student practices. It also requires the development of content and 
resources to guide and support the student discourses. Teachers and students must 
learn to adopt, appreciate, and take advantage of the visible nature of collaborative 
learning. The emphasis on text-based collaborative learning can be well supported 
by computers with appropriate computer-supported collaborative-learning 
software. 

The Key Dependency 
The key to understanding dynamic geometry is not the memorization of 
terminology, procedures, propositions, or proofs. It is dependencies. This is not a 
well-recognized fact. Dependency is built into dynamic-geometry software at its 
most fundamental technical and conceptual levels. However, research on the use 
of this software barely mentions it and rarely discusses its key role. Both the 
research literature and the practitioner research stress the ability to move—or 
“drag”—points and other objects around the screen to observe variations in 
geometric figures. For instance, Scher (2002), Healy et al. (1994) and Hölzl (1996) 
focus on dragging, as do most articles on dynamic geometry written for teachers. 
There are exceptions, such as Noss et al. (1994) and Jones (1997), which are 
concerned with construction, while Jones (1996) and Hölzl et al. (1994) are among 
the very few who discuss dependencies. There are also reflections on how dynamic 
geometry can support thinking about proofs (deVilliers, 2003; deVilliers, 2004; 
Hoyles & Jones, 1998; Laborde, 2000). For a broader review of the literature, 
including trade-offs on the different approaches, see Powell and Dicker (2012) and 
Sinclair (2008). 

The key to understanding dynamic 
geometry is not the memorization of 
terminology, procedures, propositions, 
or proofs. It is dependencies. 

Dynamic geometry can be understood in terms of three important activities that it 
supports:  

(i) Dynamic dragging,  

(ii) Dynamic construction and  

(iii) Dynamic dependencies.  
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Problem solving in this medium generally involves an integration of these 
activities. One should explore a problem through dragging to observe dynamic 
behavior as objects are varied. Then one should investigate new arrangements 
through construction of new geometric figures. The construction should be guided 
by the attempt to build in certain dependencies among the objects, such as that the 
second and third leg of an equilateral triangle should be constructed in a way that 
their lengths are dependent upon the length of the base side—even when the length 
of the base changes through dragging. 

 

Experience dynamic geometry 
To understand this book, it is necessary to have personal 
experience with dynamic geometry. Take a few minutes now 
at a computer to try GeoGebra. If you can do this 
collaboratively, discussing each step with a friend, that 
would be ideal.  
1. First, watch a two-minute video on constructing an 
equilateral triangle in GeoGebra, such as the one at 
www.youtube.com/watch?v=ORIaWNQSM_E.  
2. Then download GeoGebra from www.GeoGebra.org and 
open it up. 
3. Try the basic geometry tools. Construct a point with the 
point tool. Use the move tool to drag it around. Construct a 
line segment with the segment tool and drag it. Construct a 
circle with the circle tool. Construct a new point on your line 
segment and one on your circle; drag these points. What 
happens? Move your line to cross your circle and construct 
a new point where they intersect (see point H in Figure 1-2. 
Can you move your new point directly or indirectly? 
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Figure 1-2. Free, constrained, and dependent points. 

4. Try to construct an equilateral triangle yourself. Use the 
“File” | “New” menu item to clear the work area. Start with 
a base side AB. Then draw circles of radius AB centered on 
endpoints A and B, respectively. Construct point C at an 
intersection of these circles. Use the polygon tool to 
construct triangle ABC. Drag the vertices—this is the “drag 
test.” Do you see why the triangle remains equilateral 
dynamically? The position of point C is dependent upon the 
circles, which are dependent upon the segment AB. 
5. Now download the file inscribe.ggb from 
www.GerryStahl.net/vmt/inscribe.ggb or from 
www.geogebratube.org/material/show/id/43056. Follow the 
directions (as in Figure 1-3.) Drag points A and D to 
explore the figure and discover its built in dependencies. 
How would you describe the geometry of this figure? 
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Figure 1-3. The inscribe challenge problem. 

6. The challenge is to create a figure like this. Your version 
should behave dynamically the same as the given figure. Use 
the drag test to see if it does. This is a challenging problem. 
Do not worry if you cannot do it now. You will see later in 
the book how various groups figured it out. 
7. Hint: You already know how to create the outer triangle, 
ABC. Start with that. Construct a point on one side of the 
outer triangle. This will be one vertex of the inner triangle. 
Can you use the same method to create the inner triangle? 
Try it. Does it satisfy the required dependencies?  

 

The dependencies that are constructed into a figure determine its characteristics. 
These characteristics hold even under dragging. Sometimes a figure might look 
like it has certain characteristics: a triangle may look equilateral. However, when 
a vertex is dragged, it will not remain equilateral-looking unless the proper 
dependency was constructed in it. That is why students are taught to use the “drag 
test” to make sure that an apparent characteristic is dynamically valid. 

Dragging is easy and fun for students. By comparison, proper construction can be 
tricky and frustrating. Designing a figure to have the right dependencies can be 
particularly straining. Learning to do dynamic geometry requires time, 
concentration, and guidance. Many teachers decide that they do not have the time 
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in their classroom to help students develop the skills in construction and 
dependencies. In fact, often the teachers may not have the time to develop such 
skills themselves. Therefore, it is common practice to provide students (and 
teachers) with ready-made constructions. Then the students can just drag points 
and observe the behaviors. Taking it a step further, teachers might do the dragging 
themselves and project it for the students to watch passively. In such cases, 
dynamic geometry is largely reduced to illustrating facts from Euclidean geometry. 
It may even be restricted to serving as a teacher’s drawing tool for static, but 
precise figures. 

The vision pursued here for collaborative dynamic geometry is one in which 
students work together to develop and apply the skills of dragging, constructing 
and designing dependencies. This is not a new vision. It follows naturally from the 
availability of dynamic-geometry software—like Geometer’s Sketchpad, Cabri, 
and GeoGebra—and collaborative-learning software. For instance, Gadanidis et 
al. (2002) wrote a white paper based on the Knowledge Forum asynchronous 
collaborative knowledge-building environment, calling for a synchronous online 
math environment. Reis and Karadag (2008) and McDougall and Karadag (2008) 
proposed methods for tracking student learning in such a system. The effort 
described in this book pursues those goals in a comprehensive way. 

Read today, Euclid’s Elements (300 BCE/2002) in effect provides 
instructions for dynamic-geometry constructions. The “elements” of geometry are 
not so much the points, lines, circles, triangles and quadrilaterals, but the basic 
operations of constructing figures with important relationships, such as congruence 
or symmetry. Just as Euclidean geometry contributed significantly to the 
development of logical, deductive, apodictic cognition in Western thought and in 
the formative minds of many prospective mathematicians, so collaborative 
experiences with dynamic geometry may foster in students ways of thinking about 
dependencies in the world. 

Virtual Math Teams 
The Virtual Math Teams (VMT) Project was conceived in 2002 as a way of 
providing through the Math Forum an online environment for the collaborative 
learning of mathematics. It started out simply using a commercial text-chat (AOL 
chat) system and asking small groups of students to work on the Math Forum’s 
Problem of the Week together. It has been growing from that ever since. By 2009, 
the VMT environment was quite complex, with Java chat rooms including shared 
whiteboards, web browsers, a wiki and social-networking functions. It could 
thereby support work by individuals, small groups, and whole classes. Information 
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could be moved back and forth between these levels. The approach to VMT grew 
out of research reported in (Stahl, 2006). A collection of research reports on the 
project by team members and international collaborators was then published in 
(Stahl, 2009). 

The VMT Project is motivated by a belief in the power of collaborative learning. 
This belief is founded on a variety of theoretical and empirical findings: 

• Collaborative learning is a foundational mode of learning generally. 
Toddlers learn from interacting with members of their immediate family and 
with peers—imitating and starting to communicate with others. Vygotsky 
(1930/1978) documented how the acquisition of most human cognitive 
skills takes place first through collaboration, and only later becomes an 
individual mental faculty. 

• When one carefully investigates knowledge building, it often takes place in 
small-group interactions in which participants build on each other’s 
contributions in ways that the resultant knowledge cannot be attributed to 
any individual, but only to the group. 

• Collaborative interactions often serve to train the perceptions of individuals 
to see something as others see it, that is, in new ways. This is related to the 
larger point that collaboration brings together different perspectives on a 
topic. The confrontation of different perspectives may cause productive 
“cognitive conflict” or otherwise stimulate innovative resolutions or 
syntheses. 

• Community practices are disseminated and revised as they are taken up in 
the concrete collaborative interactions of small groups within the 
community. 

• In general, collaborative interactions frequently confront problems and 
respond to questions, negotiating differences and producing resolutions. 

• In these ways and others, interactions at the small-group level contribute to 
making the problem-solving power of a small group more than the sum of 
its parts. 

After the first trials of the VMT Project with the simple chat tool, it was apparent 
that collaborative mathematics required a shared graphical space that participants 
could point to. While a generic whiteboard with simple drawing tools facilitated 
some impressive collaboration among students, the drawings were quite primitive. 
It took too long to make some of the drawings and it was sometimes hard for the 
other students to interpret them.  
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Meanwhile, mathematics software was being widely used in schools. In particular, 
many teachers were starting to use Geometer’s Sketchpad or GeoGebra in 
geometry classes. Thus, the idea arose to integrate dynamic-geometry software 
into VMT in order to provide increased mathematical functionality. 

The integration of two rather complex pieces of software—VMT and GeoGebra—
turned out to be possible, but challenging. GeoGebra had originally been designed 
from the ground up for single-users. Creating a multi-user system involved not 
only re-thinking the software architecture, but also re-designing how dynamic 
geometry should work for groups.  

Group Cognition 
The VMT Project was closely associated with the theory of group cognition. That 
is an approach to the study of collaborative learning and knowledge building that 
focuses methodologically on the small-group unit of analysis. It uses techniques of 
interaction analysis to follow group processes of problem solving and joint 
meaning making. It takes analytic tools of video analysis and Conversation 
Analysis from face-to-face informal conversation among dyads and adapts them 
to online, computer-mediated communication about mathematics in small groups. 

Because the VMT Project proceeds by means of constant iterations of trial and 
analysis, it was necessary to carry out relatively quick case studies. The purpose 
of the case studies was to see what took place in the chat rooms, how successful 
interactions were carried out, and what problems arose. In order to design effective 
software for supporting the kind of interactions that were desirable in the project, 
it was important to understand the nature of such interactions and the variety of 
problems that could get in the way. Reliance on established theories from 
psychology and education was unreliable, since they were generally based on face-
to-face interaction or on models of individual learning. The design-based research 
approach of the VMT Project—which never reaches a final end-state—is driven 
by on-going formative assessments, rather than being confirmed by a summative 
assessment. The focus is on understanding how the group interactions and 
knowledge building are mediated by the latest version of technology and 
pedagogy, rather than on comparing individual learning outcomes before and after 
interventions. 
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Resources Theory 
Taken within the context of other theories popular in CSCL, the theory of group 
cognition implied a view of learning, problem solving and knowledge building as 
taking place on three primary units of analysis: individual, small-group and 
community. It appeared that some phenomena of importance to CSCL took place 
on one of these levels and some on the others. Different methods of analysis were 
applied at the different levels. However, it was also clear that these three levels 
were intimately intertwined and influenced each other in essential ways. For 
instance, concepts from the highest socio-cultural-historical levels of mathematical 
knowledge could be introduced into group discussions, play a creative role in the 
meaning making there, and eventually be internalized into individual skills. 

A problem for the project was, on the one hand, to introduce content from the 
community level into group-collaborative activity and, on the other hand, to see 
that shared intersubjective understanding developed at the group level resulted in 
learning at the individual level. One way to think about this was in terms of 
resources (or artifacts or practices), which could traverse the different levels and 
thereby provide connections between them. 

For teaching dynamic geometry, among the most important resources are the 
practices of dragging objects, constructing figures, and building dependencies. 
These practices are acquired at the group unit through guided collaboration. 
Community-level math content, the culture of doing mathematics and the effective 
practices of mathematics are introduced into group activities, for instance in the 
form of scaffolded resources defining topics of discussion and exploration. 
Through participation in group practices, individuals can then develop the 
corresponding personal skills. 

Design of Resources 
A set of principles for the design of dynamic-geometry resources was compiled 
based on experience through many iterations of trials in the VMT Project, a long 
history of resource development for math teachers and math students at the Math 
Forum, training materials for different dynamic-geometry systems, textbooks, 
governmental learning standards and Euclid’s Elements. These principles 
enunciated several dimensions that had to be considered and balanced. 

The goal was to design resources to improve the following skills in math teachers 
and students: 
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• Collaboration: To work effectively together to explore dynamic geometry. 

• Dragging: To explore mathematical phenomena by varying visual 
representations. 

• Construction: To construct mathematical figures embodying relationships. 

• Dependencies: To notice, wonder about, and form conjectures about 
mathematical dependencies, using them to justify, explain and prove 
mathematical findings. 

• Math content: To understand core concepts, relationships, theorems, and 
constructions of basic high-school geometry. 

• Discourse: To engage in significant mathematical discourse. 

Introductory Resources 
The principles of resource design evolved through formulating topics for group 
work, creating activities and instructions around the topics. As new resources were 
developed, they were tried out: first by the developers, then by groups of research-
team members, then by volunteers and teachers, and finally by groups of students. 
Every year, sets of resources would be designed and would evolve through many 
versions.  

The current set of resources for dynamic geometry gradually introduces students 
to the elementary objects of the field: points, lines, circles, triangles, polygons. It 
guides them in how to effectively drag objects, construct figures, and build 
dependencies in collaborative GeoGebra. There are topics devoted to standard 
content in high-school geometry, like congruent triangles, but also open-ended 
mini-worlds and challenge problems to encourage creativity. 

Design-Based Research 
Human-centered informatics is about treating the sources of information, software, 
logic, and mathematics as products of human creative discovery. Collaborative 
dynamic geometry can provide a model for this, just as geometry provided a model 
for compelling argumentation during the birth of Western civilization. However, 
to do so, students must begin to see the objects, constructions, and dependencies 



Translating Euclid 

      

38 

of dynamic geometry as creations of their own collaborative efforts and discoveries 
of their joint explorations.  

Students must begin to see the objects, 
constructions, and dependencies of 
dynamic geometry as creations of their 
own collaborative efforts and discoveries 
of their joint explorations. 

Equilateral triangles, constructions of parallel lines and dependencies among 
centers of triangles are not otherworldly mysteries that must be accepted on 
authority, but products of people working, inquiring and talking together—
products of their joint creativity, design and investigation. The basic modes of 
dynamic-geometry activity—dragging, constructing, and dependencies—can 
together form a model of creative discovery, illustrating the general interplay 
between human agency and reality’s resistance. The discovery of geometric 
propositions through the creation of geometric dependencies can stand as a 
metaphor for the interplay of people and data in human-centered informatics. 

To effectively convey this experience to students involves a combination of theory 
(about collaborative learning, dynamic geometry, resources), design (of pedagogy 
and geometry activities), technology (to support collaborative dynamic geometry), 
research (into how students enact resources), and practice (to see what works and 
what does not over time and in various contexts). Balancing these multiple 
dimensions requires an interdisciplinary team engaged in design-based research. 
This book reports understandings gained from the design-based research of the 
VMT Project during the period 2010-2012. 
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Chapter 2.  History: The Origin of 
Geometry 

Chapter Summary 
Geometry started out as an evolving creation of a creative 
intellectual community. However, over time, the objects and 
practices of geometry have come to be understood as 
otherworldly ideals to be accepted on authority, rather than 
as elements of human imagination and exploration. The 
history of geometry from the early Greeks, to Euclid’s 
systematization, to modern axiomatic systems and to 
contemporary schooling can be seen as a process of the 
successive obscuring of the origin of geometry in human 
activity. 

 

 

o understand the plight of geometry education today, it is informative to go 
back to its origins in ancient Greece. Geometry is solidly rooted in the 
history of Western civilization. It developed at the same time as some of 

the most important cultural developments: the beginnings or high points of written 
history, philosophy, drama, logic, sculpture.  

Folk Geometry 
Ever since people stopped wandering and settled down on patches of land, they 
have probably had ways to measure out the land (“geo-metric”), build structures 
in various shapes and conceive of various visual forms. Look at the intricate 
patterns woven into fabrics or carved into rocks, pottery, and jewelry in pre-literate 
cultures. Here, the designed objects carried aesthetic and social values. They had 
not yet been quantified and made comparable based on a universal system of 
equivalences—see the literature of ethno-mathematics and Alexander (1964). 

T 
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Throughout history, there have always been developments in practical 
mathematics, which interact with the pure or academic mathematics of 
professional mathematicians. The practical approach to geometry as techniques for 
dividing plots of land or calculating distances goes back at least to Egypt. It 
dominated textbooks in the Middle Ages, following the lead of Fibonacci’s 
Practica Geometriae published in 1220. For instance, the practical navigational 
needs of ship captains in the era of global exploration, colonization and world trade 
drove the invention of complex algorithms, detailed numeric tables and 
computational instrumentation (Hutchins, 1996). As an example, a 15th century 
Venetian method for correcting a ship’s bearings after being blown off course by 
the wind provided tables based on a drawing (see Figure 2-1) and trigonometric 
computations (Long, McGee & Stahl, 2009). This, in turn pushed the development 
of logarithms in mathematics and even the design of early computers (Gleick, 
2011).  

Formal, systematic geometry first emerged from common practice in the pre-
Socratic days of Greece, from which few artifacts survive to tell the story. It 
developed the method of deductive reasoning and helped to transform the nature 
of literacy, science and human cognition (Husserl, 1936/1989; Netz, 1999). 

 
Figure 2-1: Course correction via the marteloio method. Reproduced from 
http://brunelleschi.imss.fi.it/michaelofrhodes/navigate_toolkit_basics.html. 
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The First Geometers 
In the 5th and 4th centuries BCE, a small, distributed network of members of the 
Greek upper class developed a highly formalized version of geometry. Theirs was 
one of the first specialized applications of writing using an alphabet. They 
combined a formalized subset of written Greek with related line drawings. 
Significantly, the endpoints and intersections of the lines and arcs of the drawings 
were labeled with letters, which were used to reference them in the text. They 
created a genre combining text and diagram that spanned oral and literate worlds—
incorporating the urge to persuade using words while pointing to objects—with the 
tools of the literate minority. 

We barely know a few names of these early geometers; surviving copies of their 
work are reproductions, translations, or interpretations from hundreds of years 
later. Although their work was not particularly highly valued in the mainstream 
Greek culture, the “hobby” of doing geometry employed impressive intellectual 
skill. The tightly argued texts—circulated around the Mediterranean on parchment 
scrolls and clay tablets—were written in a minimalist style that was hard to follow. 
The newly invented discourse of proofs relied on an abstraction of geometric 
configurations to formal abstractions, such as that “a line is breadthless length”—
i.e., a line has no thickness or any other characteristics other than its measurable 
length. To follow the argument of a proof—let alone to formulate a new proof—
one had to be able to recall and understand an extensive corpus of previous 
definitions, postulates, and propositions. 

In order to structure their proofs effectively as self-contained and incontestable 
arguments, geometers had to reduce their subject matter to purely formal aspects, 
such as the length of lines. In addition, they laid out the proofs themselves in a 
clearly structured order, which made explicit the goal of the argument and the fact 
that the goal was achieved in the end. Each proof consisted of several discrete 
steps—sometimes as many as 40. The steps of a proof were restricted to formal 
relationships, such as that one line or angle was equal in measure to another.  

The argument uniting the steps to arrive at the stated goal unfolded through 
reliance upon a small set of transitive connections, such as that if A=B and C=B 
then A=C and A, B and C are all equal. These connections were accepted from the 
start as part of the geometry enterprise. The standardization of the minimal 
language of geometry made it clear that only these established connections were 
being used to make the deduction. Their transitive nature ensured that a proof that 
followed the conventionalized rules would be a valid, convincing deduction.  

The frequent reliance on the transitive property of equality in Euclid’s presentation 
is striking. The first item in his list of “common notions” is, “Things which are 
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equal to the same thing are also equal to one another” (Euclid, 300 BCE/2002, p. 
2). The strategy which frequently occurs in his proofs is to show that two 
magnitudes such as the lengths of two line segments are both equal to the same 
thing like the length of a third line segment. For instance, in his very first 
proposition, on the construction of an equilateral triangle, Euclid argues that since 
the lengths of each of the legs of the triangle are equal to the length of the base 
(because the respective leg and the base are radii of the same circle by construction 
and all radii of a circle are equal by definition of a circle), all the sides are equal to 
each other (p. 3).  

The transitive property of equality is valid in mathematics. Its use provides much 
of the glue that allows Euclid to build up complex proofs. As long as each element 
of the proof (i.e., that A=B and that C=B) is valid then the conclusion of the large 
proof (that A=C or that A, B and C are all equal) will also be “apodictically” valid 
as long as the argument is connected by logical principles like the transitivity of 
equality.  

Geometry is confined to a system of objects and procedures for which such validity 
is maintained. Of course, in the broader social life, one cannot count on this kind 
of validity. For instance, in interpersonal relationships like a romantic triangle, if 
person A loves person B and C also loves B, it is not often true that A loves C. 
Love is not transitive; it is more complicated. 

The history of mathematics can be viewed as an on-going process of defining math 
objects and rules in ways that produce elegant, consistent, rigorous proofs 
(Lakatos, 1976); Greek geometry is a prime example of this. The definitions of 
abstract points, lines and circles allowed one point to stand for any point and one 
line to be equivalent to any other, except for length and the points that it passed 
through. Furthermore, the rules of deduction were simple and easily combined to 
build up deductions that are more complicated without introducing problems. As 
long as one restricted one’s discourse to this small, carefully crafted, well defined, 
and orderly domain of geometric objects, a controlled vocabulary and transitive 
rules, one’s proofs could be unassailable and universally persuasive. 

The early Greek geometers proved propositions about geometric objects that go 
far beyond today’s high-school geometry in insight and complexity. This would 
surely have been impossible without the use of diagrams. Even the simplest 
geometric arguments are difficult to follow without studying diagrams. The human 
mind is severely limited in its ability to handle long sequences of utterances and to 
keep track of many inter-related objects within short-term memory. The diagrams 
allow people to take advantage of their powerful visual analytic skills. The lettered 
labels on the objects in the diagram provide deictic references to the objects 
intended by specific written phrases, effectively integrating the visual situation and 
the linguistic deduction. Through the coordination of formal proof discourse with 
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labeled diagrams, the Greeks could prove and communicate rather involved 
propositions. 

Plato’s Academy 
The cognitive importance of geometry was well recognized from the beginning. 
Plato (428 BCE to 348 BCE) certainly felt that the study of mathematics was good 
training for philosophy. Above the entrance to Plato’s Academy was inscribed the 
phrase “Let none but geometers enter here.” Plato’s mentor, Socrates, is shown in 
one of Plato’s early dialogs demonstrating a geometric proof to a servant named 
Meno (Plato, 350 BCE/1961). Plato’s successor, Aristotle, made original 
contributions to geometry, as well as conceptualizing deductive logic. 

Above the entrance to Plato’s Academy 
was inscribed the phrase “Let none but 
geometers enter here.” 

The Socratic dialog with Meno is instructive about Plato’s epistemology. In the 
dialog, Socrates walks an unschooled servant boy through the steps of a geometric 
proof, eliciting the boy’s assent at each logical move. Socrates’ conclusion is that 
since the boy never saw the proof before in his life and was never taught about it 
yet understood and agreed with it in detail, he must have remembered this 
knowledge from before he was born. While Plato developed a sophisticated theory 
of knowledge in his later dialogs, this principle remained. There was no source of 
new knowledge in the world (like experience or creativity). All people are born 
with complete knowledge. However, they do not remember almost any of it. All 
learning is a process of remembering. Education is a matter of reminding; the word 
‘education’ is derived from “leading forth,” e.g., from memory. Therefore, the 
source of knowledge is neither discovery in the world or creation through human 
activity and interaction, but in some otherworldly source that is dimly recalled. It 
is like people living in a cave amongst shadow memories of a forgotten world that 
exists outside in the sunshine (Plato, 340 BCE/1941). Human knowledge consists 
of faulty memories of Ideas, which exist outside our world in an eternal, ideal form. 
The prototypes of such Ideas are the concepts of mathematics, like numbers, 
points, π. 

While Plato did not engage directly in the practice of geometry in his surviving 
writings, there seems to be a complex interaction between his philosophy and the 
nature of Greek geometry. Latour (2008) argues that Plato wanted to use the 
deductive power of geometry to support his philosophic claims. Plato was in 
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intellectual competition with the Sophists, who used rhetoric to convince their 
audience, and with the political leadership, who called upon established authority 
and the gods. Plato questioned authority, brought his audience to a sense of aporia 
(awe, based on puzzlement in the face of an impasse in the usual approach to a 
topic) and then tried to convince through logical argument, modeled to some extent 
on the new deductive style of the geometers.  

However, Latour claims that Plato could not succeed at adopting the geometry 
model because the success of geometry’s deductive power flows from its 
formalism, its rejection of all content, whereas Plato needed to retain the content 
because he was interested in content-full topics like the Good, the True and the 
Beautiful. These topics are based on the richness of everyday language and cannot 
be reduced to well-defined meanings, relations of equivalence and limited 
language. 

Perhaps Plato was pushed in the direction of his doctrine of Forms or Ideas by the 
model of geometry. If he could say—as he certainly did in his early dialogs—that 
he was not talking about a specific just act, but about the concept of justice itself, 
which applies to all just acts without having any of the specifics of any one such 
act, then perhaps he could formalize his concepts so that his arguments about them 
would have the deductive power of geometry: the characteristic that they cannot 
be doubted and are self-evidently true. Unfortunately for Plato, he was determined 
to discuss broad, complex topics based on vague terms of everyday language, 
whereas the success of geometry relied upon radically restricting its discourse. 
Plato wanted his deductions to apply to life, not to be confined to abstract objects 
like ideal points. 

As Heidegger puts it, the philosophic experience that follows awe is intended to 
change one’s view. Philosophy has aims and methods that differ essentially from 
those of mathematics: 

In philosophy, propositions never get firmed up into a proof. This is the 
case, not only because there are no top propositions from which others 
could be deduced, but because here what is “true” is not a “proposition” 
at all and also not simply that about which a proposition makes a 
statement. All “proof” presupposes that one who understands—as he 
comes, via representations, before the content of a proposition—remains 
unchanged as he enacts the interconnection of representations for the 
sake of proof. And only the “result” of the deduced proof can demand a 
changed way of representing, or rather a representing of what was 
unnoticed up until now. (Heidegger, 1938/1999, p.10)  

Following a proof step-by-step involves the manipulations of formal components, 
re-presenting things in terms of abstract symbols, illustrative diagram elements, 
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standardized terminology, and transitive comparisons. However, a philosophic 
argument cannot reduce its topic to a representation of the topic, like a geometer 
can reduce a line to a labeled diagram of a line. Even the idea, form, or concept of 
justice is not a representation of justice, but a rich understanding of what all just 
acts are about. Further, the point of a philosophic argument is not simply to deduce 
a truth, but to persuade the audience about how they should live a good, just, and 
beautiful life by gradually transforming their thinking and actions. 

Euclid’s Elements 
It is assumed that Euclid lived shortly after Plato, c. 323 to 283 BCE. It is possible 
that Euclid studied in Plato’s Academy in Athens and it is likely that mathematics 
was studied in the Academy. In one of the few surviving references to Euclid, it is 
noted that Apollonius (developer of the theory of conics and irrational numbers) 
“spent a very long time with the pupils of Euclid at Alexandria, and it was thus 
that he acquired such a scientific habit of thought.” By “scientific,” we can assume 
Apollonius primarily meant systematic. Not much else is known of Euclid as a 
person, other than this indirect reference. 

It is not known if Euclid actually proved any new propositions or if he just 
compiled well-known proofs, working in the great library of Alexandria, an early 
gathering place of the world’s knowledge. There had been some previous attempts 
to compile the propositions of geometry, but none were considered of comparable 
power to Euclid’s. Euclid published 13 volumes of geometry, in which the 
propositions were not only organized based on their subject matter, but built on 
each other systematically.  

Euclid’s presentations of the propositions all followed a similar template from 
statement of goal to declaration of conclusion, and they were apparently all 
accompanied by clear, labeled diagrams corresponding to the steps of the proof. 
Although the inter-relationships among the propositions were implicit in their 
individual original proofs, it must have taken a deep understanding and overview 
to put together all the propositions so systematically and to preface them with a 
clear statement of the assumed definitions, postulates and common notions. 
Euclid’s presentation of geometry has since then stood up to scrutiny for 23 
centuries and has inspired and influenced scientific and mathematical thought in 
the Western world more than any other text. 
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Roman and English Translations 
Unfortunately, we have no extant copies of the Elements as written by Euclid. We 
must rely on translations of translations and copies of copies of those. Each 
translation is necessarily an interpretation, and many copyists tried to “improve” 
the presentation. The standard English version now is a recent republication 
(Euclid, 300 BCE/2002) of Heath’s 1908 translation of Heiberg’s 1883 scholarly 
Greek version. The earliest printed Greek version is from 1533, predated by a 
printed Latin version from 1482.  

Each edition made different changes: eliminating whole sections from each proof 
to avoid redundancies, adding clarifying phrases, etc. For instance, the 
introductory list of definitions, postulates, and common notions was not originally 
broken down into numbered lists (as it is now), or even into separate sentences. It 
provided a general introduction to the terminology, rather than a set of axioms that 
could be referenced in the proof (as they are now). In addition, translations—most 
significantly from the original Greek to the Roman way of thinking, which strongly 
influenced Western scientific thinking when Latin was the lingua franca—
transformed syntax and changed tenses and ways of referencing. It is particularly 
unfortunate that we have no exemplars of ancient diagrams, only medieval and 
modern versions. 

Organization and systematization seem to be inherent in the practice of geometry. 
The notion of rigor in proof entails meticulous step-by-step procedures, precisely 
formulated and carefully built upon one another. In classical education, training in 
geometry was considered a means of disciplining unruly minds. Moreover, the 
birth of geometry may have contributed significantly to the rationalization of the 
Western mentality.  

The historical development of geometry following its birth further refined its 
systematic nature. Where Socrates was a free spirit intellectually and Plato sought 
after the essences, their follower, Aristotle was more of a systematizer, initiating a 
tendency that led to the great system builders in philosophy and the hierarchical 
thinking of the Neo-Platonist church, which dominated the medieval mentality. 
The library of Alexandria, where Euclid presumably assembled the Elements of 
geometry, was an historic effort to compile and categorize written knowledge. 
Such efforts were part of the strivings of secular and religious state leadership (like 
Alexander the Great) to establish, manage, and control increasingly large and 
complex civilizations. This was an early effort at informatics and the management 
of “big data.” The formalization, systematization, and bureaucratization of 
knowledge paralleled that of the military, politics, faith, and the economy. 
Geometry provided a model for the other fields, and it was itself in turn 
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transformed further in that direction by the general tendency in society, which it 
fostered. 

Pappus of Alexandria (340, Book VII) was an organizer of mathematical 
knowledge—like Euclid, but 600 years later. Perhaps the last major classical Greek 
mathematician, Pappus drew the important distinction between analysis and 
synthesis. Analysis is Euclid’s method. It starts from “what is sought as if it were 
existent and true” and works back to the given conditions and previous 
propositions. It then reverses the sequence to present a deductive proof derivation. 
Synthesis is a form of exploration that begins from the given conditions and 
previous propositions and investigates their implications. As Livingston (1999) 
argues, the process of proving is a winding synthetic discovery process, later 
disguised in a linear analytic presentation. The nature of work in dynamic 
geometry—which we will characterize below as a creative-discovery process—is 
more naturally a synthetic approach as contrasted with a classical Euclidean 
paradigm of analytic proof. 

Axiomatic Geometry 
People—including many mathematicians—tend to think of mathematical objects 
as some kind of “otherworldly” abstractions, as mental constructs that have no 
physical characteristics but obey logical rules (axioms and their corollaries). This 
view may be indirectly derived from Plato’s doctrine of Ideas as a realm of 
essences divorced from the physical world—a view furthered in philosophy by 
Descartes (with his strict separation of mind and body, the mental and the 
physical), and perhaps motivating the formal axiomatization of mathematics. As 
mentioned previously, Plato may have been influenced by early geometry; now the 
influence is fed back from his philosophy to mathematics. One consequence is that 
the geometric diagram is now viewed as a rather arbitrary and secondary 
illustration of the abstract ideas discussed in a proof. This may be an unfortunate 
distortion of the central role of the figure in the work of the first geometers. It may 
also obscure the important role of diagrams in the learning, exploration and 
understanding of geometry in schools today (Livingston, 1999). 

The geometric diagram is now viewed as 
a rather arbitrary and secondary 
illustration of the abstract ideas 
discussed in a proof. 
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By the twentieth century, mathematics was viewed as an axiomatic system. This 
began in a vision of systematic logic by Leibniz and was worked out by Frege and 
other logicians, culminating in Russell and Whitehead’s detailed system. Although 
Gödel’s and Turing’s work established surprising limits to this vision, the 
influence on geometry was significant. Euclid’s proofs are now read as axiomatic 
procedures. Over the centuries, the prevailing paradigms of hierarchy, logic, and 
axiomatization have ineluctably continued the interpretive transformations of 
Euclid’s texts.  

The historical development of reason, in which geometry has played a key role, 
can be considered from many perspectives. In terms of individual personal 
development, Piaget (1990) identified the child’s transition from concrete to 
abstract stages of thinking as pivotal. The educational role of geometry (and 
algebra) has always been seen as an important means for the training of abstract 
thinking. On a societal level, the movement from orality to literacy (Ong, 1998) 
can be seen as a primary watershed in human cognition. As discussed, the origin 
of geometry was an integral part of the emergence of literacy, including practices 
in visual representation, mathematics, and deduction.  

The rise of rationality has brought problems as well as progress (see Chapter 3). 
Philosophic analyses as different as those of Heidegger (1979) and Adorno and 
Horkheimer (1945) trace the origin of totalitarian fascism in the Second World 
War all the way back to the early Greeks. The tendency to reduce the richness of 
nature and interpersonal living to quantifiable representations is not only 
empowering, but also distorting of healthy human relationships. This historic 
tendency includes the emphasis on quantification and calculation in the rise of 
capitalism and bourgeois organizational management, rational planning and the 
exploitation of nature or human labor as disposable resources (Swetz, 1987). The 
emergence and development of geometry has been an integral element of the 
historical development of rational reason—although it has not often been analyzed 
in this context. The view dominating contemporary thought—for instance in 
cognitive science and artificial intelligence—has been attributed by Hutchins 
(1996, p.370) to “a nearly religious belief in the Platonic status of mathematics and 
formal systems as eternal verities rather than as historical products of human 
activity.” 

Changing Approaches to Teaching Geometry 
In recent decades, the teaching of geometry in public schools has moved away 
from the presentation of proofs in bureaucratized Euclidean style, in an attempt to 
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make the basic concepts of the field more accessible. However, the underlying 
mathematics has changed very little.  

The major innovation in American educational philosophy was that of Dewey 
(1938/1991). He argued that education should be based less on the transfer of facts 
and more on processes of inquiry. Recent research in the learning sciences 
(Sawyer, 2006) has expanded this approach, arguing for the importance of helping 
students to construct knowledge themselves through processes of active meaning 
making. However, the institutions of schooling are highly resistant to fundamental 
changes. While they often take on the trappings and instruments of reform efforts, 
they integrate them into the established practices, undermining the core intention. 
Thus, teacher-centric classrooms and teaching to tests of factual information 
counteract the impact of inquiry or constructivist learning. 

Within mathematics, the most radical attempt at educational reform in the US was 
the “new math” movement. This was an attempt by mathematicians to revise the 
traditional math curriculum, which was largely based in medieval approaches, with 
foundational concepts of 20th century mathematics, such as set theory. One 
approach along similar lines within geometry was to foreground transformational 
geometry as a central conceptualization (Morris, 1986). For instance, rather than 
defining an isosceles triangle in terms of equal sides or angles, to define it as having 
one leg the result of a reflection transformation of the other leg about a line of 
symmetry. Of course, the new math experiment was publically perceived in the 
US as a colossal failure, resulting in a strong “back-to-basics” backlash. Although 
techniques like transformations were subsequently included in the geometry 
curriculum, they were reduced to yet another topic of factual and procedural 
knowledge, rather than a foundational inquiry approach. 

Somewhat later, dynamic geometry was developed and offered as a new approach 
to geometry learning. It, too, has an interesting history of acceptance and 
adaptation within schools. While it offered the promise of a radically different, 
inquiry-based, constructivist approach, it was largely integrated into the classroom 
in ways that dulled its reformist impact.  

The history of geometry education in public schooling is complicated, with various 
initiatives and tensions reflected in educational policies, textbooks, and teaching 
in different countries. For a review of this history in the United States, see Sinclair 
(2008). Our concern in the current book is focused on the role that a human-
centered approach using dynamic geometry can play within this larger picture—
which is certainly not to deny that the focus and the context are intricately 
intertwined. 

The development of a computer-based approach to geometry had a logic of its own. 
The graphical user interface of personal computers allows one to create objects and 
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move them around. This takes advantage of certain technological developments, 
such as the difference between a “draw” program that uses vector graphics and 
may be programmed in an object-oriented way, as opposed to a “paint” program 
that uses pixel graphics. In a paint program, when the user draws something, the 
affected points or pixels on the drawing surface are simply colored to show where 
the user indicated. There is no representation of objects, which could be 
subsequently manipulated, such as the area now colored purple. In a draw program, 
the user specifies an object, such as a circle, and indicates its size and position on 
the surface. This information is stored internally for the draw program in terms of 
an object with variable properties (e.g., shape=circle, center at x=14/y=-5, 
radius=3, fill-color=red, line-color=black). The user can change these properties 
by dragging the object or selecting from menus. Given this capability of software 
on personal computers, geometry environments could be developed that allowed 
students to explore visual geometric relationship by dragging objects around the 
screen. For instance, one could see what happens when one drags a circle to make 
its radius longer. 

The problem that immediately arose for someone programming a system for 
dynamic geometry was that of changing all the related objects when one object 
changed. For instance, when a user changes the radius of a circle, what happens to 
a chord that crosses the circle, a line that is tangent to it, or a triangle that is 
inscribed inside it? They must all have their properties changed in very specific 
ways because their positions and sizes are dependent upon the circle’s position and 
size. The whole idea of dragging is to observe how the relationship of the circle to 
its chord, tangent or inscribed figure is valid for a range of circle sizes and 
positions, not just for the particular circle first drawn. The solution for the 
programmer is to create an internal representation of dependencies among the 
objects created. For instance, the positions (x and y coordinates) of the endpoints 
of a chord are dependent on the center and radius of the circle, such that the 
endpoints are always located somewhere on the circle’s circumference. Similarly, 
the defining points of a tangent line or an inscribed triangle are dependent on the 
circle’s center and radius: those defining points must all be automatically adjusted 
by the software whenever the circle changes. In a complex geometric figure, this 
leads to a whole hierarchy of dependencies; various objects can be dependent upon 
the chord that is dependent on the circle, and so on. 

Dependencies are at the core of dynamic geometry. They must be defined when 
objects are created. They must be maintained when objects are dragged. Without 
the dependencies, dynamic-geometric constructions would not make sense. 
Without the dependencies, dragging would not reveal anything of interest. 
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Dependencies are at the core of dynamic 
geometry. They must be defined when 
objects are created. They must be 
maintained when objects are dragged. 

Yet, dependencies are not always emphasized in classrooms that use dynamic-
geometry software. The dependencies lie hidden in the software. They are an 
obscured mystery, invisible to the students. This is largely because learning to 
construct figures in the software and to think about how to construct the 
appropriate dependencies into one’s own dynamic-geometry figures takes time. 
Teachers often feel they cannot devote the required classroom time to something 
that is not directly related to required content and standardized tests. The teachers 
themselves may not have time to engage in the necessary learning. Furthermore, 
learning to do constructions and to design dependencies is a trial-and-error process, 
which involves failures. Teachers may feel that their students will become 
frustrated with such failure experiences. As a result, the use of the software in 
classrooms is generally reduced to observing figures being dragged. Often, the 
students do not even drag the objects themselves, but passively observe the teacher 
dragging, projected on a screen or smartboard. Frequently, the students do not see 
the construction taking place—it is pre-constructed.   

We shall explore the potential of dynamic geometry at length in this book. We 
shall try to formulate a way of presenting dynamic geometry—including its 
incorporation of transformational geometry—to teachers and students that will 
retain its potential by involving the students in construction and dependencies as 
well as dragging. This may help to translate the experience from one of passively 
accepting already existing geometric truths to one of the creative discovery of 
geometric phenomena through actively constructing them based on their own 
designs of dependencies. 
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Chapter 3.  Philosophy: The 
Obfuscation of Geometry 

Chapter Summary 
The wellsprings of human creativity and logical thinking that 
flowed forth in the origins of Greek geometry were 
progressively covered over and transformed into regulated 
procedures and otherworldly objects. Twentieth-century 
philosophy frames this cover-up as a paradigmatic example 
of the over-reach of rationalization. In the sequence of 
world-historic epochs, successive reification of phenomena 
of geometry and more generally of the being of objects 
altered the relation of people to reality. These 
transformations are associated with the rise of rationalism 
and an ideology of individualism. Although these changes 
brought powerful advantages, they now need to be balanced 
by an approach of human-centered informatics, which 
guides students to understand the principles of geometry as 
products of human creative-discovery. 

 

 

Having reviewed the history of geometry, we now put this history into a larger 
perspective, which is concerned with the unintended negative consequences 
associated with historical progress. 

Epochs of Ontological Translation 
In this chapter, we shall reconsider the history of geometry in terms of the story 
told by the philosopher Heidegger in his later writings (e.g., Heidegger, 1979). 
According to his analysis of the history of philosophy, the early Greeks had a keen 
sense of the world around them, as articulated in their language. Unfortunately, 
through the development of Plato’s philosophy and its influence on subsequent 
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thought—as it was successively translated into different languages and cultures 
(e.g., Roman bureaucracy, medieval theology, modern technology)—this 
experience of reality was increasingly covered over. Rather than things appearing 
the way they did for the Greeks, they later appeared as, for instance, products of 
artisanship, of God or of technology. If we apply this view to the objects of 
geometry, we can see that although they were originally creative products of 
communities of geometers—resulting from their collaborative interaction 
mediated by labeled drawings and written propositions—the elements of geometry 
took on different appearances. They became objects of Platonic Ideas, of Roman 
rules, of medieval dogma or of modern logic.  

In the field of human-computer interaction (HCI), Heidegger is known for his 
analysis of tools (e.g., of the hammer as being handy, not just spatially present) 
and of the phenomenon of breakdown (as revealing the nature of the tool as useful 
for certain projects)—(see, e.g., Dourish, 2001; Dreyfus, 1991; Ehn, 1988; 
Winograd & Flores, 1986). But the analysis of tools is really just a detail within 
his much more encompassing early phenomenology of human existence in Being 
and Time (Heidegger, 1927/1996), where he lays out an analysis of human being-
in-the-world with other people and tools. (We will discuss this again in Chapter 
8.  on the theory of resources.)  

The point about breakdown is that when tools are being used unproblematically, 
our understanding of them and of how to comport ourselves with them in the 
service of our projects is an implicit or tacit kind of knowledge. When there is a 
breakdown of some kind in this smooth functioning, then we become aware in the 
sense of developing a more explicit and developed interpretation of the tool as a 
resource to be used for our projects… and we become aware of the fact that it is 
not working that way. We only need to develop our awareness up to the point 
where we can fix the problem and get on with the work. In this way, the breakdown 
serves to uncover something of the nature of the tool, which was previously not 
apparent. The tool is brought out of its disclosure and made visible as a tool usable 
for doing such and such. Its significance is established within a network of 
significance that is projected by our life goals. 

Heidegger’s philosophy has a strong temporal dimension. We are strongly oriented 
to the future. That opens up new possibilities, structures our understanding of our 
situation and our resources, and provides meaning. The future is always a finite 
one, with significant temporal limitations, ultimately established by our eventual 
death. Within this temporal dimension, we find ourselves at any particular moment 
already thrown into an existing, complex, meaningful, and shared world. That is 
the past, which constrains us, provides resources for us and delimits our 
possibilities. Stretched between past and future, we are situated in the present, in 
which we care for things and people within the limitations of our understanding. 
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The fact that the characteristics and uses of tools are uncovered in breakdown 
situations is important for research—hence its interest to HCI. It means that 
computer systems, curricula, and other resources—which have been designed to 
be enacted by students—can be studied by looking at problematic occurrences. 
Take, for instance, a curricular activity that is intended to teach a student how to 
construct a perpendicular line. If we observe an individual student doing the 
activity without any difficulty, we learn little as researchers. However, if we 
observe a group of students trying to accomplish the activity and discussing what 
they are trying to do when they run into various challenges, then we can learn 
much. We see how the students are taking the designed resources, how they are 
enacting them, how they are trying to use them and what is going wrong with all 
of this (at least from the designer’s perspective). The breakdown discloses the tool 
as what it is, i.e., how it is used.   

If we observe a group of students trying 
to accomplish the activity and discussing 
what they are trying to do when they run 
into various challenges, then we can 
learn much. 

This is an argument for design-based research (DBR) (Barab, 2006; Brown, 1992). 
To design effective resources, we must intervene in realistic use situations with 
our prototypes, run trials, analyze results (especially in breakdown cases), revise 
the prototypes accordingly, and iterate this process many times. DBR integrates 
the design of an educational technology or intervention with research about how 
learning takes place with various versions of that resource. Such integration 
involves vision, theory, implementation, experimentation, creativity, working with 
teachers, domain knowledge and pedagogy—and it evolves over time, in iterative 
cycles. 

The theory of breakdown is also an argument for students having to dis-cover 
knowledge themselves through usage—hands-on exploration. This is probably a 
large part of what is going on in “productive failure” (Kapur & Bielaczyck, 2012; 
Kapur & Kinzer, 2009), an important recent discovery within CSCL research. 
Failure often appears to occur when a group of students does not succeed in solving 
a challenging problem. Their approach breaks down and in response they develop 
their understanding further. While they may not have time in a classroom or test 
setting to put this new understanding to use in time to avoid failure in the short 
term, they now have the increased understanding that other student groups have 
not developed, so that they can achieve more in the long run. 

Heidegger’s view of disclosure in the life of a person is part of his historical theory 
of un-concealment (Unverborgenheit). He develops an ontological history, a 
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temporal analysis of Being. Just as the nature of a tool is concealed for an 
individual using the tool in the smooth pursuit of his or her goals, so the nature of 
reality more generally is obscured within the way reality is perceived during each 
historical epoch. Heidegger’s early analyses were focused on the individual. 
Although he conceptualized human existence as a social being-there-with-others 
in a shared meaningful world, Heidegger cut short the analysis of the shared world, 
reduced it to a politically conservative critique of popular culture and focused on 
the individual’s being toward its own finitude. In his later work, Heidegger took a 
more world-historical view, although he still clung to an impoverished concept of 
history and methodology for historical analysis (Nancy, 2000; Stahl, 1975a; 1976). 
This had tragic consequences for his own political action. 

Whatever the faults, limitations and dead-end paths his thinking may have had, 
Heidegger succeeded in uncovering some questionable assumptions and 
perspectives that have held sway at least from Plato to well beyond Descartes. His 
writings influenced most of the creative, critical thinkers since his publications. He 
problematized many of the prevailing distinctions and assumptions, which over the 
eons have congealed into our common sense. One of these sets of suppositions 
concerns causation or the proposition that everything must have a reason. For 
instance, Descartes argued that he must exist because to question if he exists is to 
think, and “if I think, therefore I must exist” (“cogito, ergo sum”). This assumes 
that if a thought exists, there must be a thinker who caused the thought to exist. 
Similarly, medieval theologians argued that if there is a universe, there must have 
been a creator. Our sense of causality derives from the model of mechanical 
causation (pulling and pushing by ourselves or by machines) and personal agency. 
Our sense that there must be a cause or reason derives from our experience of 
craftspeople producing useful products and our bodies exerting influence in our 
physical surroundings. 

Heidegger developed a radically new way of looking at how things influence each 
other and how history unfolds. Artifacts like shoes, bridges, paintings, poems, and 
buildings each have their own appropriate ways of being in which they appropriate 
aspects of the physical, spiritual, and human world. On a world-historical scale, 
these ways of being themselves evolve as the defining character of the epoch 
changes. Heidegger has some detailed analyses of the historical changes in the 
history of philosophy and some descriptions of artifacts as world-revealing and 
world-concealing actors (Stahl, 1975b; 1976). This is not the place to go into detail 
about Heidegger’s view, which is notoriously difficult to articulate.  
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The Dialectic of Reification  
Heidegger’s teacher, Husserl, was concerned in the 1930s with the philosophy of 
science and mathematics, which were both considered to be in crisis then. Perhaps 
in response to some of Heidegger’s ideas, Husserl wrote an essay on “The Origin 
of Geometry” (Husserl, 1936/1989). Here he coined the term “sedimentation” to 
describe how an informally used word or phrase could coalesce into an established 
technical term. In this essay, Husserl imagined the early Greek geometers as 
engaging in investigations, details of which became accepted mathematical 
practices through repetition over time.  

Husserl’s metaphorical term itself became sedimented as a technical term to 
describe how a casual discourse move could become a routinized social practice. 
For instance, in his recent study of collaborative learning in the Navy, Hutchins 
(1996) analyzed the discourse during a breakdown situation and identified a phrase 
by one person that was picked up on and used repeatedly in the discourse and took 
on a fixed meaning and role. He said that that phrase could have been sedimented 
into an established technical term within the large corpus of procedures and 
practices in naval navigation. Similarly, Hutchins and Palen (1998) show how 
aspects of the instrumentation used by airplane pilots and gestures associated with 
them can take on specific, sedimented meanings over time. 

Like the moves of Husserl’s geometers or Hutchins’ sailors and pilots, common 
words, tools and actions can become resources with significance and influence far 
beyond their original, immediate context. Latour and his colleagues have described 
many examples of mundane objects and unselfconscious practices participating in 
what he calls actor networks (Latour, 2007). In his view, historical change does 
not take place as the result of causation by large social institutions acting under 
rational choices, but rather as the unintended consequences of networks of 
innumerable mundane actors of all kinds—not primarily people or institutions—
exerting constraints on one another. Latour’s actor networks have interesting 
parallels to dynamic geometry’s dependency networks and collaborative learning’s 
discourse networks—which are also not to be conceptualized as logical deductions 
of rational individual minds. 

The concept of sedimentation is closely connected to that of reification. In the 
sedimentation process, independent grains of sand are compressed into hard rock. 
In reification, something relatively fluid, abstract, or amorphous is transformed 
into a tangible object, or a thing (Latin: rei), as though it were material.  

In her theory of the history and the learning of mathematics, Sfard (Sfard, 2000; 
2008; Sfard & Linchevski, 1994) discusses the role of reification. She sees it 
playing a central role in the history of mathematics, much like what Husserl 
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attributed to the early development of geometry. Actions in local contexts become 
reified: tried, repeated, refined, and fixated. A risky creative attempt becomes 
transformed into a valued discovery, eventually taken as a pre-existing truth (for 
examples, see Lakatos, 1976). Perhaps a long-shot attempt by an individual or 
small group to solve a tricky problem or to deal with a seeming contradiction is 
catapulted into an historical advance for humanity. This is how mathematics 
expanded, for instance with the addition of complex numbers, infinitesimals or 
non-Euclidean geometries. Then ontogeny recapitulates phylology; the individual 
student learning follows the steps of the field’s development. 

For Sfard, reification is a helpful and necessary process. A concrete instance of a 
math object, the naming of something or a procedure followed becomes a 
significant new mathematical element or practice. Something that was closely tied 
to a specific context becomes generalized, freed from its situation of origin. 
Henceforth, it is available for everyone, applicable to a range of problems. It gains 
status and acceptance. It is taken as the discovery of something that must have 
always been true in the otherworldly realm of mathematics; we just had not seen it 
and had to have someone discover it (or uncover it for Heidegger, or remember it 
for Plato). 

While reification drives forward progress in mathematics, it has its down side as 
well. It obscures the origin of new concepts and procedures in the creative work of 
people. Although there are some traces of human creation in names like the 
“Pythagorean Theorem” or the “Euler segment,” these are taken as nods to the 
discoverers of eternal geometric objects or relationships inherent in geometric 
objects, rather than as products of creative human work. 

This is the “dialectic of enlightenment” (Adorno & Horkheimer, 1945): progress 
in rational thinking brings with it the danger that important phenomena become 
obscured, misunderstood, forgotten, repressed. Rationalization of society can lead 
to fascism, totalitarianism, or mindless bureaucracy. In mathematics, it can lead to 
deadening memorization in place of insight—in the name of efficient training. 

Progress in rational thinking brings with 
it the danger that important phenomena 
become obscured, misunderstood, 
forgotten, repressed. 

If we assume that the first geometers—of whom we have no historical record 
because they predated written history—experienced some form of primordial 
intellectual fascination as they created geometry and discovered its principles, then 
we might wonder why students encountering geometry today do not share that 
experience. Of course, some of the answer is the setting. The Greeks may have 
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been sipping a jug of fresh wine with their friends on the sun-drenched shores of 
the Aegean Sea while sketching triangles in the warm sand. The students in schools 
may be feeling deprived of sleep, food, music, video, fresh air and free interaction 
with their peers while being required to step through meaningless procedures, 
which they will be tested on. In addition, the nature of the enterprise and the 
experience has changed essentially through processes internal to the subject matter, 
such as the ancient reification, which turned adventures in imagination into 
propositions of geometry, and the layers of scholarly translation that followed. 

Geometry is a social product. The processes of reification take place primarily at 
the community level, where something that arose in small-group interactions—or 
in the internalized voices of an individual’s mind—is made available more widely. 
The reification of geometric elements, terms, practices, and symbols are part of the 
dialectic of enlightenment. They contribute to intellectual progress while 
simultaneously obscuring their origins. 

Adorno and Horkheimer (1945) showed that this dialectic is pervasive in Western 
culture, with its roots in ancient Greece. Central to this culture is an ideology of 
individualism. In the ancient Greek epic tales of Ulysses and other mythic heroes, 
one can already see the emergence of the individual out of the earlier focus on 
nature and the tribe. In the early period of capitalism, the individual took on the 
form of the rational thinker and entrepreneurial actor. In the subsequent industrial 
age, knowledge—including knowledge of geometry, considered key to rational 
thinking by individuals—became a commodity to be consumed by a future 
workforce. The nature of mathematics, knowledge, learning, and thought went 
through a series of translations, reflected in the theories and philosophies of the 
times. The ideology of individualism was central to these historic transformations. 

Beyond the Ideology of Individualism 
The history of theory can be tracked in terms of the following issue: At what unit 
of analysis should one study thought (cognition)? For Plato (340 BCE/1941), in 
addition to the physical objects in the world, there are concepts that characterize 
those objects; philosophy is the analysis of such concepts, like goodness, truth, 
beauty or justice. Descartes (1633/1999) argued that if there is thought, then there 
must be a mind that thinks it, and that philosophy should analyze both the mental 
objects of the mind and the material objects to which they refer, as well as the 
epistemological relation between them. Following Descartes, rationalism focused 
on the logical nature of mental reasoning, while empiricism concentrated on the 
analysis of observable physical objects. Kant (1787/1999) re-centered this 
discussion by arguing that the mechanisms of human understanding provided the 
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source of the apparent spatio-temporal nature of observed objects and that critical 
theory’s task was to analyze the mind’s constructivist structuring-categorization 
efforts. Up to this point in the history of theory, cognition was assumed to be an 
innate function of the individual human mind.  

Hegel (1807/1967) transcended that individualist assumption. He traced the 
logical/historical development of mind from the most primary instinct of a living 
organism through stages of intentional-consciousness, self-consciousness, and 
historical-consciousness to the most developed trans-national spirit of the times 
(Zeitgeist). To analyze cognition henceforth, it is necessary to follow through its 
biological unfolding and go beyond to the ultimate cultural understanding of a 
society. Figure 3-1 identifies Hegel’s approach to theory as forming the dividing 
line—or watershed—between philosophies or theories based on the individual and 
those oriented to a larger unit of analysis. 

 
Figure 3-1: The historical dividing line between individualistic and social theories. 
Adapted from (Stahl, 2006, p. 289, Fig. 14-1). 

Philosophy after Hegel can be viewed as forming three mainstreams of thought, 
following the seminal approaches of Marx (critical social theory), Heidegger 
(existential phenomenology), and Wittgenstein (linguistic analysis). As taken up 
within HCI, one can trace how these approaches established extended units of 
analysis. 
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Marx (1867) expanded upon Hegel’s recognition of the historical self-generation 
of mankind and analyzed this historical process in terms of the dialectical co-
development of the social relations of production and the forces of production. His 
analysis took the form of historical, political, and economic studies of the world-
historical processes by which human labor produces and reproduces social 
institutions. Here, the study of the human mind and its understanding of its objects 
becomes reformulated at the epochal unit of analysis of social movements, class 
conflicts and transformations of economic systems. 

Heidegger (1927/1996) radicalized the Hegelian dialectic between man and nature 
by starting the analysis of man from the unified experience of being-in-the-world. 
The Cartesian problem of a distinction between an observing mind and an 
objective world was thereby reversed. Heidegger, instead, had to show how the 
appearance of isolated minds and an external world could arise through abstraction 
from the primary experience of being-there—human existence inseparable from 
the worldly objects that one cares for and that define one’s activity. The primordial 
unit of analysis of cognition is the involvement of people in their world, 
presumably including interaction with other people. 

Wittgenstein (1953) focused increasingly on language as it is used to accomplish 
things in the world through interpersonal communication. He rejected his own 
early view (Wittgenstein, 1921/1974), which reduced a rationalist conception of 
propositional, logical language to a self-contradictory position. Now, linguistic 
meaning no longer dwelt in the heads of users or the definitions of the words, but 
in communicational usage. Echoing the lived world of phenomenology, 
Wittgenstein acknowledged the role of the human form-of-life. He also 
conceptualized language as the playing of language games, socially established 
forms of interaction. The unit of analysis shifted from mental meanings to 
interpersonal communications in the context of getting something done together. 

Marx, Heidegger and Wittgenstein initiated the main forms of post-Kantian, post-
Hegelian philosophy and scientific theory (Stahl, 2010b). Kant represents the 
culmination of the philosophy of mind, in which the human mind is seen as the 
active constructor of reality out of its confrontation with the objects of nature, 
which are unknowable except through this imposition of human structuring 
categories. With Kant—over two hundred years ago—the human mind is still a 
fixed unit consisting of innate abilities of the individual person, despite how much 
his philosophy differs from naïve realist folk theories, which accept the world as 
fundamentally identical with its appearance to the human observer.  

Hegel overthrows the Kantian view of a fixed nature of mind by showing how the 
mind has itself been constructed through long sequences of processes. The 
Hegelian construction of mind can be understood in multiple senses:  
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(i) As the biological development of the brain’s abilities as it grows from 
newborn to mature adult;  

(ii) As the logical development from simple contrast of being and non-being 
to the proliferation of all the distinctions of the most sophisticated 
understanding; or  

(iii)  As the historical development from primitive Homo sapiens to modern, 
civilized, technological, and cultured person.  

After Hegel, theory shifted from philosophy to science, to explore the biological, 
logical and historical processes in more detail and to verify them empirically. 
Followers of Marx, Heidegger, and Wittgenstein adopted approaches to this that 
can be characterized as social, situated, and linguistic, respectively. They are all 
constructivist, following Kant’s insight that the structure of known objects is 
constructed by the knowing mind. However, they all focus on a unit of analysis 
broader than the isolated individual mind of Descartes and Kant. 

The social, situated and linguistic theories of Marx, Heidegger, and Wittgenstein 
entered the discourse of HCI literature with researchers coming from the various 
scientific traditions that went into forming these research domains, including 
psychology, education, social science, design studies, computer science and 
artificial intelligence (e.g., Dourish, 2001; Ehn, 1988; Floyd, 1992; Schön, 1983). 
Although these fields each introduced various theoretical perspectives, we can see 
the major philosophic influences largely through several seminal texts, the most 
important of which for issues of learning was Mind in Society (Vygotsky, 
1930/1978).  

Mind in Society is an edited compilation of Vygotsky’s writings from the early 
1930s in post-revolutionary Russia, which has been influential in the West since it 
appeared in English in 1978. Critiquing the prevailing psychology as practiced by 
behaviorists, Gestalt psychologists and Piaget, Vygotsky did not try to fit 
psychology superficially into the dogmatic principles of Soviet Marxism, but 
rather radically rethought the nature of human psychological capabilities from the 
developmental approach proposed by Hegel and Marx. He showed how human 
perception, attention, memory, thought, play and learning (which others conceived 
of as mental faculties) were all products of developmental processes—in terms of 
both maturation of individuals and the social history of cultures. He proposed a 
dynamic vision of the human mind in society, as opposed to a fixed and isolated 
function.  

Vygotsky proposed a dynamic vision of 
the human mind in society, as opposed to 
a fixed and isolated function. 
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The Hegelian term, mediation, was central for Vygotsky, as it is to HCI. Even in 
his early years still talking about stimulus and response, Vygotsky asked how one 
stimulus could mediate the memory of, attention toward or word retrieval about 
another stimulus (p. iii). In Hegelian terms, this is a matter of mediating (with the 
first stimulus) the relation (memory, attention, retrieval) of a subject to an object 
(the second stimulus). This is fundamental to HCI because in human-computer 
interaction, the learning of students or the work of professionals is mediated by 
computers.  

Another popular term from Vygotsky is the zone of proximal development (pp. 84-
91). This is the learning distinction and developmental gap between what 
individuals can do by themselves (e.g., on pre- and post-tests) and what they can 
do in collaboration (e.g., situated in a small group). A group of children may be 
able to achieve cognitive results together that they will not be able to achieve as 
individuals for a couple more years. This is consistent with Vygotsky’s principle 
that people develop cognitive abilities first in a “social” context—supported or 
mediated by peers, mentors, or cognitive aids like representational artifacts—and 
only later are able to exercise these cognitive abilities as individuals. Vygotsky’s 
theory, if carried beyond where he had time to develop it, implies that collaborative 
learning provides the foundation upon which all learning is built. 
Methodologically, it argues against judging the outcomes of collaborative learning 
by evaluating or assessing individuals outside of their collaborative settings. 

Vygotsky used the term social in an ambiguous way when he said that learning 
takes place socially first and then later individually. Almost everyone else treats 
the term ambiguously as well. The word “socially” can refer to two people talking, 
as well as to transformations of whole societies. For the sake of distinguishing 
levels of description or units of analysis in HCI, it seems important to make clear 
distinctions. Table 3-1 suggests sets of different terms for referring to phenomena 
at the individual, small-group, and societal levels. The distinction of these three 
levels has previously been argued for in (Rogoff, 1995), (Dillenbourg et al., 1996), 
(Stahl, 2006) and elsewhere. We start with these three levels, which seem 
particularly central to much HCI work, although other levels might also usefully 
be distinguished, such as “collective intelligence” at the classroom level or 
“collective practices” at the school level (Guribye, 2005; Jones, Dirckinck-
Holmfeld & Lindström, 2006; Looi et al., 2011). Perhaps consistent usage of such 
terminological distinctions would lend clarity to the discussion of theories. Table 
3-1 includes many of the terms and categories that will play important roles in this 
book. 
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Table 3-1: Terminology for phenomena at the individual, small group and community 
levels of description. Adapted from (Stahl, 2010a, p. 27, Table 2.1 ). 

Level of 
description 

Individual Small group Community 

Role Person/student Group participant Community 
member 

Adjective Personal Collaborative Social 
Object of analysis Mind Discourse Culture 
Unit of analysis Mental 

representation 
Utterance response 
pair 

Socio-technical 
activity system, 
mediating 
artifacts 

Form of 
knowledge 

Subjective Intersubjective Cultural 

Form of meaning Interpretation Shared 
understanding, 
joint meaning 
making, common 
ground 

Domain 
vocabulary, 
artifacts, 
institutions, 
norms, rules 

Learning activity Learn Build knowledge Science 
Ways to 
accomplish 
cognitive tasks 

Skill, behavior Discourse, group 
methods, long 
sequences 

Member methods, 
social practices 

Communication Thought Interaction Membership 
Mode of 
construction 

Constructed Co-constructed Socially 
constructed 

Context of 
cognitive task 

Personal 
problem 

Joint problem 
space 

Problem domain 

Context of activity Environment Situation Society 
Mode of Presence Embodiment Co-presence Contemporary 
Referential system Associations Indexical field Cultural world 
Form of existence 
(Heidegger) 

Being-there 
(Dasein) 

Being-with 
(Mitsein), Being-
there-together at 
the shared object 

Participation in 
communities of 
practice (Volk) 

Temporal 
structure 

Subjective 
experiential 
internal time 

Co-constructed 
shared temporality 

Measurable 
objective time 

Theory of 
cognition 

Constructivist Post-cognitive Socio-cultural 
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Science Cognitive and 
educational 
psychology 

Group cognition 
theory 

Sociology, 
anthropology, 
linguistics 

Tacit knowledge Background 
knowledge 

Common ground Culture 

Thought Cognition Group cognition Practices 

Action Action Inter-Action Social praxis 

 

The theoretical priority of collaborative learning is the philosophic motivation for 
insisting that geometry education emphasize mathematical discourse in small 
groups of students who are creating and discovering together, dragging, and 
constructing as a group. 

Dynamic Geometry as Human Centered 
In order to translate geometry into a form appropriate for the current age, we 
propose to re-focus the study of geometry on dependencies in collaborative 
dynamic geometry. This requires a coordinated shift of an entire worldview, or 
Weltanschauung as Heidegger called it. Rather than treating geometry as a matter 
of shapes (young children), of mysticism (Pythagoras), of ideal objects (Plato), of 
propositions (Euclid), of axioms (formalized math), of proof (school textbooks), 
or of logic (Frege), we treat it as centrally concerned with dependencies. This focus 
is associated with corresponding shifts in cognitive history, contemporary 
philosophy, school mathematics, software technology, collaborative learning, 
design-based research, CSCL theory, developmental pedagogy, and scaffolded 
practice—as presented in the chapters of this book. 

Above all, however, the focus on dependencies emerged from the author’s 
exploration of dynamic geometry. Dependencies increasingly seemed central to 
this form of mathematics. The fact that looking at reality in terms of dependencies 
seems more appropriate to the contemporary world than authority, mechanistic 
causation, or rational deduction led to the human-centered characterization. 

Dependencies involve the core dimensions of dynamic geometry: dragging and 
constructing. Dynamic dragging discovers dependencies and dynamic construction 
creates dependencies. The integration of discovery and creation in human-
geometric creative-discovery produces dynamic geometry. In order to grant a 
semblance of universality to this production, it is important for the creative-
discovery to be a collaborative process, involving mathematical discourse and 



Translating Euclid 

      

65 

intersubjective meaning making. The group-level work has to be integrated with 
individual-level and community-level processes. Group practices, individual 
interpretations, community institutions, and interactional resources serve to ground 
virtual math teams in the real world. 

While it is ultimately necessary to integrate individual learning, group cognition 
and community knowledge building, our project focuses on the group level, 
because attention has been aimed mostly at the other levels for the past two 
thousand years. In a school setting, textbooks and paper exercises serve the 
individual learners, and teacher-orchestrated class discussions serve the local 
community. Sometimes the VMT Project provided teacher professional 
development in collaborative dynamic mathematics to stimulate activity in 
classrooms. In subsequent trials with student groups, we found that teachers often 
quite naturally engage in preparation and debriefing sessions about the virtual-
math-team work with their classes. However, the missing collaborative experience 
of geometry takes place primarily in the small-group interaction in the VMT chat 
rooms, as we will see above all in Chapter 7. . 

In the previous chapter, we caught a glimpse of how our common sense about the 
nature of geometric objects and the reasons for their relationships evolved over the 
centuries. Let us now consider how the notions of creation and discovery apply to 
geometry in different eras.  

What is a geometric point? It is not a pencil mark, a blob of ink, a small set of 
pixels. Is it a location on a two-dimensional grid, the limit of a circle as its area 
goes to zero, or an undefined term in a set of axioms? These are all modern 
mathematical or logical conceptions, not something the ancient Greeks could have 
conceived of. They are the results of a long historical development and 
corresponding series of conceptual translations from then until now. Why are the 
sides of an equilateral triangle the same length? Why do the three bisectors of a 
triangle’s angles all meet at one point? Why does the Euler segment have the 
characteristics it has? These are questions central to geometry. One potential 
answer is that we constructed things that way; another is that we can prove the 
result logically; another is that certain dependencies determine it—that that is 
simply the way the world of mathematics is and we must discover its true character. 

Dynamic geometry can involve experiences of creative-discovery: creativity 
through construction and discovery through dragging—resulting in insight about 
dependencies. The concept of creative-discovery overcomes the traditional 
distinction between idealism and realism: whether the world is created through our 
imposition of meaning or discovered as it is given by brute reality. Already in the 
philosophy of Kant (1787/1999), there is a notion that one cannot know things 
apart from the way they are structured by our minds, involving time, space and 
causality. Recent debates in HCI have refined this interaction between how people 
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discover affordances (Dohn, 2009) and create instrumental genesis of tools 
(Rabardel & Beguin, 2005). 

Dynamic geometry can involve 
experiences of creative-discovery: 
creativity through construction and 
discovery through dragging—resulting 
in insight about dependencies. 

Acts of creation involve discovery; they butt up against the strictures of reality. 
For instance, no one could realize that the Euler segment would exist and have 
such interesting properties just from thinking about the dependencies in a triangle. 
It is something that one has to discover as one drags different triangle centers. As 
long as one encapsulates construction processes in custom tools for constructing 
the different centers, one is not aware of the constraints introduced by the 
construction into the Euler segment. However, once one explores by dragging the 
triangle and discovers the invariances in the segment, one can go back and identify 
dependencies. Then one can create figures that exploit and explore the 
phenomenon, essentially building the basis of a proof of the segment’s properties. 
It is not that the Euler segment lies implicit in the nature of the simple triangle, 
waiting to be discovered in its eternal essence. Rather, the carefully designed 
construction of the various points that define the Euler segment creates the 
dependencies that are reflected in Euler’s conjecture and that are apparent in the 
dragging of those specially constructed points. 

A philosophy of creative-discovery can provide an appropriate perspective for a 
human-centered mathematics. Fields of math are human products. They even have 
strong roots in the nature of the human body (Lakoff & Núñez, 2000). 
Nevertheless, a field like geometry also has surprises that do not follow in an 
obvious way from the definitions; they must be discovered as unanticipated 
consequences of the creative initiative. While dynamic geometry is a human 
creation—with a long history—it is also the result of rigorous discovery. Students 
should understand geometry as a human-centered product of this historical process 
of creative-discovery. 
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Chapter 4.  Mathematics: 
Demythologizing Geometry 

Chapter Summary 
This chapter considers several geometric phenomena that are 
typically presented as Platonic ideals of otherworldly origin 
and reinterprets them as human creations that can be 
discovered through human construction. For instance, 
equilateral and isosceles triangles are not special phenomena 
to be memorized, but simply two possible combinations of 
constraints for triangles. Similarly, the existence of an 
incenter of a triangle is not a mysterious occurrence, but a 
straightforward consequence of its construction. These 
reinterpretations can be structured as activities for students 
of collaborative dynamic geometry. 

Hierarchies of Triangles and Quadrilaterals 
Children are brought up to recognize the shapes of certain prototypical geometric 
figures. From infancy onward, they are taught to recognize and name triangles, 
squares, rectangles, and circles. In school, they are presented with special three-
sided or four-sided shapes: equilateral, isosceles, and right triangles or square, 
rectangular, trapezoidal, rhomboid, and parallelogram quadrilaterals.  

However, these different shapes are not arbitrary graphical forms to be handed 
down through cultural traditions and memorized. Rather, they can be understood 
as part of the set of results from considering all the possibilities of three- and four-
sided figures. Given, for instance, three line segments, there are different 
constraints that one can impose on them, resulting in different kinds of triangles: 

• None of the lengths of the segments are equal, yielding a scalene triangle. 
• The lengths of two of the segments are equal, yielding an isosceles triangle. 
• The lengths of all three segments are equal, yielding an equilateral triangle. 
• None of the angles at the vertices are equal, yielding a scalene triangle. 
• Two of the angles at the vertices are equal, yielding an isosceles triangle. 
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• The angles at all three vertices are equal, yielding an equilateral triangle. 
• The angle at one of the vertices is a right angle, yielding a right triangle. 
• No angle is larger than a right angle, yielding an acute triangle. 
• One angle is larger than a right angle, yielding an obtuse triangle. 
• One angle is a right angle and the other two are equal, yielding a right isosceles 

triangle. 
• One angle is larger than a right angle and the other two are equal, yielding an 

obtuse isosceles triangle. 

Similarly, one can generate a set of different kinds of quadrilaterals by considering 
all the possible figures generated by allowable constraints on number of equal 
sides, number of equal angles, number of right angles, number of parallel pairs of 
lines. It is also possible to specify constraints in other ways, such as in terms of 
lines of symmetry and characteristics of side or angle bisectors. 

The point is that the variety of polygon shapes can be understood in terms of 
constraints imposed in the construction of the figures. This provides logical insight 
into what would otherwise be a rather arbitrary collection of forms with obscure 
Greek names, which has to be memorized and taken on authority. In general, 
geometry makes much more sense when one understands it in terms of the 
constraints that are introduced through geometric constructions. 

Euclid’s proofs can be understood as instructions for imposing constraints on 
constructions of figures. For instance, Proposition 1 is entitled “On a given finite 
straight line to construct an equilateral triangle.” The reason that the resultant 
triangle has equal length sides is that the two legs of the triangle are constructed 
with the constraint that they be the same length as the base of the triangle (the 
“given finite straight line”). This is accomplished by drawing a circle around each 
endpoint of the base (say, A and B) with a radius equal to the length of the base 
(AB). The legs (say, AC and BC) are then constructed to also be radii of the circles, 
thus having the same length as the base. The intersection of the two circles is a 
point that is constructed to be equidistant from the two endpoints of the triangle’s 
base. The construction ensures that the lengths of the constructed legs (AC and 
BC) will be dependent upon the length of the base. As Euclid argues, AC=AB and 
BC=AB, so AC=BC and the three sides are all equal. 

Understanding the constraints designed 
into the construction process makes the 
proof of the equality of all three sides of 
the triangle obvious. 

Understanding the constraints designed into the construction process makes the 
proof of the equality of all three sides of the triangle obvious. A student can be 
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encouraged to memorize the construction of an equilateral triangle. Alternatively, 
a student can take the proposition as a lesson in the construction of new segments 
constrained to be the same length as the given segment. In the procedural approach, 
the student is likely to find the exercise meaningless and can easily forget the 
procedure. In the construction approach, the student may comprehend what Euclid 
was doing and may thereby acquire a cognitive tool that can be used in subsequent 
geometry problems. That Euclid treated Proposition 1 as a lesson in construction 
is confirmed by the fact that Propositions 2 and 3 continued this approach, 
demonstrating how to copy a given segment length to another point and then on to 
another line. 

The Mystery of the Triangle Incenter 
Perhaps it is clear in the case of Euclid’s first proposition that one is imposing 
constraints through the construction that account for the result of the sides being 
equal length. However, are there not some geometrical relationships that just 
inhere to certain shapes and are not built into figures by the dependencies of our 
constructions?  

What about the surprising fact that the three bisectors of the angles of any triangle 
all meet at one point? It does not seem like we have built this property in through 
some construction constraints—it is simply a property of any plain triangle (see 
Figure 4-1). Furthermore, the point of concurrency of the angle bisectors—called 
the “incenter” of the triangle—happens to be exactly equidistant from the three 
sides of the triangle. It turns out interestingly that the incenter is always inside the 
triangle, for any kind of triangle (unlike some other special points of triangles). 
Moreover, if one constructs a circle inscribed in the triangle, it will happen that the 
center of the circle is precisely at the incenter (see Figure 4-1). These all seem to 
be mysterious properties of the ideal geometric object, triangle; it is assumed that 
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they must be deductively proven from axioms and other propositions to convince 
us of the generality of these relationships, their Platonic truth 

 

Let us 

investigate—using dynamic geometry—the standard belief that the relationships 
associated with the incenter are inherent characteristics of triangles that are not 
imposed by constraints designed into the construction, but are properties of 
triangles to be discovered, whose validity is to be deductively proven. Rather than 
starting from the completed figure, let us instead proceed through the construction 
step by step.  

 

 
Figure 4-1: A triangle ABC with incenter and angle bisectors meeting at the 
incenter. The incenter is equidistant from the three sides and is the center of a 
circle inscribed in the triangle. 
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As 
our 

first 
step, 

we 

construct one of the angle bisectors (see Figure 4-2). We actually construct the 
angle bisector by constructing a ray AF that goes from point A through some point 
F that lies between sides AB and AC and is equidistant from both these sides. The 
constraint that F is the same distance from sides AB and AC is constructed as 
follows: First construct a circle centered on A and intersecting AB and AC—call 
the points of intersection D and E. Construct perpendiculars to the sides at these 
points. The perpendiculars necessarily meet between the sides—call the point of 
intersection F. Construct ray AF. AF bisects the angle at vertex A, as can be shown 
by congruent right triangles ADF and AEF. (Right triangles are congruent if any 
two sides are congruent because of the Pythagorean relationship, which guarantees 
that the third sides are also congruent.) 

 As our second step, we similarly construct the bisector of the angle at vertex B. 
First construct a circle centered on B and intersecting side AB at point D—call the 
circle’s point of intersection with side BC point G. Construct perpendiculars to the 
sides at these points. The perpendiculars necessarily meet between the sides—call 
the point of intersection H. Construct ray BH. BH bisects the angle at vertex B, as 
can be shown by congruent right triangles BDH and BGH. 

Now mark the intersection of the two angle-bisector rays AF and BH as point I, 
the incenter of triangle ABC. Construct segment CI. We can see that CI is the angle 

 
Figure 4-2: The construction of the incenter, I. The bisector of angle BAC, ray 
AF, is constructed so that any point on it lies between AB and AC and is 
equidistant from sides AB and AC.  
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bisector of the angle at the third vertex, C in Figure 4-3. We construct 
perpendiculars IJ, IK, IL from the incenter to the three sides. We know that I is on 
the bisector of angles A and B, so IJ=IK and IJ=IL. From those two equations (and 
Euclid’s favorite transactivity), we know that IK=IL, which means that I is also on 
the bisector of angle C. 

 

 
Figure 4-3: The incenter, I, of triangle ABC, with equal perpendiculars IJ, IK, and IL, 
which are radii of the inscribed circle. 

We have now shown that point I is common to the three angle bisectors of an 
arbitrary triangle ABC. We can also construct a circle centered on the incircle, with 
radii IJ, IK, and IL. The circle is inscribed in the triangle because it is tangent to 
each of the sides. It is not shown here, but the vertex points of the triangle were 
dragged to show that all the discussed relationships are retained dynamically. 
Therefore, the fact that the bisectors of the three angles of a triangle are all 
concurrent is not a mysterious surprise, but a direct consequence of the 
dependencies we imposed when constructing the bisectors. 

The incenter of a triangle is not some 
mysterious property of the triangle, but a 
consequence of the dependencies 
constructed into the figure. 

The incenter of a triangle is not some mysterious property of the triangle, to be 
discovered by deductive proof from a given figure like Figure 4-1, but a 
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consequence of the dependencies constructed into the figure, such as the 
constraints imposed by constructing the bisector of the angle in Figure 4-2. 

If we had “constructed” ray AF as the bisector of angle A in GeoGebra by simply 
using the built-in angle-bisector tool, we would not have noticed that we were 
thereby imposing the constraint that DF=EF. It was only by going step-by-step that 
we could see what dependencies were being designed into the figure by 
construction. The packaging of the detailed construction process in a new tool 
would have obscured the imposition of dependencies. This is the useful process of 
“abstraction” in mathematics: While it allows one to build quickly upon past 
accomplishments, it has the consequence of hiding what is taking place in terms of 
imposing dependencies. The abstraction of the construction experience into a fixed 
process and then into a “black box” tool is an example of reification. 

While dragging figures that have already been constructed and even constructing 
with a large palette of construction tools can be extremely helpful to students for 
exploring geometric relationships and coming up with conjectures to investigate, 
such an approach can give the misimpression that the relationships are abstract 
truths to be accepted on authority and validated through routinized deduction. It is 
also important for students—at least for those students who want a deeper 
understanding of what is going on—to be able to construct figures for themselves, 
using the basic tools of straightedge (line) and compass (circle). They should 
understand how other tools are built up from the elementary construction methods 
and should know how to create their own custom tools, for which they understand 
the incorporated procedures. 

Of course, simply constructing figures is not enough. One must be able to reflect 
upon what is being accomplished in the construction and what one is trying to 
accomplish—and that involves discourse. Within a social setting of collaboration, 
students will want to share their ideas, questions, conjectures, and discoveries with 
their friends, generating occasions for geometric discourse and collaborative 
learning. In order to work together on tasks and benefit from each other’s 
perspectives, they will have to exchange constructions and custom tools, which 
incorporate and preserve their creative insights. In a multi-user environment, small 
groups of students can explore dynamic drawings together and discuss the 
construction process as they work on it as a team. 

Topics to Explore Triangles and their Incenters 
In later chapters (see Chapter 10. ), we will describe the VMT Project’s approach 
to collaborative learning of dynamic geometry and curricular topics designed for 
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virtual math teams. Here we see some simple sample activities for exploring the 
kinds of triangles and quadrilaterals that are possible in terms of the constraints 
used to construct them. 

The 

topic in Figure 4-4 encourages groups of students to explore a number of triangles 
that were constructed with different constraints. The students can drag the vertices 
of the triangles to see which sides and angles are dependent upon other sides and 
angles. The students are prompted to consider what different constraints and 
combinations of constraints are possible. Poly1, which is a scalene triangle with 
no constraints on the sizes of its sides and angles, can be dragged on top of other 
triangles and be dragged to match them by exactly covering them. This can provide 
a highly visual and literally graspable sense of the otherwise abstract sense of 
congruence. 

The situation with quadrilaterals is more complicated than with triangles. There 
are a lot more possibilities, as shown in Figure 4-5. This topic is similar to the 
previous one in supporting the interactive and collaborative exploration of possible 
constraints and the variety of forms that the constraints can impose on polygons. 

 
Figure 4-4: A topic about constraints for different kinds of triangles. 
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Figure 4-6 allows students to construct the incenter of a triangle using the built-in 
tool for bisecting angles at the triangle’s vertices. The students can then drag the 
vertices of the triangle to observe the behavior of the incenter point. They can 
create their own custom incenter tool, for quickly locating the incenter of any given 
triangle. While this gives the students a sense of the incenter by being able to drag 
triangles and observe their incenters, it does not provide the insight into the 

constraints that cause the incenter’s properties as described in the previous section. 
This illustrates the limitations of certain approaches to dynamic geometry, 
particularly those that emphasize dragging. Of course, this topic just provides a 
first acquaintance with incenters. The students have not yet even seen how the 
incenter functions as the center of an inscribed circle. Future topics can come back 
to explore and expose the mystery of the incenter. 

 
Figure 4-5: A topic about constraints for different kinds of quadrilaterals. 
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Figure 4-6: A topic for constructing the incenters of triangles, including creating 
a custom tool. 
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Chapter 5.  Technology: 
Deconstructing Geometry 

Chapter Summary 
Dynamic-geometry software applications such as 
Geometer’s Sketchpad, Cabri, and GeoGebra are described 
in this chapter as computer-supported environments for 
exploring an innovative approach to geometry. This 
approach is characterized in terms of dynamic dragging, 
dynamic construction, and dynamic dependencies. These 
characteristics distinguish it from traditional paper-and-
pencil geometry in ways that can make visible the human-
centered nature of geometry.  

The Origin of Dynamic Geometry 
Dynamic geometry emerged from the potential of personal computers to provide 
interactive diagramming tools with embedded computational support. The core 
technology actually considerably predates personal computers with Sutherland’s 
(1963) SketchPad software, which provided a graphical user interface with an 
object-oriented draw program before there really were graphical user interfaces, 
object-oriented programming or draw programs. Video games developed the 
technology further—and largely drove the personal computer market from its start.  

In the late 1980s, Nicholas Jackiw, the designer and programmer of Geometer’s 
Sketchpad, began working with Eugene Klotz on one of the first instances of a 
dynamic-geometry program at the Visual Geometry Project, a forerunner of the 
Math Forum (Scher, 2000). At about the same time, Jean-Marie Laborde began 
Cabri, in France. The developers of Geometer’s Sketchpad and Cabri shared ideas 
in the mid 1990s. In 2002, Markus Hohenwarter launched GeoGebra as an open-
source dynamic-mathematics environment.  

These programs have subsequently become popular around the world. Although 
each of the programs has subtle differences in their geometric-construction 
paradigms and somewhat different functionality, they are fundamentally similar in 
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their affordances for students of geometry. They make geometry dynamic by 
allowing a person using the system to construct a geometric diagram with labels 
and then to move the interconnected geometric objects by dragging their points 
around. As objects are moved, they maintain dependencies that were part of the 
construction process. This should be clear in the following example. 

An Example of Dynamic-Geometry Construction 
In Figure 5-2, we see a construction in which equilateral triangle DEF has been 

inscribed in equilateral triangle ABC1. Figure 5-1 shows the same construction 
after point D has been dragged upwards. A user can move Point D by placing the 
cursor on point D and dragging the point in the construction. However, the 
movement of point D is constrained by the construction to always remain on line 
segment AC and to not go past its endpoints. This is characteristic of dynamic 
geometry.  

Notice that in addition to point D moving, points E and F also moved when point 
D was moved. The line segments connecting these points and forming triangle 
DEF have moved with their endpoints, effectively rotating triangle DEF. This is 
because of how the inscribed triangles were constructed. They were constructed in 
a special way in order to preserve the equilateral characteristic of triangle DEF. 

 
1 This construction was suggested by (Öner, 2013). 

Figure 5-1: Inscribed equilateral triangles after dragging point D. 

     

 Figure 5-2: Inscribed equilateral triangles.  
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The larger triangle ABC can also be rotated by dragging one of its vertex points, 
such as point A or B. No matter how any of the points in the construction are 
dragged, the other points will move in ways that maintain the equilateral character 
and inscribed relationship of the triangles. 

By studying Figure 5-2 and Figure 5-1, it may be possible to figure out how to 
construct the triangles so that they will maintain their equilateral character 
dynamically. We can construct triangle ABC to be equilateral by following 
Euclid’s first proposition. Starting from an arbitrary line segment AB, we construct 
a circle centered on point A and going through point B. Then we construct a second 
circle centered on point B and going through point A. These two circles intersect 
above and below AB and we mark one of the intersections as point C (see large 
arcs in Figure 5-3). We then construct triangle ABC, connecting the points. We 
know that triangle ABC is equilateral because (as Euclid argued) its three sides are 
equal in length to line segment AB because they are radii of the same circles. If 
one subsequently drags point A or B, changing the length of AB, then the circles 
with radius AB will both change, moving point C in precisely the right way to keep 
ABC always equilateral. We can say that the lengths of AC and BC—and thus the 
position of point C—are “dependent” upon the length of AB. Consequently, 
triangle ABC is defined by this dependency. Constructing dependencies is 
fundamental to dynamic geometry. As in the example we just went through, these 
dependencies are implicit in Euclidean geometry, but become visible in the 
construction and manipulation of dynamic geometry. 
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Note that sides AC and BC are dynamically dependent upon side AB in the sense 
that if the length of AB changes, then the lengths of AC and BC will change 
correspondingly, maintaining the constraint of equality no matter how points are 
dragged or other changes are made. This goes significantly beyond the static 
constructions of Euclid, in which AC and BC are only guaranteed to be the same 
length as AB when AB is the specific length that it has in the drawing. Of course, 
Euclid’s drawings were intended to be understood as general. Thus, AC and BC 
were understood to be the same length as AB—no matter what length AB was 
given to start with. In Euclid, one could only imagine different lengths for AB, but 
in dynamic geometry, one can actually change the length of AB dynamically and 
watch how built-in constraints are maintained. 

Having constructed a dynamically equilateral triangle ABC, how do we construct 
an 

inscribed dynamically equilateral triangle DEF? That is the challenge of the given 
problem. We can place points D, E, and F on the three sides of ABC, but they will 
not be constrained to stay at equal distances from each other. If we try to use 
Euclid’s Proposition 1, again we run into problems. Say we construct line segment 
DE (connecting a point D on side AC and a point E on side AB) and then construct 
circles of radius DE around D and E. The intersection will not fall along line BC. 
Even if it did happen to fall there, we could not locate point F at the intersection of 

 
Figure 5-3. Constructing the dependencies for inscribed equilateral triangles. 
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three lines because that would be over-constrained. (According to Euclid, a point 
is defined by the intersection of two lines, not by the intersection of three lines.) 
Also, if the intersection just happened to fall on side BC, it would not stay on there 
when the figure was dragged. 

We need a different approach. By dragging the triangles in Figure 5-1, we might 
notice that the distance of the vertices of the smaller triangle are always at equal 
distances from the corresponding vertices of the larger triangle. In other words (or 
symbols): AE=BF=CD. In fact, if you specify that these three line segments are 
equal, it is easy to prove by Euclidean methods that the three triangles formed 
between the two equilateral triangles are all congruent. This ensures that the sides 
of the inner triangle are equal if the sides of the outer triangle are equal. Thus, if 
we can impose the constraint that AE=BF=CD, then we can construct a 
dynamically equilateral triangle DEF inscribed inside of an equilateral triangle 
ABC. 

Figure 5-1 shows how the inscribed triangles are constructed within GeoGebra. 
Point D is placed on line AC. A circle is constructed with GeoGebra’s compass 
tool, with center at C and going through D. The circle is moved to be re-centered 
on point A and point E is constructed where this circle intersects side AB of 
triangle ABC. The radius of the circle centered on point C and going through point 
D is the distance CD, so that when it is moved to point A it constrains the distance 
AE to be equal to CD. The same thing is done to construct point F. This establishes 
the dependency in the construction that AE=BF=CD. Triangle DEF is then 
constructed as a dynamically equilateral triangle.  

In this example, we see how visualization (drawing) and conceptualization (proof) 
are so intermingled in dynamic geometry. By dragging the construction, you 
discover how to construct it—and you can then prove why that works. GeoGebra 
provides tools to explore, to construct, and to impose dependencies on the 
construction. 

Defining Custom Tools 
The toolkit of GeoGebra reflects some of the refinements (reinterpretations) of 
Euclidean geometry in recent math pedagogy. For instance, it distinguishes as 
different kinds of objects: “lines” (infinite straight lines passing through two 
defining points), “segments” (finite line segments terminated at the two endpoints 
that define them), and “rays” (infinite lines starting at one endpoint and passing 
through a second defining point). Euclid called these all “straight lines.” GeoGebra 
also provides a “compass” tool (used in Figure 5-3). This is based on the idea that 
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Euclid used a straightedge and compass for his drawing and that one can fix the 
opening of a compass and draw circles with the same radius by locating the 
compass at different centers. However, Euclid does not do this in his proofs. After 
showing how to make equal-length line segments using a circle to construct an 
equilateral triangle in his first proposition, Euclid dedicates his second proposition 
to demonstrating how to copy a length from one line to another given point. Figure 
5-4 (left) shows how to do this using GeoGebra, following Euclid’s procedure. In 
this way, all of Euclid’s constructions are built up from the basic principle that all 
radii of a circle are equal. 

In Figure 5-4, the length of segment AB is copied to ray CD using the dozen steps 
of Euclid’s Proposition 2 (detailed below). Then a custom tool is created to 
automate this process, much as the compass tool does. In addition, a custom tool 
is created to automate the construction of an equilateral triangle Figure 5-4  upper 
right). The construction is then recreated using the new custom tools: the base of 
the larger triangle is defined by two points, L and M, to which the new custom 
triangle tool adds point N. An arbitrary point O is next provided on LN as a vertex 
of the inner triangle. Using the new custom copy tool, the length of NO is copied 
onto LM, defining P, and the length of LP is copied onto MN, defining Q (Figure 
5-4 lower right). Triangle OPQ, inscribed in LMN, is equilateral and can be 
dragged without losing its equilateral character. 
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Copying a segment length 
Here is how segment AB was originally copied onto ray CD, 
using the procedure in Euclid’s second proposition plus an 
extra circle to align the length along the ray:  
The goal is to place at a given point along a given line a 
straight line equal to a given straight line. 
Let C be the given point on ray CD, and AB the given 
straight line (Figure 5-4). Thus it is required to place on ray 
CD starting at C a segment equal in length to segment AB. 
Let the equilateral triangle ACE be constructed on AC (using 
the construction procedure of Proposition 1). Let ray EA and 
ray EC be produced, extending out from the triangle. Let a 
circle centered on A and through B be produced, with point 
F at the intersection with ray EA. Again, let a circle centered 

 

 Figure 5-4: (Left) Copying a length, AB, from segment AB to 
segment CH on ray CD. (Upper right) Identifying the third vertex for 
an equilateral triangle IJK. (Lower right) Duplicating Figure 5-1 
with the use of custom tools.  
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on E and through F be produced, with point G at the 
intersection with ray EC. As Proposition 2 argues, EF=EG 
and EA=EC, so CG=AF; but AB=AF, so CG=AB and the 
length AB has been copied to point C. Now let a circle be 
produced with center C going through G and let point H be 
at the intersection of this circle and ray CD.  
Then, CH=CG, so also CH=AB and the length AB had been 
copied to segment CH along ray CD. 

This illustrates how the tools of construction in dynamic geometry are intimately 
related to the procedures in Euclid’s proofs. Once a valid construction procedure 
has been proven, one can define a tool to encompass that procedure, such as 
GeoGebra’s compass tool for copying a line length in accordance with Proposition 
2. Gradually, one can expand the construction toolkit with new custom tools—
paralleling the way propositions build on one another systematically in Euclid’s 
Elements. GeoGebra provides a toolkit of dozens of tools, which can be derived 
from straightedge and compass constructions in accordance with Euclid’s 
propositions. Users can define their own versions of these or build further upon 
them. Once a student understands how a construction guarantees the relevant 
dependencies (such as that the length of CH is dependent on the length of AB), it 
is practical for the student to use a tool that conveniently automates that 
construction (copying a line segment). 

Dynamic Dragging 
Dynamic geometry differs from previous presentations of geometry in at least three 
significant features: dynamic dragging, dynamic construction, and dynamic 
dependencies. 

The ability to drag points is the most immediately striking characteristic of 
dynamic geometry. Most academic research on dynamic geometry has focused on 
this feature. Most classroom usage of dynamic geometry also centers on this 
feature, providing students with pre-constructed dynamic diagrams and 
encouraging them to explore the diagrams by dragging points. 

Previous media for diagrams have not allowed one to vary the figures except in 
imagination. Papyrus, clay tablets, parchment, books, pencil on paper, and chalk-
on-blackboard were not interactive media. The most one could do was to stare at 
the fixed diagram and imagine moving points or lines to vary the configuration. 
This meant that one rough graphical representation might have to illustrate infinite 
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possible variations. For instance, a proof concerning equilateral triangles might 
apply to equilateral triangles of all sizes, rotated at all possible angles, while the 
illustrative diagram itself had a fixed size and inclination. 

Dynamic dragging changes the nature of geometry. In Euclid, a point is a fixed 
location. In dynamic geometry, a point is at a location, but can always be dragged 
to an infinity of different locations, depending upon whether it is constrained or 
dependent. This creates three classes of points: those that are completely free to 
move, those constrained to stay on a line (segment, circle, etc.), and those 
dependent on an intersection and not able to be dragged directly (but moved in 
response to the movement of other geometric objects based on dependency 
relations). The ability to drag points dynamically has fundamental implications 
throughout the mathematical system of dynamic geometry. Dragging shows its 
relevance to construction in the importance of the “drag test.” It affects the 
methods of proof by emphasizing the use of superposition and spatial 
transformations. Even the definitions of geometric objects have to be defined 
differently since, for instance, a scalene triangle can be dragged into appearing like 
an isosceles or equilateral triangle. 

In the preceding example (Figure 5-2), for instance, it would have been hard to 
know important features of the diagram without being able to drag the vertices of 
the two triangles. Through dragging point A, one can easily and naturally discover 
that the two triangles remain equilateral and inscribed as the size and orientation 
of the larger triangle is varied over arbitrary ranges (but DF is not necessarily 
parallel to AB and D is not a midpoint of AC). Through dragging point D, one 
discovers as well that the inner triangle can remain equilateral and inscribed with 
point D anywhere along AC, including at the endpoints. One may also notice that 
the area of triangle DEF varies continuously from a minimum when point D is 
centered on side AC to an area equal to that of triangle ABC when point D is at an 
endpoint of AC. Significantly for the example, one may notice while dragging 
point D that AE=BF=CD remains true. 

With fixed diagrams, it took a certain “professional vision” (Goodwin, 1994) of 
mathematicians to see important mathematical relationships in diagrams. Certain 
features of geometric configurations are visible even in fixed diagrams. For 
instance, it is visibly apparent in the drawing of ABC in Figure 5-3 that the circles 
centered on A and B of radius AB actually do intersect (at some point C). Whether 
this remains true for any configuration of A and B may be ascertained by staring 
at the diagram and imagining different locations for A and B. Dragging makes 
relationships easier to see—providing a way to train students to see like 
mathematicians.  
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Dragging makes relationships easier to 
see—providing a way to train students to 
see like mathematicians. 

Another traditional skill of mathematicians is to design a diagram to be effective 
for a given proof. For instance, Figure 5-2 illustrates a proposition: that an 
equilateral triangle can be inscribed in another equilateral triangle. However, it 
illustrates a special case, which might not generalize: the base AB is roughly 
horizontal and the point D is roughly at the midpoint of AC. Figure 5-1 may 
represent the general case better. It also makes more salient the fact that 
AE=BF=CD. An experienced mathematician might decide to use the later diagram. 
However, in dynamic geometry, one can start with either and then drag it into the 
other. The ability to drag offsets the need for the traditional skill of carefully 
designing illustrative diagrams. It makes it easy for students to drag a figure to 
explore what special cases exist and what relationships seem to persist in general 
as specifics change. It is no longer crucial to select a “representative” case since 
an arbitrary view can be dragged through whole ranges of possible variations. 

Of course, it is possible that students will not drag a construction into every 
possible case or even that a given dynamic construction cannot be dragged into 
every case covered by a specific proposition. However, dragging can provide the 
mediated experience of apprenticeship in geometry that can lead to the ability to 
conduct what Husserl (1929/1960) called “eidetic variation” in one’s imagination 
to reveal constants under change. Having engaged in dynamic-geometry 
experiences of variation through dragging, students may subsequently internalize 
this visualization into variation in their imagination. 

Dragging also gives students a hands-on, visceral sense of the constraints and 
characteristics of a geometric diagram. It enhances the bodily involvement of the 
interaction between person and diagram in which “creative discovery” can take 
place (Merleau-Ponty, 1955). Perhaps this will be even further heightened when 
tablet computers fill the role that clay tablets originally played. Exploration 
through dragging is intertwined with the possibilities of construction. As a student 
learns to initiate various kinds of constructions, she starts to see new possibilities 
for dragging, for seeing constraints and patterns and possibilities. As her body is 
extended by the computer interface into the digital world, she gains a sense of how 
to move within that world, to live and perceive in a dynamic-geometry world 
(Merleau-Ponty, 1961/1964). Then, as the student starts to look at the dynamic 
environment through the eyes of a designer of structural dependencies, she can see 
constraining relationships at work, as well as interesting potential transformations 
of them. Such embodied, skilled vision produces targets or hunches (informal 
conjectures) to explore through purposeful dragging. 
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Dynamic Construction 
Previous media for diagrams not only limited variation, they required the diagrams 
to be completely constructed prior to the presentation of the proof. Thus, where 
Euclid’s Proposition 2 begins in the English translation, “Let A be the given point” 
(Euclid, 300 BCE/2002, p. 3), this is actually stated in the original Greek in the 
perfect imperative (as already having been done): “Let the point A have been 
taken” (Netz, 1999, p. 25). The proof then proceeds to point to the already existing 
diagram and to describe the relationships within it. The text often relies on the pre-
existence of the diagram for its sense. As an example, after Euclid specifies line 
AB in Proposition 1, he says, “With center A and distance AB let the circle BCD 
be described” (Euclid, 300 BCE/2002, p. 3). Point B has been defined as an 
endpoint of line AB and point D is simply an unspecified point anywhere on the 
new circle. But point C cannot be defined in the text until another circle is 
described, which intersects the first circle at point C, thereby specifying point C. 
It is only because the whole diagram already exists and includes point C that the 
text of the proof can use the label C as part of the designation of the first circle. 

As Netz (1999) documents with numerous examples, Euclid’s texts often rely upon 
the pre-existing diagrams for their sense. On the other hand, the diagrams rely on 
the texts for their interpretation. Text and diagram are mutually determinative, with 
the labels of points relating the two. Dynamic geometry overcomes the necessity 
of completing one before the other. The diagram can be constructed in parallel with 
the unfolding of the textual argument—at least in a live presentation. (In this 
printed document, we are limited to viewing static screenshots interspersed in the 
text.) 

Livingston (1999) analyzes in detail the significant difference between how a 
conjecture is explored and how its proof is presented. One must first discover an 
interesting relationship and then piece together an argument. This usually proceeds 
through exploration, with its trials, deadends and backtracking. The final 
presentation is then orchestrated as a logical deduction, straight from givens to 
conclusion with the minimum necessary steps. The conclusion is presented as 
though it necessarily always existed—rather like the refined diagram that pre-
existed the proof. 

The past perfect tense has always characterized mathematics. Even as new objects 
were created in history—conics, irrational numbers, logarithms, infinitesimals, 
imaginary numbers, hyper-spheres—they were always taken as having always 
already existed. They were not treated as newly created human artifacts, designed 
for their interesting properties, but as discovered ideal objects in an otherworldly 
realm of mathematical objects (Lakoff & Núñez, 2000). Whether or not this view 
motivated Plato’s theory of Forms, subsequent mathematics generally adopted a 
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Neo-Platonic attitude, obscuring the important role of exploration and invention in 
the practice of mathematics. 

Dynamic geometry can reverse this obfuscation. Students can now construct 
diagrams as an integral part of their exploration of geometric relationships. Using 
the construction tools of dynamic geometry, students can explore mathematical 
conjectures through trial constructions. The bureaucratic format that Euclidean 
proofs have evolved into can be replaced with active exploration, which does not 
assume the diagram is complete beforehand, treats mathematical objects as human 
artifacts designed to have interesting features, leads to moments of aporia and 
breakthroughs of insight as deduction unfolds as a creative form of discovery.  

The ability to construct dynamic diagrams that present intriguing puzzles—which 
support exploring conjectures and which illustrate proofs—is itself a subtle skill, 
a skill that must be learned through instruction, apprenticeship and practice. This 
skill can be developed as part of the process of learning geometry content. For 
instance, the geometric objects like points, lines, circles and triangles are also 
graphical objects in dynamic-geometry environments; students can learn the 
characteristics of the objects by constructing and dragging the graphics. In fact, 
much of Euclid’s Elements can be read as instruction in construction:  

• Proposition 1, how to construct an equilateral triangle;  

• Proposition 2, how to copy a line segment of a given length to another position;  

• Proposition 3, to measure off the length of a shorter segment along a longer 
one;  

• Proposition 9, to bisect an angle;  

• Proposition 10, to bisect a line segment;  

• Proposition 11, to construct a perpendicular to a line at a point on it;  

• Proposition 12, to construct a perpendicular to a line from a point not on it; 
etc.  

The art of construction has always been central to geometry, although it has not 
always been stressed as a creative skill. 
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Dynamic Dependencies 
The key to constructing for exploration is the construction of dependencies. This 
is another potential implicit in Euclid, but not adequately recognized, 
acknowledged or researched. 

As we have seen, the construction in Proposition 1 demonstrates how to build in 
the dependency that defines an equilateral triangle: that its three sides must be of 
equal length. Given an initial side AB, Euclid adds circles centered on points A 
and B, each of radius AB. He then labels an intersection of the two circles as point 
C, the third vertex of the constructed equilateral triangle, ABC. The lengths of the 
new sides AC and BC are dependent upon the length of side AB because they are 
radii of circles of which AB is a radius—and all radii of a given circle are the same 
length by definition of a circle. In a fixed drawing, we might just say that AC and 
BC have been constructed to be the same numeric length as AB. However, in a 
dynamic construction, one can drag point A or point B and change the length of 
AB. If the dependency has been properly constructed, then point C will move in 
response to the movement of point A or point B precisely the right way to maintain 
the equality of all three sides. The lengths of AC and BC are dependent upon the 
length of AB—however that may change under dragging—and not just on its 
current numeric value.  

This role of dragging in dynamic geometry leads to the important “drag test.” 
When someone constructs part of a drawing incorporating a constraint, they should 
then drag the involved parts of the drawing to make sure that the intended 
constraint is maintained. For instance, in constructing the equilateral triangle, they 
may find out that point C fails to stay on both circles when point A or B is dragged, 
thus revealing a fault in the construction. The drag test unites dragging, 
construction, and dependencies by putting dragging at the service of checking a 
construction to make sure that the intended dependencies are maintained 
dynamically. 

The dynamic diagram in Figure 5-2 was constructed in such a way that it remained 
a diagram of two inscribed equilateral triangles no matter how any of its points 
were dragged. The dependencies included that AB=AC=BC; that points D, E and 
F remain on segments AC, AB and BC, respectively; as well as that AE=BF=CD. 
The defined dependencies ensure that the two triangles remain inscribed and both 
equilateral under any change in size or rotation of either triangle or the dragging 
of any point. Note that there is no direct specification that DE=DF=EF, although 
the fact that the interior triangle remains equilateral is an indirect dependency of 
the construction 
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It is possible to have a computer whiteboard similar to Sutherland’s (1963) original 
SketchPad in which lines and points can be drawn as movable objects. One can 
draw an equilateral triangle on such a whiteboard by placing three lines of equal 
length meeting at their endpoints. However, if one then drags a vertex, the triangle 
falls apart entirely, loses its equilateral characteristic, or fails to re-size.  

A dynamic-geometry environment must implement computational mechanisms 
behind the scenes to both maintain the desired dependencies and at the same time 
to allow permitted manipulations. In fact, the first thing the environment does is to 
keep track of:  

• Which objects are independent and can be dragged freely (like A and B);  

• Which are constrained and can only be dragged in limited ways (like D);  

• And which are dependent, cannot be dragged directly at all, but just move in 
response to the other points on which they are dependent (like C, E and F).  

It requires very special software to support dynamic geometry. The dynamic-
geometry applications we have today—such as Geometer’s Sketchpad, Cabri, or 
GeoGebra—were carefully designed to maintain arbitrarily complex geometric 
dependencies while making the user experience seem extremely natural. This is 
the hidden power of dynamic geometry. Once one gets used to the paradigm of 
dynamic geometry and thinks in terms of constructing dependencies, everything 
automatically works the way that one would expect it to. The user does not have 
to worry about the hidden software mechanisms. 

Dependencies lie at the heart of Euclid’s geometry, but they have been largely 
buried in the traditional understanding of geometry. This is a philosophic issue. 
Heidegger might say that the being of the geometric objects was concealed through 
the Greek and then the Roman and then the German and then the English and then 
the American way of caring for and speaking about the objects and their 
dependencies. 

The traditional understanding of geometry that has been passed down from the 
Greeks through its subsequent translations, reinterpretations, and refinements over 
the centuries confuses the causality of dependency and proof. Consider the 
diagram of inscribed equilateral triangles (Figure 5-1). One could start with 
equilateral triangle ABC in the completed diagram and specify that AE=BF=CD. 
Then one could prove that triangle DEF must be equilateral through a logical 
deduction, perhaps including an argument about the three small triangles outside 
of DEF being congruent. This would establish the truth of the equilateral nature of 
DEF. That is the traditional perspective. Euclid’s proofs are commonly conceived 
of as such discoveries of existing truths in the realm of Platonic ideas. Euclid’s 
Elements are now read as building up an axiomatic system for proving these truths.  
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However, this reverses the causality. For, if we have constructed DEF by using the 
constraint that AE=BF=CD, then we already know that we imposed this constraint 
in order to construct an inscribed triangle that would be equilateral. It is not a 
matter of discovering some mysterious otherworldly truth; it is a matter of having 
intentionally built in the character of equal side lengths into our construction of 
DEF. It is not a matter of a formal logical deduction, which unfolds with necessary 
truth. The drawing of equal circles at A, B and C is not originally a means for 
proving that the sides of an equilateral triangle have “always already been” equal; 
the circles are part of the construction of the dependency that itself ensures that the 
sides will be and will remain equal.  

The truth of the proof was built in by the construction. It was hard to see this the 
way that geometry has been conceptualized throughout history, but easy to see in 
dynamic geometry if one focuses on the construction of the dependencies as an 
active, creative, inquiry process. We built in the dependency as we constructed the 
diagram: that is why the triangles are equilateral! Taking the diagram as already 
given before the proof is presented, combined with the traditional assumptions 
about the nature of geometric objects as divorced from human activity, hides what 
has transpired. Experience with dynamic geometry—including dragging, 
constructing, and designing dependencies—exposes the creation of objects, 
diagrams and relationships by people. 

Shockingly, the mathematics and education literature on dynamic math has 
scarcely mentioned this central role of designed dependencies—and of the ability 
to construct dependencies in dynamic geometry. Although dependencies lie at the 
heart of proof and although dynamic-geometry software is explicitly built on the 
maintenance of dependencies, very few research publications discuss the role of 
dependencies in dynamic geometry, none in depth. In particular, they do not 
discuss the relationship of dependencies to proof. This is a symptom of the extent 
to which the nature of geometry has been obscured.  

Few research publications discuss the 
role of dependencies in dynamic 
geometry… especially the relationship of 
dependencies to proof.  This is a symptom 
of the extent to which the nature of 
geometry has been obscured. 

In a typical geometry proof, recognition of the central underlying dependency is 
the key potential insight into why the proof works—the door to the “aha moment.” 
The diagram illustrates some relationship not because of a mysterious otherworldly 
truth, but because the diagram was constructed with dependencies that built in that 
relationship. If students learn to think in terms of dependencies, to construct 
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diagrams around dependencies and to search for dependencies, then geometry 
might be a lot more exciting and meaningful. The students might consider 
themselves more successful as mathematical thinkers. 

While most classroom use of dynamic geometry today merely uses it as a 
visualization tool, to allow students to drag existing diagrams around, the 
technology has a greater power: to empower students to construct their own 
diagrams, to build their own dependencies into the objects and even to fashion their 
own dynamic construction tools. Then they can read Euclid’s Elements as a guide 
to designing and constructing interesting objects and tools, rather than as an old-
fashioned compendium of irrelevant truths to be memorized. Geometry can 
become an exciting design challenge, in which one creates innovative 
mathematical objects and imposes interesting dependencies through thoughtful 
construction.  
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Chapter 6.  Collaboration: Group 
Geometry 

Chapter Summary 
The collaborative usage of dynamic geometry by teams of 
students can make more visible its human-centered nature. 
To support collaboration, the software must be adapted, 
raising a number of issues in the design of a multi-user 
environment. The GeoGebra dynamic-mathematics software 
was incorporated into the VMT collaboration environment. 
The process of turning single-user GeoGebra into a 
collaborative version is described here and a number of 
multi-user design issues are discussed. The chapter reviews 
the major technical issues that were addressed and discusses 
the benefits for collaborative learning of integrating the 
GeoGebra software into the VMT environment. 2 

Supporting Collaborative Discourse and Action 
The effort to support collaborative dynamic geometry among students who may 
not be co-located involved embedding a dynamic-geometry software system 
within an online collaboration environment. The Virtual Math Teams (VMT) 
system—including the history of its development—has already been described in 
(Stahl, 2009). The VMT system includes a Lobby for users to create chat rooms, 
to invite other people to them and to browse through existing rooms by project 
community, math subject, activity topic and student team (see Figure 6-1). It 
supports learning by individuals, small groups, and communities (e.g., the students 
in a course) with the incorporation of text-chat, shared-whiteboard, wiki-sharing, 
and web-browsing media, which can be configured in tabs when chat rooms are 
created (see Figure 6-2). Thus, it is designed to support collaborative learning 

 
2 Anthony Mantoan contributed to an earlier draft of this chapter. 
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conceived as operating through processes, practices and resources that traverse 
levels of analysis, as will be discussed in Chapter 8.  

Research on early VMT usage suggested that the addition of a dynamic-
mathematics system would significantly enhance the ability of the VMT software 
to support collaborative mathematical discourse in virtual math teams. GeoGebra 
was selected because its source code was available as open source and it had an 
extensive API (application programmer’s interface). The first task was to embed 
the GeoGebra application in a VMT chat-room tab (see Figure 6-3). Because both 
VMT and GeoGebra are programmed in Java, this was conceptually 
straightforward. Math Forum programmers developed a proof-of-concept 
integration in 2009 and 2010. In 2011 and 2012, the integration was re-
implemented, using the GeoGebra API. Use of the API kept most of the new 
software separated from the GeoGebra source code so that frequent updates of 
GeoGebra could be incorporated easily, allowing the VMT system to take 
advantage of on-going open-source development of GeoGebra. This development 
work was done in coordination with the GeoGebra lead developers, so that they 
extended the API to meet the needs of VMT. In the longer term, this will facilitate 
the GeoGebra developer community in developing its own multi-user version, 
possibly for use on tablets and mobile devices. 
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Figure 6-1: The VMT Lobby interface. 
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Figure 6-2: A VMT chat room with a shared whiteboard tab 

 

 
Figure 6-3: A VMT chat room with a GeoGebra tab. 

Although embedding GeoGebra in a VMT tab was relatively easy, the real problem 
was much deeper. GeoGebra was designed from the ground up to be used by a 
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single user on a single computer. For online collaboration, we wanted multiple 
users to be able to view the same figure and to observe each other dragging its 
points and constructing new objects. We wanted this to happen in real-time and to 
appear natural so people could experience co-presence at the figure while they 
chatted about it. In order to support what were described in Chapter 5.  as the core 
dimensions of dynamic geometry—dynamic dragging, dynamic construction and 
dynamic dependencies—we needed to support co-presence, intersubjective shared 
understanding and group cognition, as will be discussed in Chapter 8.  

The first technical hurdle was to design a suitable software architecture for multi-
user engagement with GeoGebra. VMT implements a standard client-server 
model, where software clients on the computers of students send messages to the 
VMT server, which then distributes the messages to all the clients (computers of 
students in the same chat room). No client—not even the one that sent the 
message—takes any action until it gets the message from the server. 

This presented an immediate problem for embedding GeoGebra, which is strictly 
single user. In contrast to the client-server model of VMT, each instance of 
GeoGebra on each client builds and maintains its own independent dynamic-
geometry construction, which is not dependent on the server. However, the 
construction on each client must be kept in sync with the other clients, so that every 
student in the same chat room sees the same thing and can discuss it and manipulate 
it. Furthermore, we want all action to appear seamlessly instantaneous to a user 
dragging an object, so we cannot make GeoGebra wait until a message goes to and 
comes back from the server before the action is shown on the screen of the student 
who is taking the action.  

This forced us to implement multi-user GeoGebra essentially as a peer-to-peer 
architecture, using the VMT server as the communication channel between the 
clients. When a user takes some action on a GeoGebra tab, the GeoGebra action is 
implemented in that client’s GeoGebra tab. At the same time, the VMT client sends 
a message to the server with a GeoGebra command equivalent to the action that 
took place. The VMT server sends the action to all clients (including the initiator). 
The initiator must ignore the return message from the server since it has already 
performed the action. The other clients then execute the command, which results 
in updating their construction so that it matches the sender’s. In this way, all the 
clients are kept in sync. Because the action of the original sender is performed 
immediately without waiting for the message to go to the server and then come 
back, the sender’s action appears immediately and seamlessly. As long as the delay 
between one student taking an action and the other students seeing the results is a 
fraction of a second, the illusion of simultaneity and co-presence is maintained for 
the whole team. 
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This solution allowed the display of GeoGebra figures and actions to be handled 
primarily by the GeoGebra software on the student computers, and the 
communication of actions to be handled by the VMT software on the central server 
computer, which also communicated the chat and changes in other VMT chat-
room tabs. On the one hand, this kept the two software modules relatively 
independent to facilitate software upgrades and maintenance. On the other hand, 
the separation complicated the programming of features that had to span the two 
areas. For instance, there are VMT features like awareness messages, activity 
logging, the history slider, and the pointing tool, which affect both the GeoGebra 
tab and the VMT wrapper. In addition, the requirement of maintaining speedy 
communication among the clients introduced mechanisms that spanned the two 
independent program code bases. 

Supporting Dynamic Dragging and Co-Presence 
To support the fluid use of dynamic dragging and the observation of points and 
other geometric objects being smoothly dragged, the software system has to 
respond quickly to user actions and has to display the results of actions without 
noticeable or disruptive lags. As one drags a point in GeoGebra, a number of 
messages are sent describing its new position many times a second. This allows 
the drag to be duplicated on other clients quite accurately. At first, we had tried 
just broadcasting the original start position of an object and then its final position 
after a drag. Unfortunately, that gave too little sense of co-presence and too little 
information about how the object was dragged to clients observing another client’s 
actions. 

However, the approach of broadcasting hundreds of intermediate locations of a 
dragged point every second created too much messaging traffic across the Internet. 
Imagine a student in Singapore dragging a 10-sided polygon with interior line 
segments. Each point and line, along with all the dependencies in the figure would 
have to have its description and location information broadcast to Philadelphia and 
then that information would all have to be broadcast back to each of the other 
students’ computers. Even if the school in Singapore had considerable Internet 
bandwidth and the Math Forum server were powerful, this volume of update traffic 
would soon result in response delays that would interfere with effective 
collaboration. Even chat messages would be delayed, so that students would not 
know if others were paying attention.   

In addition, all of the events that are broadcast are also saved as part of the history 
of the chat room. When a student enters a room in which some activity has already 
taken place, the history has to be loaded and all of the GeoGebra construction and 
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display mechanisms have to process and replay that history in order to display its 
end state to the student. The same thing takes place when a researcher or anyone 
else opens the VMT Replayer for that room. This results in long delays in opening 
an existing room or viewing it in the Replayer. 

The first thing we did to address this was to make sure to only send necessary 
updates. GeoGebra has independent objects and dependent objects. The position 
and other characteristics of dependent objects can be calculated based on the 
independent objects. Therefore, we only send out updates for independent objects, 
and let each client recalculate the dependent ones, essentially shifting much (and 
often most) of the work of updating to the client’s local machine. For instance, if 
a 10-sided polygon is regular (equilateral), then 8 of its vertices and all of its sides 
are dependent upon two vertices. We can send the location of the two points and 
have the client build the whole polygon from them. 

The next thing we did was to implement “update throttling” in our clients. By 
watching the mouse status the software can determine when updates are due to 
objects being dragged. In that case, it skips a certain number of updates, only 
broadcasting periodically. It also watches the mouse for a “button release” event, 
so it can be sure to always broadcast the final position of the objects. However, 
GeoGebra sends out updates for every single object that is being moved. So we 
could not simply skip a fixed number of updates, since that would result in certain 
objects in a construction being updated during a drag event, and others not being 
updated. The effect is that the construction is distorted until the user releases the 
mouse button, and the final update is sent out to put everything in its final place. 
To solve that problem, the VMT software gets a list of selected independent objects 
from the GeoGebra software. It skips a number of updates for the entire group of 
objects, and then sends out one combined update for the whole selection. 

A challenge here is finding the right number of updates to skip. If too few are 
skipped, the system will still become bogged down. If too many are skipped, the 
movements of objects will look choppy and other users may not be able to tell what 
the mover did. We have been experimenting with a variety of numbers for this to 
try to find the right balance. One consideration is that the right balance for one task 
may not be the right balance for a different task. We have set the default threshold 
for 10, so that only about one intermediate position in 10 is broadcast. While 
dragging is not completely smooth at this setting, it provides a good sense of the 
drag. Since in most rooms the majority of actions are dragging, this setting reduces 
the number of broadcasts by almost 90%. 

In addition, we have provided a threshold button so that users can adjust the setting. 
If they want to see more accurate dragging, they can decrease the number skipped. 
If they are concerned about delays when dragging complex figures, they can 
increase it. Along with several other measures to speed up display of the GeoGebra 
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tab, loading of used rooms, scrolling of history and display of the Replayer, this 
threshold mechanism has solved the major network-load problem and start-up 
delays. 

Since GeoGebra maintains relationships between objects in the construction, it 
must recalculate the construction when changes are made. For complex 
constructions, these calculations can be time consuming, even for a modern 
computer. The normal way VMT reloads chat rooms is to replay every event that 
occurred, recreating the whole history. We found that rooms that had been used 
extensively—say, for two hours or so—and had multiple GeoGebra tabs could take 
many minutes to load. This was mostly due to GeoGebra having to recalculate all 
those historical changes to the construction. Our solution here is to save snapshots 
of the construction every time a user finishes a turn in control of constructing in 
the GeoGebra tab. Now, when the room is loaded, each event is loaded into the 
history, but it is not replayed in GeoGebra. When all the events have been loaded 
the snapshot is selected from the last “Release Control” event, and that is loaded 
in the GeoGebra tab. That cuts the load times for extensively used rooms to less 
than a minute.  

Similar mechanisms were introduced in the history slider and the Replayer. In 
addition, for the history slider and the Replayer, a threshold tool is provided. It 

 
 
Figure 6-4: A VMT chat room with the “Take Control” button, the history slider and 
action squares. 
. 
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allows the user to move through the history at different speeds, either in the history 
slider of the GeoGebra tab or in the Replayer. For quick browsing the user can set 
the threshold to “minimum,” for a detailed study to “complete,” or somewhere in 
between.  

The controls for some of these mechanisms are shown in the accompanying 
figures. In Figure 6-4, you can see the “Take Control” button. This gives one user 
the ability to engage in construction in the GeoGebra tab. All users who are in the 
same chat room with the same GeoGebra tab open will be able to see the GeoGebra 
actions taken by this user. A user who is not in control of construction in the tab 
can scroll back through the history of GeoGebra actions in that tab—notice the tick 
marks along the left of the tab lining the history scrollbar. Also, notice in the chat 
pane the presence of small colored squares. These each signal a GeoGebra action; 
they are color coded to correspond with the user whose chat postings are the same 
color. 

 

 

In 

Figure 6-5, the “Take Control” button has been pressed and the user sees the 
message “you have control”; if someone else had control, then that user’s login 

 

 

         

 

 

 

 

Figure 6-5: The “Release Control” button, history threshold menu and “Event 
Throttle.” 
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name would be shown. To the right is an indication of which construction tool is 
currently active in the tab. Notice that the chat includes messages when users 
change the tab they are displaying. In this way, everyone in a team—i.e., in the 
same chat room—can tell where their team members are looking, who currently 
has control of the construction and what construction tool is active. They will be 
able to see any change to the construction or dragging of objects practically as they 
are done. They can also adjust the “Event Throttle” to avoid annoying delays in 
display updates and they can “Share Your View” to adjust everyone in the team to 
the same level of zoom and focus. Through these tools, displays and mechanisms, 
a sense of co-presence at a shared geometric figure can be created and maintained. 

The “Share Your View” option was introduced because users would get confused 
when they did not see the same thing on their screen as other users in the room. 
This was because GeoGebra does not distribute user actions that are not related to 
the construction, but are just viewing adjustments. A user can zoom in or out, scroll 
around the view, or turn the axis and grid on or off without affecting what other 
users see. Consequently, one user may be constructing or dragging an object in an 
area that is off the screen for another user. To help with this we implemented a 
“Share Your View” menu option. Even if a user does not have control, they can 
select this option to “push” their view settings out to the other users’ clients. 
Currently this only matches up the zoom level and the view center point, but that 
is usually enough to avoid misalignments of view, which cause some users to not 
see important objects that others see and chat about. 

A final tool for supporting co-presence is the VMT pointing tool. That was always 
part of VMT, even before GeoGebra was introduced. This tool allowed a user to 
reference from a chat posting to an object or area in the shared whiteboard. When 
one typed a chat message, one could select an object in the whiteboard or a 
rectangular area in the whiteboard. Then, when the message was posted, everyone 
could see an arrow going from the posting to the whiteboard object or area. This 
supported deixis, which is considered important for co-attending to an object, a 
critical component of co-presence (see Chapter 8. ).  

There are many ways in which we have tried to foster awareness of what people 
are doing in a VMT chat room with GeoGebra tabs. Some of these mechanisms 
already existed in VMT in the past, others have been added. Many have been 
changed to seem more natural or to avoid interfering with the main interactions. It 
is hard to design awareness features so that they work well in a wide range of 
different use cases yet do not become invasive under other scenarios. Features that 
are effective for a dyad working on a simple problem in one tab may not work well 
for a larger group of collaborators engaged in a complex task involving jumping 
around between different kinds of tabs. We have tried to implement reasonable 
defaults and provide for some user control as well. Of course, adding user control 
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makes the whole system more complicated and harder to learn and to use. Testing 
with middle-school students constantly reminds us of the dangers of designing too 
much functionality into the core components of the system, although in areas like 
the Replayer and assessment reports, we need to support more sophisticated users, 
such as teachers, system administrators and researchers. 

Supporting Dynamic Construction and 
Intersubjective Understanding 
A major aspect of dynamic geometry is that it supports a rich form of dynamic 
construction by users. This area required careful design for a multi-user version. 
The VMT Project is the first sustained effort to produce a truly collaborative form 
of dynamic geometry. Although it has not been widely publicized, there were 
fleeting attempts by the creators of Geometer’s Sketchpad, Cinderella, and 
GeoGebra to make their products multi-user (personal communications, July 
2012). However, none of these efforts reached the point of actually having users 
try out the collaboration. This is not surprising, given the complex issues that arise. 
There have also been attempts to skirt the issues by embedding single-user systems 
inside of learning management environments like Blackboard, Elluminate, or 
Moodle; these were screen-sharing approaches, which turned out to be awkward 
at best. 

The VMT Project is the first sustained 
effort to produce a truly collaborative 
form of dynamic geometry. 

A central problem with having multiple users working on a construction is to make 
sure that two clients do not change the same part of the construction at the same 
time. For example if one user is creating points for a polygon and then another user 
moves one of the points or uses it to construct a different object, the intended 
construction is destroyed. GeoGebra assigns labels to new points in alphabetical 
order. If two users simultaneously create Point C, then there is a conflict. This can 
easily happen because two clients can each create a new point C before either 
receives notification of the other one. Suppose that two points already exist and 
one user defines a line with them while another defines a circle. Then the line and 
circle will be dependent upon each other in a way that no one intended. Aside from 
users stepping on each other's toes, GeoGebra can become confused and end up in 
an error state if multiple users are adding to or deleting from the construction at 
the same time.  
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To prevent such conflicts, we implemented a “Take Control” button. Only one user 
can take control at a time, and for all the other users, all creation tools in GeoGebra 
are disabled. While this might seem to restrict users too much, given that we want 
them to engage in construction, it actually has a positive effect on collaboration. It 
prevents people from going off on their own and ignoring the work of others. It 
forces them to communicate about taking turns. This leads to the group paying 
attention to one person’s construction activities at a time. Of course, everyone can 
engage in chat, asking why the person in control is doing certain things, make 
suggestions, or point out interesting things that occur. This promotes 
intersubjective shared understanding (see Chapter 8. ), because the group is acting 
as a single agent. 

One thing that a user can do when someone else has control of construction is to 
review past actions to recall what the group did in the recent past, other things they 
tried and how they got to where they are now. This is supported by the history 
slider (shown in Figure 6-4). The history slider was a useful function in the shared 
whiteboard of the original VMT system and we wanted to extend it to GeoGebra 
tabs. However, maintaining the history for each GeoGebra instance requires some 
care. Since objects in GeoGebra have relationships and a history that is maintained 
separately in each client, a client cannot accept changes to the current construction 
from other clients, while browsing through the history. The latest changes would 
not correspond to the historical state of the construction being displayed. Our 
solution here is to simply buffer updates until the user returns to the current state. 
Then all the buffered events are processed in the order they were received. 

In order to support dynamic construction by a team, we implemented the control 
mechanism along with awareness displays indicating who has construction control 
in a given tab, what tool they are using and who else is viewing that tab. We also 
implemented a history slider to allow users to browse past actions in the team 
construction without interfering with the current construction. 

Supporting Dynamic Dependencies and Group 
Cognition 
According to Chapter 5. , a major goal of having students experience dynamic 
geometry is for them to gain an understanding of dynamic dependencies. Dynamic 
dragging can be used to provide a visual acquaintance with behaviors resulting 
from hidden dependencies. Following that, dynamic construction should 
incorporate into geometric figures specific dependencies among their elements. An 
understanding of dependencies in geometry can provide a basis for deep 
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understanding of important relationships, enabling students to explain reasons for 
their noticings and even proofs for their conjectures. 

One way to guide students to insightful experiences of dynamic dependencies is to 
provide them with problems in which one can see relationships that are maintained 
during variation through dragging and in which success in constructing successful 
solutions is achieved through strategic building in of dynamic dependencies. This 
can be approached through providing a set of individually interesting problems.  

Perhaps a more effective approach—and this hypothesis is still being tested in 
schools—would be to provide a systematic curriculum. Here, one activity in 
dynamic geometry would build on the previous ones, much like Euclid’s 
propositions relied for their proofs on earlier propositions, often in strategic 
sequences. Furthermore, the activities and accompanying resources (images, 
sample constructions, instructions, background materials) would be systematically 
designed to emphasize and make visible and accessible the dynamic dependencies 
involved. In a collaborative setting, groups of students would have a scaffolded 
opportunity to discuss the dependencies involved and to reflect on the role of these 
dependencies in the solution of problems, in the formulation of explanations and 
as a basis for understanding generalizable principles. The following chapters will 
explore this approach in various ways. 

One way of supporting the use of a systematic curriculum of dynamic-geometry 
activities is to provide mechanisms for seeding chat rooms with resources to guide 
the students. Different groups of students will enact these resources in diverse 
ways, pursuing a variety of interpretations of the “problem” and “goal,” as well as 
adapting experiences from prior sessions in distinctive ways. Our curriculum (see 
Chapter 10. ) consists of a series of topics, each presented in its own chat room. 
For instance, a student group named “Group_3” would have their own chat room 
for each topic in their curriculum. Each room might have several GeoGebra tabs. 
When the students meet in a room, they will see the several tabs already containing 
some materials for the topic. There might be textual instructions; there might be 
geometric figures to drag; or there might be images of figures to construct.  

The VMT environment includes tools for teachers or curriculum developers to set 
up rooms with resources in GeoGebra tabs. In Figure 6-6, the interface for “Create 
New Room” has been filled out to create nine chat rooms for nine groups. The 
rooms will be named “Group_1” to “Group_9.” They will all be part of the 
“WinterFest 2013” project, for topic “Topic 05” in the “Dynamic Geometry” 
subject. Three GeoGebra tabs will be in each room, along with the standard chat 
pane. GeoGebra files containing constructions have been specified to be pre-
loaded into each tab. 
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Another support for dependencies is custom tools. When a student group comes to 
an understanding of a dynamic dependency that they want to be able to use easily 
in the future, they can create a custom tool that embodies that dynamic 
dependency. For instance, once a group understands how to construct an 
equilateral triangle where the side lengths are dynamically dependent upon the 
length of the first side, then they can save this construction as a custom tool and 
add that tool to the tool bar. Similarly, when they understand how to construct a 
line perpendicular to another line and passing through a given point, they can 
create a custom tool for quickly generating perpendiculars. Some of these tools 
already exist among GeoGebra’s hundred tools. However, by creating a custom 
tool, a group learns how the tool works and what dependencies the tool enforces. 
In addition, the process of creating a custom tool collaboratively and testing it out 
can enrich the group’s understanding of design decisions made in the details of the 
creation. There are many functions for which no tool exists in GeoGebra. For 
example, there is no tool for a simple function like copying an angle so that the 
new angle is dependent on the original dynamically. There are also no tools for 
creating the various centers of a triangle, like an incenter. 

While GeoGebra already supports custom tools, there were issues to be worked 
out for implementing custom tools in a collaborative online environment. The 
standard single-user GeoGebra saves a user’s custom tools on the local hard disk. 
That means that a user who works on different computers (e.g., in a school 
computer lab) has to save files with the custom tools and transport the files around 
to retain use of the custom tools. In a group context, we wanted the whole group 
to have access to a custom tool that any one person created. In fact, that was 
necessary in order to have constructions that use the custom tool be properly 
displayed in everyone’s client. So we had to adjust GeoGebra’s support for using 
and managing custom tools to function together in a workable and natural manner. 
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Figure 6-6: Interface for creating rooms with loaded figures in tabs. 

Supporting Reflection, Assessment and Research 
Because VMT was developed as part of a research project, the chat rooms are fully 
instrumented to capture a detailed and complete record of all the interaction that 
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takes place in them and to allow researchers to see and analyze everything that the 
users themselves experienced of the interaction with each other. While a researcher 
may not know what an individual student does off the computer during or between 
sessions—such as writing on paper, talking to someone physically present or 
browsing Wikipedia or Google—neither do the other team members. Unless 
someone reports on their off-line activities in the chat, those activities are not part 
of the collaborative interaction. Of course, an individual student can use some 
information from those off-line activities, but they can also use anything they 
might have come across at any time in their life, and no researcher can know about 
all of that. So, VMT captures about as much of the group interaction as is 
possible—without the methodological and practical complexities of video capture 
and audio transcription. 

This has important consequences for the students and teachers as well as for 
researchers. It means that students can look back and reflect on their work together. 
For instance, a student can capture an excerpt from a chat log or even a screen 
capture from the Replayer to include in a report on their group’s work. They can 
also re-enter their chat room at any time; the rooms are persistent and remain 
available. Then they can review the discussion and even add to it or continue the 
work. The chat rooms, chat logs, and Replayer files are available to everyone who 
has registered in VMT. The availability of the rooms also means that students can 
compare what their group did with results and behaviors of other groups. This can 
be a powerful learning experience.  

Of course, the teachers have the same access to everything that took place. Even 
though the teachers are typically not present in the chat rooms when students are 
working, the fact that the students know that teachers and others have access to the 
chat rooms and to their logs may temper some undesirable behaviors that might 
otherwise take place. In addition, teachers can keep track of how much each 
student participated in sessions and gather a sense of how the class did on different 
topics. They can use these views to perform formative assessments. This can lead 
to discussions that are more effective, if the students are part of a face-to-face 
classroom. The teacher can decide what aspects of the curriculum need more 
discussion and perhaps which students can present accomplishments—either 
successes or failures—that warrant class discussion (Stein et al., 2008). Teacher 
reviews of how the sessions went can also lead to revisions of the curriculum. 

Building an environment for collaborative dynamic geometry includes designing 
tools for reviewing and analyzing what took place in group sessions. These display 
and visualization tools can serve students, teachers, and researchers. We have some 
displays that have been part of VMT for years and others that have been recently 
developed. Clearly, a lot more are possible; learning analytics and visualizations 
are continuously under development and testing. Experienced math teachers—who 
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are taking professional development courses as part of the project—are conducting 
student assessments using the data saved in the VMT system and the tools and 
displays available. 

Because the multi-user system is a client-server system, all activity by people 
anywhere in the world using the system passes through the central server computer. 
All the interaction messages that are passed around the clients are stored in the 
server. That allows researchers access to all of the history. The down side of this 
is that it is hard to get a handle on who has done what and where the interesting 
data lies. We are currently tying to compile this information automatically in ways 
that can guide research. Our means of displaying and reporting what has taken 
place include: a dashboard, logs in different formats, Replayer files, pivot tables, 
visualizations, and case profiles. 

 

 
Figure 6-7: The dashboard of reports on a chat room listed in the VMT Lobby. 
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The dashboard shown in Figure 6-7 is particularly useful for teachers to track what 
is going on in student groups while the groups are active in chat rooms. It can be 
displayed for any chat room and immediately gives a summary of the activity in 
that room. A teacher can see which students are present and how active they have 
been—without the teacher having to enter the room and intervene in the student 
collaboration. A teacher can open several of these dashboards and refresh the 
display periodically to know who is currently active. At the bottom of the 
dashboard are buttons to produce reports. The reports are immediately downloaded 
to the teacher’s desktop and reflect all activity up to the moment the report was 
generated. 

The downloaded reports include spreadsheet logs in different formats and the 
Replayer file for the room. In addition, there is a pop-up chat log. The pop-up chat 
log is particularly handy for quickly browsing the on-going chat. As shown in 
Figure 6-8, it displays the activity spread across a column for each student. This 
provides a good visual overview of how the work is shared and how the discussion 
goes from student to student. Of course, one can also read the comments that 
students post and see what GeoGebra actions they are taking.  
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Figure 6-8: A pop-up chat log accessible from the dashboard. 

An alternative display of the chat is shown in Figure 6-9. Here, the log is 
consolidated in one column. This is useful for publication in reports (like Log 7-9 
in this book). The “Event Type” column can be filtered to just include specific 
categories of events, such as chat messages posted by students, GeoGebra actions 
taken by the students or awareness and system messages generated by the software. 
For chat postings, start and post times are both given, to help figure out what 
previous post someone is responding to. 
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Figure 6-9: A spreadsheet with one column of chat log, which can be filtered by event 
type. 

A good report for browsing among rooms for activity is the pivot table shown in 
Figure 6-10. Using this spreadsheet, one can “drill down” from the project 
community level (Spring 2013) to math subject (Dynamic Geometry), curricular 
topic (Topic 05), small group (Group 2), event type (chat), individual student 
(Cornflakes), and posted data (detailed chat postings). Information at the different 
levels can be sorted, filtered, and counted. Simple statistics can be computed. This 
is a useful report for comparing the activity of different groups and the students 
within the groups. For instance, in the displayed view, one can see how much each 
student contributed to the chat, how much each worked in the “Triangles” and the 
“Squares” GeoGebra tabs in Topic 02 and who was the most active overall in this 
topic. Group 3 seems to have been much less active than Group 2, but Group 1 was 
even more active. One could now drill down to get a sense of what all the activity 
in Group 1 was about. 
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Figure 6-10: A pivot table of chat postings, for students in Topic 05. 
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The pivot table is a flexible spreadsheet for exploring quantitative relationships 
among groups and individuals. To get quick visual impressions of comparisons 
among groups, we can use bubble graphs, like that in Figure 6-11. This image 
represents the activity of a group working for two hours. It represents their activity 
in chat, the whiteboard, GeoGebra tabs, and other actions during five-minute time 
slices. 

 

 
Figure 6-11: Bubble graph of Group 2 working on Topic 5. 

Many other configurations of this data are possible. In the set of bubble charts in 
Figure 6-12, each of the six groups that worked on Topic 5 for two hours in the 
same classroom are compared. In these charts, the height of the bubble represents 
how many of a certain kind of action (chat, whiteboard, GeoGebra or other) took 
place during the five-minute time slice. The size of the bubble represents how 
many people were involved in the chat or other kind of activity (usually 1, 2 or 3 
people). 
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Group 1 

 
 
Group 2 

 
 
Group 3 

 
 
Group 4 
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Group 5 

 
 
Group 6 

 
Figure 6-12: Bubble graphs comparing six groups working on Topic 5, with trend lines for 
chat. 

Certainly, many other visualizations and displays are possible. For researchers, 
these help to deal with a mass of data—to get useful overviews and some 
indications of where interesting cases may lie, depending on one’s research 
questions. For the VMT Project, we are interested in developing case profiles that 
demonstrate how groups learned the foundational ideas of dynamic geometry or 
how they failed to do so. What tools and resources helped, and which hindered? 
How do students engage in online collaboration around dynamic geometry? How 
can this be facilitated or supported? 
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Chapter 7.  Research: Analyzing 
Geometry 

Chapter Summary 
Chat logs of several small groups who worked on a 
challenging geometry problem online are analyzed in this 
chapter. Frequent analysis of usage of an innovative 
educational system is necessary to drive cycles of design. 
The VMT Project’s design-based research into multi-user 
GeoGebra involved feedback from many pilot studies of 
teams working on sequences of activities. This included 
teams of researchers on the VMT Project, teams of teachers 
involved in professional development to prepare them to use 
the software with their students, as well as teams of students 
using various versions of software and topics. This chapter 
looks at how these teams interacted in exploring a dynamic-
geometry activity involving inscribed equilateral triangles. 
In addition to seeing how groups enacted the affordances of 
the collaborative dynamic-geometry environment, the 
analyses illustrate group cognition—the accomplishment of 
challenging problem-solving tasks through collaborative 
interaction at the group level. 

 

The educational research field of computer-supported collaborative learning 
(CSCL) arose in the late 1990s to explore the opportunities for collaborative 
learning introduced by the growing access to networked computational devices, 
like personal computers linked by the Internet (Stahl, Koschmann & Suthers, 
2006). The seminal theory influencing CSCL was the cognitive psychology of 
Vygotsky (1930/1978). He had argued several decades earlier that most cognitive 
skills of humans originated in collaborative-learning episodes within small groups, 
such as in the family, mentoring relationships, apprenticeships, or interactions with 
peers. Skills might originate in inter-personal interactions and later evolve into 
self-talk mimicking of such interactions—often ultimately being conducted as 
silent rehearsal (thinking) or even automatized non-reflective practices (habits). In 
most cases of mathematics learning, the foundational inter-personal interactions 
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are mediated by language (including various forms of bodily gesture) (Sfard, 2008; 
Stahl, 2008b). Frequently, the early experiences leading to new math skills are also 
mediated by physical artifacts or systems of symbols—more recently including 
computer interfaces. 

Based on a Vygotskian perspective, a CSCL approach to the teaching of geometry 
would involve collaborative learning mediated by dynamic-geometry software and 
student discourse. In the past decade, we have developed the VMT collaborative-
learning environment and have integrated a multi-user version of GeoGebra into 
it. In developing this hybrid system, we have tested our prototypes with various 
small groups of users.  

Recently, we have used the figure discussed in Chapter 5—of an equilateral 
triangle inscribed inside of another equilateral triangle—as the basis of an activity 
for virtual math teams exploring dynamic geometry. This problem was suggested 
by Öner (2013) because it lends itself nicely to a combination of dynamic dragging 
and dynamic construction. For us, it is also attractive because of its central concern 
with dynamic dependencies. Thus, it combines in a deep and tangible way what 
we characterized in Chapter 5.  as the three primary dimensions of dynamic 
geometry. 

Later, in Chapter 8, we will see how this problem was solved by two students 
working face-to-face using Geometer’s Sketchpad in the original experiment 
conducted by Öner. First, in this chapter, we review how the same problem was 
approached by three kinds of teams within the VMT Project: by members of our 
research project, by teachers in our professional development course and by 
students of one of those teachers in a middle school.  
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We initially tried out the problem of constructing inscribed equilateral triangles in 
two teams composed of members of the VMT Project team. The problem was 
given to the groups in the form seen in Figure 7-1. We will call the two teams 
Group A (Jan, Sam and Abe) and Group B (Lauren, Cat and Stew). The group 
members are adults already familiar to varying degrees with VMT and GeoGebra. 

Researchers Design Dependencies 
Group A starts by coordinating their online activity. They decide who will have 
initial control of the GeoGebra manipulation and they discuss in the text-chat panel 
the behavior they see as points of the construction are dragged (Log 7-1). They 
begin by dragging each of the points in the diagram (Figure 7-1). 

 

6 14:33:56 Sam I am good with somebody taking a stab at the dragging ...  

 

Figure 7-1: The dragged construction with the problem statement and some 
chat. 
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7 
14:34:10 Sam I think maybe tell us what you intend to drag and we can 

discuss what we observe? 

8 
14:34:18 Jan Go ahead Abe. Why don't you move the points in alphabetical 

order 
9 14:34:36 Abe Ok 

10 14:34:43 Abe I will try to drag point A 

11 
14:35:08 Jan So the whole triangle moves... it both rotates around point B 

and it can dilate 

12 
14:35:14 Sam So, A seems to move all the other points and scalle the whole 

drawing. 
13 14:35:14 Jan Which are you moving now 

14 14:35:20 Sam What are you moving now? 

15 14:35:35 Abe I first moved 1 and then D. 

16 14:35:45 Sam A, then D. 

17 14:35:46 Sam ok 

18 14:36:05 Jan so D was stuck on segment AC 

19 14:36:12 Abe when i dragged A what did you notice? 

20 
14:36:12 Sam D has an interesting behavior. It seems that E & F remain 

anchored on the lines wehre they are, and so does d 
21 14:36:14 Jan Can you move E,F 

22 14:36:38 Sam I tried to move e and f ... they did not move. 

23 14:37:08 Jan Hmm... 

24 14:37:35 Sam It seems A, B & D move ... but C, E & F do not. 

25 
14:37:46 Jan SO I see D is free to move on AB, but how did it generate E 

and F? 
26 14:37:56 Sam The behavior for A & B appear to be the same. 

27 14:37:59 Abe It appears that the triangles remain equilateral. 

Log 7-1: The researchers drag points in the diagram. 

Note that the problem statement in Figure 7-1 does not say that the triangles are 
equilateral or inscribed. By having Abe drag points A and D, the group quickly 
sees that the vertices of the inner triangle always stay on the sides of the outer 
triangle (e.g., log lines 18 and 20), indicating that the smaller triangle is inscribed 
in the larger one. 

As Abe drags each of the vertex points, the group notices that points A, B and D 
are free to move, but that C, E and F are dependent points, somehow determined 
by A, B and/or D. Jan asks Sam to drag E and F, but Sam finds that they cannot be 
dragged. This sparks Jan to express wonder about how the position of point D (as 
it is dragged while A, B and C remain stationary) generates the positions of E and 
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F (line 25). This is a move to consider how the diagram must be constructed in 
order to display the behavior it does during dragging. Meanwhile, Abe notices in 
line 27 that the triangles both remain equilateral during the dragging of all their 
vertices. 

Within about three minutes of collaborative observation, the group has 
systematically dragged all the available points and noted the results. They have 
noticed that the triangles are both inscribed and equilateral. They have also 
wondered about the dependencies that determine the position of E and F as D is 
dragged. Now they start to consider how one would construct the dynamic 
diagram. 

 
47 14:45:39 Jan What are we thinking... 
48 14:46:07 Abe okay,we have two equilateral triangles, with the inner one 

constrained to the sides of the outer triangle. 
49 14:46:12 Sam I think Abe summarized what is happening nicely - that both 

triangles remain equilateral when any of the 3 movable points 
are moved. 

50 14:46:26 Jan Agreed. 
51 14:47:01 Jan The thing I'm wondering about is how to generate the specific 

equilateral triang.e 
52 14:47:02 Sam Yes, another good bpoint - the one is contained in the other ... 

further, the three points of the inner triangle are constrained by 
the line segments that make up the outer triangle.  

53 14:47:03 Abe let's try to construct the figures? 
54 14:47:20 Jan For example, given a point on AB and a point on AC, there 

exists an equilateral triangle 
55 14:47:38 Jan But that's not this sketch b/c only one point is free. The rest are 

constrained 
56 14:49:37 Jan I'm wondering if all the three triangles that are outside the little 

equilateral triangle yet inside the big one are congruent. 
57 14:50:39 Abe When you say all three triangles, do you mean the three sides 

of the one of the triangles? 

Log 7-2: The researchers wonder about the construction. 

First, they all agree on the constraint that the triangles must remain inscribed and 
equilateral. Abe suggests that they actually try to construct the figure (line 53); 
through such a trial, they are likely to gain more insight into an effective 
construction procedure, which will reproduce the dragging behavior they have 
observed. Jan first notes that an equilateral triangle can be defined by the two 
points of its base. However, he also notes that in the given figure only one of the 
vertices is free and it determines the other two (line 55). This leads him to wonder, 
“if all the three triangles that are outside the little equilateral triangle yet inside the big one 
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are congruent” (line 56). If they are congruent, then corresponding sides will all be 
of equal length. Abe relates the sides of the three little congruent triangles to the 
three sides of the interior triangle and to the three segments on the sides of the 
exterior triangle. Following the excerpt in Log 7-2, Group A measures the three 
segments AE, BF and CD, discovering that they are always equal to each other, 
even when their numeric length changes with the dragging of any of the free points. 

 
72 14:53:33 Jan That means that CD, AE, and CF also have to be the same 

length, bc big triangle is equilateral 
73 14:53:42 Abe did you change what is being measured? or did you resize the 

figure? 
74 14:53:58 Jan I just moved point D along the side of the equilateral triangle 
75 14:54:35 Abe i c 
76 14:56:16 Abe So, shall we summarize the dependencies that we notice? 
77 14:57:11 Jan Sure who wants to start? 
78 14:57:45 Sam The inner triangle is contained by the outer triangle. 
79 14:58:05 Sam segment AC is the boundary of point D 
80 14:58:14 Sam Segment CB is the boundary of point F 
81 14:58:24 Sam Segmemt AB is the boundary of point E 
82 14:58:55 Jan So I think we may want to say F is on CB a bit differenlty.  
83 14:59:10 Sam Both triangles are equalateral no matter how the three movable 

points -- A, B & D -- are moved. 
84 14:59:14 Jan It is not free to move on CB. It is stuck in a particular location on 

CB defined by where D is on CA 
85 15:00:09 Abe The line segment CB cannot move. 
86 15:00:10 Jan So I think F is CD units away from B on BC. Its not constructed 

as an equilateral triangle, it happens to be an equilaterl triangle 
because of the construction 

87 15:00:26 Jan Agreed. I meant segment of length CB 
88 15:00:38 Jan Do you all buy that... 
89 15:00:39 Jan ? 
90 15:00:50 Sam @Jan - I think that's covered by saying that both triangles are 

always equaleteral ... it implies both points move in conjunction 
with the third. (D) ... Of course, I don't teach the teachers who 
teach math (much), so you may have a better sense of the 
conventions. :D 

91 15:00:59 Sam I'll buy it. 
92 15:01:04 Abe yes, i agree! 
93 15:02:28 Abe The same can be said about E, it's constructed to be CD units 

from A. 

Log 7-3: The researchers identify dependencies of the inscribed equilateral triangles. 
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After noting the key dependency that they discovered—segment lengths 
AE=BF=CD—they list the other dependencies involved in constructing the figure. 
Line 86 provides a conjecture on how to construct the inner triangle. Namely, it is 
not constructed using Euclid’s method from Proposition 1 (the way the exterior 
equilateral triangle could have been). Rather, point F is located the same distance 
from B on side BC as D is from C on AC: a distance of CD. Jan asks the rest of 
his group if they agree (line 88). They do. Abe adds that the same goes for the third 
vertex: point E is located the same distance from A on side AB as D is from C on 
AC: a distance of CD. The work of the group on this problem is essentially done 
at this point. A few minutes later (line 110), Jan spells out how to assure that 
AE=BF=CD in GeoGebra: “Measure CD with compass. Then stick the compass at B 
and A.” 

We have seen here that Group A went through a collaborative process in which 
they explored the given figure by varying it visually through the procedure of 
dragging various points and noticing how the figure responded. Some points could 
move freely; they often caused the other points to readjust. Some points were 
constrained and could not be moved freely. The group then wondered about the 
constraints underlying the behavior. They conjectured that certain relationships 
were maintained by built-in dependencies. Finally, the group figured out how to 
accomplish the construction of the inscribed equilateral triangles by defining the 
dependencies in GeoGebra. 

Group B went through a similar process, with differences in the details of their 
observations and conjectures. Interestingly, Group B made conjectures leading to 
at least three different construction approaches. First, Stew wondered if the lengths 
of the sides of the interior triangle were related to the lengths of a segment of the 
exterior triangle, like DE=DA (Log 7-2). The group then quickly shared with each 
other the set of basic constraints—inscribed and equilateral—similar to Group A’s 
list of constraints. 

 

15 14:37:00 Stew and it appears that the side lengths of the inner triangle are 
related to the length of a portion of the orignal side 

16 14:37:08 Cat so also, there must be a constraint about the segments 
remaining equal, no? 

17 14:37:31 Cat @Stew, why can't they just be equal to each other?  
18 14:37:47 Lauren yes, visually it sure looks like equilateral triangles 
19 14:37:53 Stew yes, I think the triangles are equilateral or something like that.? 
20 14:38:00 Lauren D is free to move on AC, but E and F cant be dragged 
21 14:38:58 Lauren constructing the outer equilateral will be easy, but how do you 

think we should plan the construction of the inner triangle? 
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22 14:39:24 Stew you can construct an equilateral but how do you make it so that 
its vertices are always on the outer triangle? 

23 14:39:57 Lauren Im thinking place D on AC, and construct an equilateral from 
there, with intersections on the sides of the outer triangle 

24 14:40:12 Lauren should we try and see what happens? 
25 14:40:13 Cat yeah, i'm not sure about making the other points stay on their 

respective segments 
26 14:40:27 Cat but we can maybe see the answer when we get closer 
27 14:40:35 Stew I think we'll get intpo trouble with the third side 
28 14:40:38 Lauren yeah, that will be the tricky part, but i think if we intersect they 

will be constrained 
29 14:40:41 Stew but, sure, let's try it 
30 14:40:53 Lauren may I start? 
31 14:40:59 Cat go for it! 

Log 7-2: The researchers notice while dragging points in the diagram. 

Group B sees that the inner triangle must remain both inscribed and equilateral. 
This raises difficulties because the usual method of constructing an equilateral 
triangle would not in general locate the dependent vertex on the side of the 
inscribing triangle (line 22). This group, like Group A, decides to start construction 
in order to learn more about the problem (line 24). They do not have a complete 
plan for the construction, but they decide to start constructing in order to explore 
how things turn out. They begin by constructing triangle ABC and placing point D 
on AC. They anticipate problems constructing triangle DEF and ensuring that both 
E and F remain on the sides of the inscribing triangle while also being equidistant 
from D. Note that the members of the team are careful to make sure that everyone 
is following what is going on and agrees with the approach. 

 
45 14:44:53 Lauren anyone have any ideas for the inner triangle? 
46 14:45:37 Stew One thing I noticed is that the sidelength of the inner triangle 

appears to be the distance of the longer segment on the 
original triangle 

47 14:46:17 Cat i wish i could copy the board :) i know that is not ideal, though 
48 14:46:40 Cat i forget what the tools do exactly, and want to just remind 

myself 
49 14:46:57 Stew If you made a circle that fit inside the original triangle, then its 

point of tangency or intersection might be useful 
50 14:47:31 Stew the trick might be to find the center of such a circle.  
51 14:48:15 Stew There are interesting centers made by things such as Cat was 

suggesting, the angle bisectors, or perpendicular bisectors 
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52 14:48:33 Lauren yes - the center of each triagle probably is the same - do you 
think? 

53 14:48:54 Lauren angle bisecotrs would work 
54 14:49:05 Stew I don't think they have the same center 
55 14:49:44 Lauren maybe not.... 

Log 7-5: The researchers conjecture about the construction. 

In line 46 (Log 7-), Stew repeats his conjecture about side DE equaling the length 
of “the longer segment” of AC, i.e., either CD or AD depending on which is longer 
at the moment. This conjecture is visibly supported by the special cases when D is 
at an endpoint of AC or at its midpoint. When D is at an endpoint, DE=AC or 
DE=AB (and AB=AC); when D is at the midpoint of AC, DE=AD=DC because 
the three small triangles formed between the inscribed triangles are all equilateral 
and congruent.  

Then the group switches to discussing a quite different conjecture that Lauren had 
brought up earlier and that Cat is trying to work on through GeoGebra 
constructions. That conjecture is that it would be helpful to locate the centers of 
the inscribed triangles, construct a circle around the center and observe where that 
circle is tangent to or intersects triangle ABC. In general, triangles have different 
kinds of centers, formed by constructing bisectors of the triangle’s angles or by 
constructing perpendicular bisectors of the triangle’s sides. The team discusses 
which to use and whether they might be the same center for both of the triangles. 
Lauren does some construction ( 
 
Figure 7-2). She locates a point, D, at which triangle ABC’s angle bisectors meet. 
However, she then abandons this approach. 

 
80 15:01:40 Stew that's we can come back to that if you want to explain what you 

did 
81 15:02:26 Cat Lauren, did you create A and B to have equal radii>  
82 15:02:27 Cat ? 
83 15:02:31 Lauren I abandoned the center, and worked with the lengths of the 

sides 
84 15:02:57 Lauren used the compass tool to measure the distance from D to C 
85 15:03:08 Lauren and then found that distance from each of the other vertices 
87 15:03:24 Lauren using the fact that all equilateral triangles are similar 
88 15:03:30 Lauren questions? 
89 15:04:05 Lauren is everyone convinced the inner triangle is as it should be? 



Translating Euclid 

      

126 

Log 7-3: The researchers construct the dependencies of the inscribed equilateral triangles. 
 

Figure 7-2: The researchers find the center, construct equal line segments. 

Instead, she pursues a new conjecture, related to Stew’s earlier observations: “we 
know by similar triangles, that each line of the inner is the same proportion of the outer” 
(Lauren, line 75). She uses the GeoGebra compass tool with a radius of CD to 
construct circles around the other vertices of triangle ABC (Line 84, 85), just like 
Group A had done. This locates points where the circles intersect the triangle sides 
for placing the other vertices of the inscribed triangle with the constraint that 
CD=AE=BF. She then concludes by asking if the other group members agree that 
this constructs the figure properly. 

Like Group A, Group B initiated a collaborative process of exploring the given 
diagram visually with the help of dragging points. They developed conjectures 
about the constraints in the figure and about what dependencies would have to be 
built into a construction that replicated the inscribed equilateral triangles. They 
decided to explore trial constructions as a way of better understanding the problem 
and the issues that would arise in different approaches. Eventually, they pursued 
an approach involving line segments in the three congruent smaller triangles.  

It is interesting to note the role of the three small triangles formed between the two 
inscribed triangles. These small triangles are not immediately salient in the original 
diagram. Triangles ABC and DEF are shaded; the smaller triangles are simply 
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empty spaces in between. They become focal and visible to the groups due to their 
relationships with the sides of the salient triangles, and particularly with the 
segment CD. It is the fact that these three smaller triangles are congruent that 
supports the insight that the necessary constraint is to make CD=AE=BF. The 
smaller triangles become visible through the exploratory work of dragging, 
conjecturing, and constructing this dependency. This is precisely the kind of 
perception that can occur in the scaffolded inter-personal setting of collaborative 
dynamic geometry and then can gradually mature into increased professional 
vision (Goodwin, 1994) and mastery of practices of observation and discourse by 
the individual team members as developing students of mathematics. 

Both Group A and Group B find a solution to the problem they address by taking 
advantage of the affordances of collaborative dynamic geometry. Their 
understanding of the problem (Zemel & Koschmann, 2013) develops gradually 
through dragging points, noticing how other points respond, wondering about 
effective constraints and conjecturing about possible dependencies to construct. 
Next, they begin exploratory construction. These are trial-and-error attempts in 
different directions. Some reach deadends or are simply put aside as more 
promising attempts catch the group’s attention. Finally, the group agrees upon a 
key dependency to build into the construction. This dependency—in its 
connections to related geometric relationships—forms the basis for persuading the 
group members of a solution to the problem. This is implicitly a justification or 
proof of the solution. In the end, the group can construct a set of inscribed 
equilateral triangles, building in the dependency that CD=AE=BF. They can then 
prove that the triangles are inscribed and equilateral by referring to the dependency 
that CD=AE=BF, along with certain well-known characteristics of equilateral and 
congruent triangles. 

Although both groups reached a similar conclusion, their paths were significantly 
different. First, they defined their problem differently. Group A focused on listing 
the constraints that they noticed from dragging points and then on proving that the 
given triangles were in fact equilateral. Group B, in contrast, quickly realized that 
it would be difficult to construct triangle DEF to be both inscribed and equilateral, 
since these characteristics required quite different constraints, which would be hard 
to impose simultaneously. Whereas Group A coordinated its work so that the 
members followed a single path of exploration and conjecture, Group B’s members 
each came up with different conjectures and even engaged in some divergent 
explorative construction on their own before sharing their findings. Despite these 
differences, both groups collaborated effectively. They listened attentively and 
responded to each other’s comments. They solicited questions and agreement. 
They followed a shared group approach. Together, they reached an accepted 
conclusion to a difficult problem, which they would not all likely have been able 
to solve on their own, illustrating effective group cognition (Stahl, 2006). 
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The analysis of Groups A and B illustrates the approach of collaborative dynamic 
geometry. The groups took advantage of the three central dimensions of dynamic 
geometry—dragging, construction, and dependencies—to explore the intricacies 
of a geometric configuration and to reach—as a group—a deep understanding of 
the relationships within the configuration. They figured out how to construct the 
diagram and they understood why the construction would work as a result of 
dependencies that they designed into it.  

Teachers Design Dependencies 
During a teacher-professional-development course offered as part of the VMT 
Project, middle-school and high-school teachers met online for ten weeks. They 
read and discussed—both in the VMT synchronous chat rooms and in Blackboard 
asynchronous discussion forums—readings about dynamic-geometry teaching, 
collaborative learning, academically productive (or accountable) talk (Michaels, 
O’Connor & Resnick, 2008; Resnick, O'Connor & Michaels, 2007) and 
mathematical practices (CCSSI, 2011). They also participated within small groups 
in several hour-long synchronous sessions using multi-user GeoGebra in VMT. In 
one of those sessions, they were presented with the inscribed-triangles problem. In 
this section, we analyze the work of one of the groups, consisting of four teachers.  

Before this group session, the teachers were given an individual assignment to 
hone their GeoGebra skills. This consisted of a two-page set of instructions. It 
stepped them through an exercise using the compass tool to create new line 
segments whose lengths would be dependent upon given segments (similar to 
Euclid’s second proposition and to the student topic in Figure 10-7). Then it 
stepped them through the construction of an equilateral triangle using circles 
(similar to Euclid’s first proposition and to the student topic in Figure 10-8). 

The teachers begin their group session by setting up their collaboration in response 
to a page of instructions, which states: 

In the tab “Original figure,” you will see a diagram 
consisting of two triangles. Decide on roles and proceed to 
explore the figure as a group. Discover what dynamic 
relationships hold for the two triangles. 
This figure was selected because it lends itself to group 
exploration of dependencies. If you discover the 
dependencies through dragging the figure, that will help you 
to construct your own figure like this. Record your 
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observations and hypotheses about the figure in the 
Summary tab. 
After about 15 minutes, move to the “Our group’s 
construction” tab. Try to re-create the figure from the first 
tab. What constraints or dependencies can you use for your 
construction to make sure that your figure has the same 
dynamic relationships as the original figure? Discuss this in 
the chat and summarize your discussion in the Summary tab. 
As you construct, make sure that everyone in the group 
understands how the construction is being done and why this 
approach will ensure the proper dependencies. 

The group allocates time for the initial exploration of the given figure of the 
triangles, decides how they will maintain a running summary of their work and 
determines who will take control in GeoGebra first. The “Original figure” tab is 

shown in  Figure 7-3. 

 
Figure 7-3: The original figure tab for the teachers. 
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The group begins their work by exploring the dependencies. Within the allotted 15 
minutes, each member contributes to summarizing the group’s findings (see Log 
7-4): 

 
Line Post 

Time 
User Message 

61 19:12:55 emilyL I think we are supposed to focus on the dependencies 

62 19:12:57 sholland Use the 5th from the right 

63 19:14:15 michele
_colon 

one of the dependencies could be that the triangles are 
equilateral 

64 19:14:42 emilyL ok 

65 19:16:04 sholland Could D be a "point on line" AC 

66 19:15:59 emilyL did someone show the lengths yet? 

67 19:16:39 JL123 I took control for a breif second I wanted to see about the 
equilateral by the view it looks like one side may be longer but 
moving it gave me a better view I agree eqilateral 

68 19:16:54 sholland Also maybe line segment then the a regular polygon tab 

69 19:16:29 michele
_colon 

I think so, and E on AB and F on BC 

Log 7-4: The teachers determine dependencies. 

They agree that the two triangles are constrained to be equilateral and that the 
vertices of the interior triangle are constrained to stay on the sides of the exterior 
triangle. The group then turns to discuss how they can construct triangles that 
exhibit the same dependencies as the original figure: 

85 19:20:46 JL123 can any other points move the figure? this may help to 
know when we construct ours 

86 19:20:48 michele_colon Sheila, I think so too, big triangle first 
87 19:21:13 JL123 So we are thinking Big triangle with polygon tool and small 

with compass? 
88 19:21:50 sholland CEF are all grayed out so probably not 
89 19:22:27 michele_colon I'm not sure about the polygon tool, but I think the big 

needs to be constructed first so that D, E, and F can be 
constructed on their correct sides 

90 19:22:01 sholland yes 

Log 7-5: The teachers plan their construction. 
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As shown in Log 7-5, they argue that they must construct the exterior triangle first 
so that the vertices of the interior triangle can be located on its sides. They are 
especially interested in which points on the triangles are free to move and which 
are constrained to be at fixed positions (determined by the other points). In 
particular, Sholland notes that points C, E, and F are colored black (“grayed out”) 
in the figure. The teachers have previously noted that GeoGebra colors dependent 
points black and free points blue. This is an indication that points C, E, and F will 
have to be constructed in a way that makes them dependent on previously 
constructed objects. 

EmilyL draws the conclusion from this that, “Since AB are blue but that was the 
original segment and then using the two circles and radii to create original large triangle?” 
(line 107). In other words, they should start with a line segment AB since points A 
and B have to be free. Then they can use the procedure they practiced in their 
individual assignments to construct the exterior equilateral triangle using circles of 
equal radii around points A and B. The group follows EmilyL’s proposal and 
constructs triangle ABC. They then display the lengths of the sides, showing they 
are all equal. This confirms that they have constructed an equilateral triangle. In 
Log 7-6, they all celebrate this accomplishment: 

 

117 19:26:09 JL123 so what do we construct first? lets have some sort of a 
gmae plan 

118 19:26:40 emilyL I think large first with the two circles the way we did on 
individual.  what do you guys think? 

119 19:26:40 michele_colon I agree with what Emily said here for our first part 
120 19:27:05 michele_colon yay, they are equilateral  
121 19:27:10 emilyL nice showing the lengths! 
122 19:27:07 sholland Definately equilateral triangles 

Log 7-6: The teachers confirm that the triangles are equilateral. 

The group does some more exploration and learns about the GeoGebra tools. They 
wonder if using the regular-polygon tool on segment AB will also produce a point 
C that is black. They learn how to shade in the interior of a triangle with the 
polygon tool and to hide the construction circles. They place point D on a side of 
their triangle and notice that it can be dragged around all sides of the triangle 
because they located the point on the polygon rather than on one of the side 
segments. They wonder if the point tool can produce the same effect as the 
intersection tool and are surprised to find that it can. 
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As the rest of the group is discussing these side issues in their “Our Construction” 
tab, EmilyL makes a key discovery in the “Original Figure” tab (as seen in Log 7-
10): 
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Log 7-7: The teachers have a key idea. 

204 19:41:15 emilyL I HAVE AN IDEA!! 
208 19:42:01 emilyL can everyone go to Original fig for a second 
209 19:42:15 JL123 yes I was just checking it out for idea 
210 19:42:16 michele_colon sure Emily 
211 19:42:21 sholland original 
212 19:42:45 emilyL watch as I move D, AD will stay congruent to CF and BE 
213 19:43:20 JL123 yes  
215 19:43:33 emilyL I think I know what to do with that compass tool we did in 

the individual 
216 19:44:30 JL123 What if we form 2 more circles to intersect the large 

triangle and make intersecting points where they meet? 
217 19:43:35 michele_colon good observation, maybe use the compass tool on those 

segments? 
218 19:43:25 sholland okay 
224 19:44:39 emilyL Can I share my idea? 
226 19:44:47 JL123 yes of course 
227 19:44:53 michele_colon please! 
228 19:45:28 emilyL I think if we use the compass tool and make it the same 

measure as AD and then move it to where the center is C 
then B, this will work 

229 19:45:51 emilyL and then use points and polygon tool to connect 
230 19:46:01 JL123 I was thinking that too make two more circles 
231 19:46:06 emilyL Jena, kind of like forming two circles 
232 19:46:13 emilyL but using the compass tool! 
233 19:46:15 sholland Try it emily. It's a good idea 
234 19:46:11 JL123 see I like it Emily 
235 19:46:14 michele_colon i think that will work too 
236 19:46:32 JL123 Yes the compass tool so there is more control 
237 19:46:27 emilyL ok first getting rid of E 
238 19:46:55 emilyL choosing the compass tool to get the measure of AD 
239 19:47:23 emilyL selecting A then D and making C the new center point 
242 19:47:45 emilyL does everyone see the new circle? 
244 19:47:50 michele_colon yes 
245 19:47:49 sholland yes 
247 19:48:11 JL123 Yes emily good work 
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As she states in line 212 of Log 7-7, EmilyL has the idea that under dragging, 
segment lengths AD=CF=BE. She invites everyone into the “Original Figure” tab 
and she then drags point D around and around, showing that the three vertices of 
the inner triangle always maintain equal distances from the corresponding vertices 
of the exterior triangle. She then associates this central dependency of the figure 
with the use of the compass tool, as practiced in the individual activity. Namely, 
she knows that the compass tool can be used to copy segment lengths (e.g., to 
construct CD and BE) so that they will remain dependent upon the original length 
(e.g., segment AD).  

The other group members all respond with agreement to EmilyL’s observation and 
to her suggestion to use the compass tool. In fact, the others indicate that they 
already understand how to use the compass tool here (lines 216-218). After a 
distraction caused by an instructor entering the chat room with an announcement 
(lines 219-223, not shown), EmilyL brings the group back to her proposal. She 
describes explicitly what she plans to do. The others agree. She emphasizes the use 
of the compass tool and the others agree again. Then she narrates as she uses the 
compass tool. The compass tool is tricky to use because you must set the radius of 
a circle first (e.g., using points A and D), and then move the circle to a new center 
(e.g., point B or C). Unfortunately, the movement of the circle is not visible to 
other participants, so it is important to narrate what is being done. 
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The team continues by having other group members construct the figure to make 
sure that everyone is able to do it. They discuss aspects of the GeoGebra tools 

that they find interesting. They also reveal the lengths of all the triangle sides in 
order to confirm visually that the triangles remain equilateral when dragged (see 

 
Figure 7-4). 
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Figure 7-4: The teachers’ solution with lengths marked. 

 
351 20:08:24 sholland So did we use the compass tool for all 3 points or just 2? 
352 20:08:49 JL123 yes lets just discuss dependencies further and I think our 

work is done here 
353 20:08:45 emilyL only 2 
354 20:08:52 emilyL in ours G and U 
355 20:09:04 JL123 compass for 2  
356 20:09:30 sholland I laugh thinking how hard it was to create an equilateral 

traingle the first time. We are much better with geogebra 
now 

357 20:09:31 emilyL CG and BU are dependent of AD because we used the 
compass tool to keep the same radii 

358 20:09:31 JL123 points were made be intersecting for E and poin tool for U 
359 20:09:55 JL123 I know its crazy n always beneficial working with this 

group 
360 20:09:42 emilyL lol me too!! 
361 20:09:48 emilyL well the ind also helped 



Translating Euclid 

      

137 

362 20:10:11 sholland yes 
363 20:10:14 michele_colon so true! 

Log 7-8: The teachers conclude their session. 

They wrap up the session in Log 7-8 by discussing the dependencies that they 
discovered and how they used various GeoGebra tools to reconstruct the figure, 
preserving these dependencies. (Somehow, the points that should have been 
labeled E and F were labeled G and U in their construction.) They noted how much 
they had improved in their use of the GeoGebra tools and pointed out that the 
individual exercise had also helped with this. Finally, they celebrated the benefits 
of working together with each other. 

Students Design Dependencies 
The teacher-professional-development course took place in Fall 2012. The next 
term, Winter 2013, the VMT Project organized a “WinterFest” for the students of 
the teachers. The teachers selected collaborative online GeoGebra activities for 
their students. Most started with Topics 1 to 4 (see Chapter 10. ). One of the 
teachers who participated in the chat analyzed in the previous section then had the 
seven groups of her students work on Topic 5, the problem of inscribed equilateral 
triangles. In this section, we shall analyze the chat log of one of those student 
groups in some detail. They spent two hour-long sessions on Topic 5. In the first 
session, they worked on the inscribed triangles and in the second session on the 
inscribed squares. Although they looked at the inscribed hexagons tab, they never 
had time to work on it. The three tabs of Topic 5 are shown in Figure 7-5: 
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Starting 
in Log 
7-9, all 
of the 

chat 

postings of three students are listed. The students have login names: Fruitloops, 
Cornflakes and Cheerios. They are middle-school students in 8th grade (about 14 
years old). They are in the teacher’s honors algebra course and are engaged in the 

 

  

  
Figure 7-5: The tabs of Topic 5: Triangles, Squares and Hexagons. 
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WinterFest in a computer lab after school. They have had very little previous 
exposure to geometry—only about a week during the previous year’s pre-algebra 
math course. They begin by following the instructions in the opening tab: “Take 
turns dragging vertex A of Triangle ABC and vertex D of Triangle DEF.” 

 

Line Post 
Time 

User Message 

3 15:11:53 fruitloops heyyyyyyyyyyyyyy 
4 15:13:05 cornflakes hi 
5 15:13:30 cornflakes i will go first 
7 15:18:09 fruitloops when i move vertex a the whole triangle of abc 

moves 
8 15:18:43 cornflakes when i moved point c the triangle stayed the same 

and either increased or decreased in size, butit was 
equivalent to the original triangle 

9 15:18:52 fruitloops but when i tryed to move vertex d, it couldnt go 
behond triangle abc 

10 15:18:54 cheerios does the inner triangle change its shape when u 
move vertex a 

11 15:19:34 fruitloops try moving it... 
12 15:20:38 cheerios nvm it doesnt 
13 15:22:43 fruitloops yeah when you move vertex a, the inner triangles 

changes size but never shape 
14 15:22:54 cornflakes yes 
15 15:23:35 fruitloops can i try to make the circle equilateral triangle fist? 
16 15:23:38 cheerios yes 
17 15:23:53 cornflakes sure 
18 15:24:11 fruitloops wait, fist we should talk about the other vertexes 
19 15:24:23 cornflakes yes 
20 15:24:28 cheerios agreed 
21 15:24:48 fruitloops so cheerios since you have control what happens 

when you move the different vertexes? 
22 15:25:26 cheerios when you move vertex a triangle dfe dont move at 

all it just becomes smaller when you shrinnk the big 
triangle and vice versa 

23 15:25:56 fruitloops what about point e? c? F? 

Log 7-9: The students explore the triangles. 
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The students drag points A and D. They quickly see that the interior triangle is 
confined to stay inside triangle ABC and that both triangles retain their shape when 
dragged. Fruitloops is eager to start constructing an equilateral triangle using 
circles. They have just watched a video of that construction in class, and had 
learned it in Topic 2. However, Fruitloops reconsiders and suggests that they 
explore further by dragging the other points. In Log 7-10, they start to discuss the 
dependencies in more detail. 

 

24 15:26:41 cornflakes ecf arent moving  
25 15:27:00 fruitloops point c e and f cant move 
26 15:27:52 cornflakes because they are sconstrained or restricted 
27 15:27:53 fruitloops point d can only make point f and g move but nothing 

else 
28 15:28:29 cornflakes yea 
29 15:28:50 fruitloops okay want to try to conssrtuct it? 
30 15:29:01 cheerios yup 
31 15:29:07 cornflakes sure 

Log 7-10: The students discuss dependencies 

The students note that points C, E and F are “constrained or restricted,” so they are 
not free to be dragged. They also note that dragging point D will move points E 
and F. This will turn out to be a key dependency, although the students do not 
discuss it as such. They are now ready to begin the construction task. Fruitloops 
begins the construction with a segment GH and two circles of radius GH centered 
on points G and H, respectively. Fruitloops gets stuck at line 32 of Log 7-11 and 
Cheerios takes over, drawing the triangle connecting point I at the intersection of 
the circles with points G and H. Fruitloops wants to remove the circles, but seems 
to understand in line 34 that they cannot erase the circles without destroying the 
equilateral triangle. Cornflakes hides the circles by changing their properties. 

 

32 15:30:26 fruitloops what should i do next? 
33 15:32:22 fruitloops so how do we get rid of the circles then? 
34 15:32:54 fruitloops if we cant delete them, what do we do? 
35 15:34:37 fruitloops so i think triangle igh is like triangle abc 
36 15:36:30 fruitloops now that the first triangle is good, what should we 

do? 
Log 7-11: The students construct the first triangle. 
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In line 35, Fruitloops suggests that they have succeeded in replicating the outer 
triangle. In Log 7-12, Fruitloops makes explicit that their previous observation 
about movement of point D affecting points E and F implies a dependency that 
may be relevant to their construction task. Cheerios and Cornflakes express interest 
in this line of argument. They all agree to proceed with trying constructions in 
order to figure out just what needs to be done. As with designing the exterior 
triangle, the results of dragging provide an impetus for construction, but not a 
blueprint. The participants launch into a trial-and-error process, guided by some 
vague ideas of things to try. 

 

37 15:47:48 fruitloops d moves but f and e dont 
38 15:48:04 fruitloops so both f and e are dependent on d 
39 15:48:18 cheerios so what does that mean 
40 15:48:37 fruitloops so if we make a line and use the circle thing, maybe 

we can make it somehow 
41 15:48:15 cornflakes right 
42 15:49:09 cheerios lets try  
43 15:49:29 cheerios and we will jsut figure it out .. by making the line thing 
44 15:49:14 fruitloops how? 
45 15:50:18 cheerios f and e are restricted 
46 15:51:19 fruitloops we can make their d point by just using a point tool 

on our triangle to make point j 
65 16:11:35 fruitloops so what ere you dong now? 

Log 7-12: The students experiment. 

They begin their trial with the knowledge that point D is freer than points E and F, 
which are dependent on D. Therefore, they decide to start by constructing their 
equivalent of point D on a side of their exterior triangle. Note the gap of about 12 
minutes from line 46 to the next chat posting. For the three students, this was a 
period of intense experimentation in using GeoGebra. Unfortunately, they did not 
chat about what they were doing during this period. We have to look at a more 
detailed log and step through the VMT Replayer slowly to observe what they were 
doing. 

The logs shown so far have all been filtered to show only text-chat postings. Log 
7-13 is a more detailed view of the log including GeoGebra actions, such as 
selecting a new GeoGebra tool from the tool bar or using the selected tool to create 
or change a GeoGebra object. It also includes system messages, such as 
announcing that a user has changed to view a different tab. (The GeoGebra actions 
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are not assigned line numbers. The system messages are assigned line numbers; 
they account for the line numbers missing in the chat logs in this section.) 

 

  15:57:10 Geogebra:Triangles cheerios 
tool changed to 
Move 

  15:57:27 Geogebra:Triangles cheerios updated Point A 

  15:57:28 Geogebra:Triangles cheerios 

tool changed to 
Move Graphics 
View 

  15:58:35 Geogebra:Triangles cornflakes 
tool changed to 
Move 

  15:58:39 Geogebra:Triangles cornflakes 
updated group of 
objects G,H 

  15:58:42 Geogebra:Triangles cornflakes 

tool changed to 
Move Graphics 
View 

47 15:59:08 system cornflakes 
Now viewing tab 
Squares 

48 15:59:13 system cornflakes 
Now viewing tab 
Triangles 

49 15:59:17 system cornflakes 
Now viewing tab 
Hexagons 

50 15:59:21 system fruitloops 
Now viewing tab 
Squares 

Log 7-13: The students view other tabs. 

In this excerpt from the detailed log, we can see that Cornflakes used certain 
GeoGebra tools to change specific objects in the construction. We also see that 
Cornflakes—like Fruitloops and Cheerios—looked at the other tabs. This is just a 
sample of what took place during the 12 minutes. There were actually 170 lines in 
the detailed chat for that period. During all this activity, the students made very 
little direct progress on their construction. They constructed some lines, circles, 
and points. They engaged in considerable dragging: of the original figure, of their 
new triangle, and of their experimental objects. They also each looked at the other 
tabs. 

Finally, Cheerios provided the key analysis of the dependency: AD=BE=CF. The 
others immediately and simultaneously agreed with the analysis. In Log 7-14, 
Cheerios went on to project this dependency onto their construction. 
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Log 7-14: The students make a key observation. 

Cheerios narrated line 73 while she used the compass tool to measure the length 
from their point on the side of the exterior triangle to one of its vertices and to 
transfer that length to another side from another vertex. Then Cornflakes took 

control of the construction, placed a point where the compass intersected the side 
and then repeated the process with the compass to construct another point on the 
third side. Fruitloops then took control and used the polygon tool to construct a 
shaded interior triangle connecting the three points on the sides of the exterior 
triangle. She then conducted the drag test, dragging points on each of the new 
triangles to confirm that they remained equilateral and inscribed dynamically. 
Thus, all three not only agreed with the plan, but they also all participated in the 
construction. The team as a unit thereby accomplished the solution of the problem 
in tab A. 

At that point, they had been working in the room for over an hour and had to leave 
quickly. Three days later, the team reassembled in the same chat room to continue 
work on Topic 5. They had hurriedly completed the construction of the inscribed 
triangles, but had not had a chance to discuss their accomplishment. Furthermore, 
they had not had any time to work on the other tabs. 

Cheerios resumes the discussion by announcing that they have to explain what they 
did (see Log 7-15). This directive may have come from the teacher before the 
session started. Cheerios begins to explain what they had done at the end of the 
previous session. Cornflakes joins in. When Cornflakes says, “you had to make the 
point between the two circles,” Cheerios clarifies (line 96): “not between the circles 
(but) where the segment intersect(s) with the circle.” Cornflakes may have been 
confusing the construction of the first triangle (with intersecting circles) with that 
of the interior triangle (with the compass circle intersecting the triangle side). At 

66 16:18:30 cheerios as i was movign d segment da is the same distance 
as segment be  

67 16:18:52 cheerios and also cf 
68 16:19:41 cheerios our kg is the same as ad 
69 16:20:06 cornflakes agrreeed 
70 16:20:06 fruitloops i agree 
71 16:21:21 cheerios there should be a point on segment gh which is the 

same distance as kg and also between segment uh 
72 16:22:00 cheerios it should be ih not uh 
73 16:23:39 cheerios so i used the compass tool and measured kg and 

used point i as the center and created a circle 
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any rate, Cheerios uses the formal mathematical terms, “segment” and “intersect,” 
and Cornflakes indicates that they are in agreement on what took place in the 
construction. 

90 15:16:18 cheerios we have to explain what we did 
91 15:19:48 cheerios so first u have to plot a random point on the triangle 

we used k . then i realised the distance from kg is the 
same as im and rh  

92 15:22:51 cheerios then you have to use the compass tool in are case 
are the length of are radius is kg so then we clicked 
those 2 points and used vertex i as the center the 
way to plot are second point of are triangle is where 
the circle and segment ih intersect  

93 15:20:41 cornflakes right 
94 15:23:53 cheerios and then we repeated that step with the other side 

and h was the center 
95 15:23:48 cornflakes yes you had to make the point between the circles 
96 15:24:21 cheerios not between the circles where the segment intersect 

with the circle 
97 15:25:27 cornflakes yea same thing 

Log 7-15: The students explain their construction. 

Fruitloops then raises a question about the dependencies among the points forming 
the vertices of the interior triangle in Log 7-16. She notes that the two points 
constructed with the compass tool are colored black (or shaded dark), an indication 
of dependent points. 
 

98 15:26:04 fruitloops so then why are point m and r shaded dark and don 
tact the same as k 

99 15:25:52 cheerios its differnt  
100 15:25:58 cheerios different* 
101 15:26:00 cornflakes yes i know 
102 15:26:14 cheerios they are restricted 
103 15:26:35 fruitloops but whyy??????? 
104 15:26:45 cornflakes yeah if its a darker its restricted i think 
105 15:26:52 cheerios yes  
106 15:26:56 cheerios correct 
107 15:28:30 fruitloops but why are m and r restricted but k isnt? 
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108 15:30:33 cornflakes because the invisible cirlcels are still there 
109 15:31:35 fruitloops okay so its because we made k by just using the 

point tool and putting it on the line but with m and r 
we maade it through using circles so technicaly, the 
circle is still there but its hidden but we just dont see 
it.  

110 15:31:56 fruitloops and i think we can move on because i understand it 
well. do you guys get it? 

111 15:31:44 cornflakes right 
112 15:31:49 cheerios yup 
113 15:32:04 cheerios yes  
114 15:32:10 cornflakes sure 

Log 7-16: The students explain the dependencies 

The students all agree that the two points are different from the first one in terms 
of being more restricted. However, Fruitloops requests more of an explanation 
about why this is. Cornflakes—who had originally hidden the circles formed by 
the compass tool by changing the properties of the circles to not show 
themselves—explains that the circles are still in effect. Fruitloops then explicates 
that the difference is that the first point was just placed on a side of the larger 
triangle (so it can be dragged, as long as it stays on the side), but the more 
completely restricted two points were constructed with the circles (so they must 
stay at the intersections of the circles with their sides, so they cannot be dragged at 
all). Although the compass circles have been hidden from view, the dependencies 
that they helped to define (the intersections) are still in effect. One could go on to 
discuss how moving the first point will alter the lengths that define those circles 
and therefore will move the other points, but the students state that they all 
understand the reason why the different points are colored differently and have 
different dependencies. They are ready to move on and all change to the tab with 
inscribed squares. 

118 15:32:52 fruitloops can i try dragging it? 
119 15:32:56 cheerios yea 
120 15:33:44 cheerios u can try now fruitloops 
121 15:35:03 fruitloops so b and a move and points c,h,d,g, and f dont move 
122 15:35:28 fruitloops and e is restrricted 
123 15:35:34 cornflakes E IS RESTRICTED 
124 15:35:58 fruitloops do how do we create a square like the outer square? 
125 15:36:54 cheerios we have to talk about the dependencies and stuff 
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Log 7-17: The students explore the square. 

The students start again by dragging to explore dependencies. In Log 7-17, 
Fruitloops does the dragging and reports three classifications of points. Two points 
of the outer square can move (freely), one point of the inner square is “restricted” 
and the other points don’t move (are dependent). Cornflakes echoes the “E IS 
RESTRICTED” as though she would like to discuss this special status. Cheerios also 
tries to insist on more discussion of the dependencies. However, Fruitloops 
repeatedly asks how they can construct a square. They have constructed many 
triangles in previous sessions, but never a square. 

127 15:38:45 fruitloops how but how do we make the square? 
128 15:39:11 fruitloops like i know how to make the triangle but now the 

square 
129 15:39:11 cheerios a grid 
130 15:39:20 cornflakes olets start by cinstructing a regular square 
131 15:39:16 cheerios a grid 
132 15:39:47 fruitloops i think we should make perpendicular lines somehow 
133 15:39:58 cheerios use the perpindicular line tool 
134 15:43:21 fruitloops the first line segment would be like ab 
135 15:43:27 cornflakes yes 
138 15:51:24 cheerios how do u know ji is straight 
139 15:55:40 fruitloops i dont know what to do because the points arent the 

same color 
140 15:56:38 fruitloops now after you make the perpendicular lines try to 

make the circles\ 
141 15:57:48 fruitloops i think you need to know use the polygon tool and 

make the square 
142 15:58:50 cheerios i made a line segment which was if than i used the 

perpendicular line tool and made 2 lines on each side 
then used the compass tool and clicked on each 
point and then the center vertex was i and then made 
a another circle except the center vertex is j and 
connected all the points 

Log 7-18: The students construct the first square. 

There is again considerable experimentation taking place in GeoGebra during Log 
7-18. Note that this log spans 20 minutes. The three students took turns trying 
various approaches using the tools they were familiar with and gradually adding 

126 15:37:01 cheerios read the instructions 
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the perpendicular line tool. They were considering the definition of a square as 
having all right angles, so they first talked about using a grid and then constructing 
perpendiculars. In line 139, Fruitloops questions how to construct the square in 
such a way that the points are the same colors as in the original inscribed squares 
figure. While this could provide a clue to the construction, it seems to introduce 
more confusion than anything else. Eventually, Cheerios succeeds in constructing 
a dynamic square (see Figure 7-6), and describes the procedure in line 142. 

 

 
Figure 7-6: The students construct a square. 

The student construction of the square is quite nice. It closely mirrors or builds 
upon the construction of an equilateral triangle, which the students have mastered: 
it has a base side (segment IJ) and two circles of radius IJ centered on I and J. For 
the right-angle vertices at I and J, perpendiculars are constructed at I and J. Because 
segments JK and IL are radii of the same circles as IJ, all three segments are 
constrained to be equal length. This determines the four corners of a quadrilateral, 
IJKL, which is dynamically constrained to be a square. 

As soon as the outer square is constructed, Fruitloops proposes to inscribe the 
squares by following a procedure analogous to the procedure they used for 
inscribing the triangles (see Log 7-19). While she narrates, the team actually 
constructs the inscribed square and conducts the drag test on it. 

 

143 15:59:10 fruitloops now we need to use the compass tool lilke we did in 
the triangles tab 

144 15:59:57 fruitloops because af is equal to ec and dh and bc 
145 16:01:15 cheerios then used to polygon tool and then hid the circles 

and lines 
146 16:01:07 fruitloops correct 
147 16:01:36 fruitloops and we used the circles to make the sides equal 

because the sides are their radius 
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148 16:02:39 fruitloops point m is like point e because it moves around 
149 16:02:48 fruitloops and its the same color 
150 16:04:14 fruitloops good!! 

Log 7-19: The students make another key observation. 

Fruitloops notes (line 147) that the segments between the outer and inner square 
along the sides of the outer square (IP, JM, KO, LN) are constrained to be equal in 
length because they are dependent on circles that were constructed with the 
compass tool to have radii that will always be equal to the length of JM. Point M 
moves freely on JK just like point E on AC, and M is the same color as E, indicating 
that it has the same degree of constraint. 

 

151 16:04:40 fruitloops now hide the circles 
152 16:05:25 fruitloops the points match up 
153 16:06:00 fruitloops it works! just like the original circl;e 
154 16:05:47 cheerios yay it works 

Log 7-20: The students test their construction. 

In Log 7-20, the team hides the construction circles that impose the necessary 
dependencies. They use the drag test and conclude that their construction works 
the same as the original inscribed-squares construction that they were supposed to 
duplicate (see Figure 7-7). 

 
Figure 7-7: The students construct an inscribed square. 
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Cheerios summarizes the procedure they followed, in Log 7-21. Fruitloops notes 
that the points N, O and P are colored dark because they are completely dependent 
upon where the compass circles intersect the sides of the exterior square. Cheerios 
reiterates that it is the distance along the sides up to these points that is constrained 
to be equal and Fruitloops agrees, clarifying that the distances are constrained 
because they are all dependent on the same radii. Cornflakes agrees. They have 
completed the assignment in the second tab and are out of time before they can 
start on the third tab. 

Log 7-21: The students summarize dependencies. 

The team of three students has worked quite closely throughout the two sessions. 
They have collaborated on all the work, taking turns to engage in the dragging and 
construction. They have discussed the dependencies both in the original figures 
and in their re-constructions. They have tried to ensure that everyone on the team 
understood the findings from the dragging, the procedures in the constructions and 
the significance of the dependencies. 

155 16:09:42 cheerios so just plotted a random point on line segment jk and 
then used the compass tool and clicked on point m 
and j ( radius) and then clicked k to be the center and 
then plotted the point where line segment kl intersect 
with the circle and repeated these steps on the other 
sides  

156 16:09:18 fruitloops i think points o, n, and p are dark because they 
weere made using the original circles 

157 16:08:23 cornflakes yess 
158 16:09:32 cornflakes yea i agreeee 
159 16:10:27 cheerios the distance between m and j is the same between 

ok and ln and pi 
160 16:10:02 fruitloops yeah i saw and i understand 
161 16:10:44 fruitloops all the radii are the same so the distances from ko,ln, 

and ip and jm are the same 
162 16:10:18 cornflakes same 
163 16:10:57 cornflakes yup i agrree 
164 16:11:01 cheerios yes 
165 16:11:03 fruitloops should we move on? 
166 16:11:33 fruitloops actually i dont think we have enough time 
167 16:12:02 cheerios yeah so next time 
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In both tabs, the team began with exploratory dragging to get a sense of 
dependencies in the original figure. Then they experimented with constructions, 
guided by some sense of what to look for and things to try, but without a clear plan. 
Eventually, they discovered a good solution, described it explicitly, tested it with 
the drag test and discussed the underlying dependencies that made it work. 

Working with Dependencies 
In each session reviewed in this chapter—the teams of researchers, the group of 
teachers and the triad of students—the work on the problem of inscribed polygons 
involved an integration of dragging, constructing and designing dependencies. The 
different teams brought contrasting backgrounds to the task. The researchers had 
been involved in various ways in developing the computer system and the teacher-
professional-development training. The teachers were all experienced classroom 
math teachers, some of whom often taught geometry. The students had not yet 
taken a course on geometry and had previously only been briefly exposed to some 
basic geometry concepts. Yet, all the sessions followed a similar pattern. 

The work in each case began with investigative dragging of points to determine 
what relationships among the geometric objects (points and line segments) were 
maintained dynamically—i.e., under change of relative position, or dragging. Once 
the team had a sense of what relationships had to be maintained, they started to 
experiment with constructing new objects and building in relationships among 
them through construction techniques. The construction furthered the team’s 
understanding of the needed dependencies, which they had begun to gather from 
their dragging. Often, they would return to drag the original figure more as they 
deepened their understanding from construction trials. They did not work 
according to a clear and explicitly articulated plan; they experimented. Solving the 
problem was not a matter of following a rational plan with goals and sub-goals, 
but a process of creative actions aimed at discovering how dynamic-geometric 
reality responds. 

Solving the problem was not a matter of 
following a rational plan with goals and 
sub-goals, but a process of creative 
actions aimed at discovering how 
dynamic-geometric reality responds. 

In the end, when a group felt it had succeeded at re-creating the original inscribed 
figure, they reflected on the dependencies involved. In doing so, they deepened 
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their understanding of how dependencies work in dynamic geometry and how one 
can effectively construct dependencies in the dynamic-geometry environment.  

Particularly the logs of the student work suggest that the promise of dynamic 
geometry is starting to be realized.  

Perhaps the paper most focused on the notion of dependency in the early research 
on dynamic geometry was a conference paper entitled, “Coming to know about 
‘dependency’ within a dynamic-geometry environment” (Jones, 1996). Written 
almost two decades ago when Geometer’s Sketchpad and Cabri existed in their 
original versions, the paper emphasized the difficult but central aim of having 
students gain an understanding of dependency relationships: 

As Hölzl et al. (1994) discovered when they observed pupils attempting 
to construct a rectangle, the students had to come to terms with “the very 
essence of Cabri; that a figure consists of relationships and that there is 
a hierarchy of dependencies” (emphasis in original). An example of this 
hierarchy of dependencies is the difference (in Cabri 1 for the PC) 
between basic point, point on object, and point of intersection. While all 
three types of point look identical on the screen, basic points and points 
on objects are moveable (with obvious restrictions on the latter). Yet, a 
point of intersection cannot be dragged. This is because a point of 
intersection depends on the position of the basic objects which intersect. 
In their study, Hölzl et al found that students need to develop an 
awareness of such functional dependency if they are to be successful 
with non-trivial geometrical construction tasks using Cabri. The 
experience of Hölzl et al is that “Not surprisingly, the idea of functional 
dependency has proved difficult [for students] to grasp.” (pp. 145-146) 

In the preceding analysis of the student sessions, we saw that the three students 
became quite aware of the different dependency status of certain free points (points 
A and B), constrained points on lines (point D) and dependent points at 
intersections (points C, E and F). They had learned that these different statuses are 
indicated by different coloring of the points in GeoGebra, and they were concerned 
to make the points in their re-created figure correspond in color to the respective 
points in the original figure. They explicitly discussed points placed on a line being 
constrained to that line during dragging and points defined by intersections (of two 
circles, of two lines or of a circle and a line) being dependent on the intersecting 
lines and therefore not able to be dragged independently. As they worked on the 
tasks in this session and discussed their findings, the group developed a more 
refined sense of dependencies. One can see this especially in the way that one 
student would restate another student’s articulation of dependencies and how 
everyone in the group would agree to the restatement. 
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Although there are various indications that one student could express more clearly 
than another an action to be taken—such as a construction step—or a statement of 
a finding or an accomplishment, the three students worked very closely together. 
They built on each other’s actions and statements to accomplish more than it 
seemed any one of the students could on her own. They all agreed in the chat on 
each step and each conclusion. Each phase of the session—the explorative 
dragging, the experimental constructing and the determination of dependencies—
was an accomplishment of the group.  

Of course, the task instructions provided some guidance in pursuing these steps. 
However, once the teams started in the direction prompted by the instructions, they 
did not simply follow the instructions. They became engrossed in team-work that 
continued in a natural and self-motivated way. The relatively minimal instructions 
served as a successful catalyst. They were necessary to guide the participants 
during an early collaborative-learning experience. In the future, the groups should 
be able to proceed when such “scaffolds” have been removed—as the students did 
in successfully constructing a square on their own. Furthermore, in the future the 
individual group members should be able to do similar work by themselves (even 
in their heads) as a residual effect of their group work. It is unlikely that the lessons 
would be learned as well if the participants just read a textbook description of the 
procedures that they practiced hands-on and collaboratively in these sessions. 

In each case, the design-based research project got feedback—both from the 
participants directly and from the analysis of their logs—to refine the instructions. 
This helped us to develop resources to guide student groups to experience dynamic 
geometry in terms of the underlying dependencies. In Chapter 8. , we will consider 
the nature and role of resources in supporting math discourse and group interaction. 
Then in Chapter 9. , we will discuss the need to provide a curricular context 
incorporating specific kinds of designed resources, which can be enacted by 
student groups to guide them to experiences of human-centered mathematics. 
Finally, in Chapter 10. , we will present the set of curricular resources that have 
been designed for WinterFest 2013. 
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Chapter 8.  Theory: Resources for 
Geometry 

Chapter Summary 
Experience with virtual math teams provides insight into the 
nature of collaborative learning as involving the co-creation 
of co-presence, intersubjective shared understanding and 
group cognition. Early trials with the collaborative dynamic-
geometry environment also emphasize the need for 
providing teachers and students with a variety of resources 
to support their mathematical work. This chapter discusses 
the implications of these findings for the theory of how 
learning takes place on multiple levels of analysis—
individual, small-group and community—and how learning 
can be supported with resources for collaborative 
interaction. 

 

Studies of computer-supported collaborative learning (CSCL) have begun to 
explore processes of online group cognition—such as small-group methods of 
problem solving—and how various technological and interactional resources and 
media can be provided to promote productive mathematical discourse.  

This chapter first presents:  

(i) An analysis of co-presence as a foundational aspect of online interaction 
in an excerpt of mathematical chat discourse.  

(ii) Based on how the students in this excerpt actually interact, it develops a 
notion of intersubjective shared understanding as necessary for the 
possibility of collaborative knowledge-building dialog.  

(iii) This is followed by a discussion of consequences for the design of 
computer support for academically productive online group cognition. 

Then the chapter explores the analytic levels of:  

(i) Individual interpretation and learning,  

(ii) Group collaborative knowledge building and  
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(iii) Community practices or cultural values  

It considers how connections across these analytic levels can be mediated by a 
variety of interactional resources. Such resources may be emergent from previous 
interaction, enacted in current interaction and evolved for future interactions. 
Resources contribute to the inherited shared world, to the current joint problem 
space and to future-oriented goals of the group. They are both discovered and 
created in the interactional work of the group; both adopted from individual and 
social knowledge and contributing to personal and institutional changes. They can 
take many forms. 

 An Excerpt of Computer-Supported Discourse 
The studies of digital interaction by virtual math teams presented in (Stahl, 2009) 
adopt an ethnomethodological interest in how interaction is actually carried out in 
particular online contexts. They assume that the “member methods” (Garfinkel & 
Sacks, 1970) or “group practices” (Stahl, 2011b) of computer-mediated interaction 
developed by small groups of students may differ significantly from commonsense 
assumptions of researchers based on experience with face-to-face interaction. If 
this is true, then it is important to explore actual instances of digital interaction 
before—or as part of—designing interventions in such settings.  

This section reviews how a team of three students collaboratively achieved a 
cognitive accomplishment as a distributed online group. The log of their 
interaction makes visible mechanisms by which academically productive discourse 
can—and did—arise naturally in settings of computer-supported collaborative 
learning. The data analysis presented here is not intended as an illustration of 
pre-existing theories; rather, theory emerged from this and similar data. 
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Figure 8-1 (left) shows a screenshot of the Virtual Math Teams (VMT) software 
environment, being used by three middle-school students. They volunteered to 
participate in this online, synchronous math activity with other students from 

around the world. The students are collaboratively investigating mathematical 
patterns (combinatorics) related to sequences of geometric figures. We analyze this 
chat rather than a WinterFest 2013 chat because in this chat the students were not 
co-located and did not know each other outside of the chat, so the phenomena 
involved in establishing co-presence, shared understanding and group cohesion are 
more clearly visible. In the WinterFest chats, the students often had existing 
interpersonal relationships and may have been seated in the same computer lab 
during the sessions.  

When this chat took place, VMT did not include a GeoGebra tab, but just a generic 
shared whiteboard. Seen in the lower right of the whiteboard is a stair-step pattern 
of blocks remaining on the board from the students’ previous day’s session. 
Currently, the students are considering a pattern of regular hexagons, which they 
will visualize in a grid of triangles they construct in the lower left.  

Log 8-1 shows a chat excerpt from the session. Three students—whose online 
names are 137, Qwertyuiop and Jason—are chatting. 

 

   
Figure 8-1: The VMT interface near the beginning (left), middle (upper right) and 
end (lower right) of the excerpt. 

 

!
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line time student chat post 
705 19:15:08 137 So do you want to first calculate the number of 

triangles in a hexagonal array? 
706 19:15:45 qwertyuiop What's the shape of the array? a hexagon? 
707 19:16:02 137 Ya. 
708 19:16:15 qwertyuiop ok... 
709 19:16:41 Jason wait-- can someone highlight the hexagonal 

array on the diagram? i don't really see what 
you mean... 

710 19:17:30 Jason hmm.. okay 
711 19:17:43 qwertyuiop oops 
712 19:17:44 Jason so it has at least 6 triangles? 
713 19:17:58 Jason in this, for instance 
714 19:18:53 137 How do you color lines? 
715 19:19:06 Jason there's a little paintbrush icon up at the top 
716 19:19:12 Jason it's the fifth one from the right 
717 19:19:20 137 Thanks. 
718 19:19:21 Jason there ya go :-) 
719 19:19:48 137 Er... That hexagon. 

Log 8-1: “Wait…. I don’t really see”—establishing co-presence. 

In line 705, student 137 poses a math question of potential interest to the small 
group. Then Qwertyuiop seeks to understand the mathematical shape that 137 
proposed. Qwertyuiop next draws the grid of triangles to see if he understands what 
137 means by “hexagonal array.”  

Jason effectively halts the discussion (line 709) to seek help in seeing the 
hexagonal form that 137 and Qwertyuiop see. Jason’s posting is designed to bring 
the group work to a halt because he does not see what 137 and Qwertyuiop are 
talking about. This is an important collaboration move, asking the others to clarify 
what they are talking about. Jason is referring to the group meaning-making 
process, and halting it so he can fully participate. 

Jason phrases his request in terms of “seeing” what the others “mean.” This seeing 
should be taken literally, in terms of vision and graphics. Jason asks the others to 
“highlight the hexagonal array on the diagram” so he can see it in the graphics. 

Creating several extra lines, 137 outlines a large hexagon, as shown in the upper 
right of Figure 8-1. This provides what Jason needs to be part of the group 
problem-solving effort. Jason not only says, “Okay” but he contributes a next step 
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(line 712) by proposing a math result and giving a visible demonstration of it with 
a highlighted small hexagon. Giving a next step shows understanding and takes the 
idea further. Jason points from his chat posting. Note the green rectangle 
highlighting a small hexagon and the line connecting Jason’s current chat posting 
(line 713) to this highlighted area (Figure 8-1 upper right); this is an important 
feature of the VMT system supporting online pointing or deixis. Pointing is a 
critical function for shared understanding—and must be supported explicitly (by a 
function like this or more commonly by an explicit textual description) in a digital 
environment, where bodily gestures are not visible to others. 

After Jason draws the visual attention of the other participants to a particular 
example of a smallest hexagon, consisting of six triangles, 137 asks Jason how to 
change the color of lines in the whiteboard. In line 715, Jason responds and 137 
changes the color of the lines outlining the larger hexagon. Color becomes an 
effective method for orienting the team to a shared object. This use of colored lines 
to help each other see focal things in the whiteboard will become an important 
established group practice in the team’s continuing work. In line 719, 137 outlines 
a larger hexagon, with edge of three units (Figure 8-1 lower right).  

At this point, the group has established an effective co-presence at a mathematical 
object of interest. Through a variety of interactional practices—which the group 
members have adapted from past experiences or constructed on the spot—the 
group has regulated its interaction and focused its common vision into a “being-
there-together” (Stahl et al., 2011) with the object that they have constituted as a 
hexagonal array. The group is now in a position to explore this object 
mathematically. 

 

line time student chat post 
720 19:20:02 Jason so... should we try to find a formula i guess 
721 19:20:22 Jason input: side length; output: # triangles 
722 19:20:39 qwertyuiop It might be easier to see it as the 6 smaller 

triangles. 
723 19:20:48 137 Like this? 
724 19:21:02 qwertyuiop yes 
725 19:21:03 Jason yup 

Log 8-2: “Like this….”—building intersubjective shared understanding. 

 

In line 720 (see Log 8-2), Jason explicitly proposes finding a formula for the 
number of elemental triangles in an hexagonal array with side-length of N. 
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Qwertyuiop suggests a way of seeing the hexagonal array as consisting of six 
identical sectors, which he ambiguously refers to as “the 6 smaller triangles.” 137 
checks what Qwertyuiop means by asking him “Like this?” and then dividing up the 
large hexagon with three red lines, forming six triangular forms inside of the blue 
outline (see Figure 8-1, lower right).  

This is a move by Qwertyuiop to see the representation of their problem as a much 
simpler problem. As Jason notes (in Log 8-3), now they only have to compute the 
number of elemental triangles in each of the six identical triangular sectors and 
then multiply that result by 6 to get the total. Furthermore, the simpler problem can 
be solved immediately by just looking. As Jason says, each sector has 1+3+5 
triangles. The human eye can recognize this at a glance (“subitize”), once it is 
properly focused on a relevant sector (Lakoff & Núñez, 2000). 

The important mathematical problem-solving move here is to see the problem in a 
new way. Qwertyuiop sees the hexagon as a set of six symmetrical sectors. The 
important discourse move is to share this new view with the team. This is 
accomplished collaboratively in lines 722-725: Qwertyuiop proposes a new way 
of seeing the array; 137 outlines it, using their new technique of colored lines; and 
Jason aligns with them. They each participate in seeing the same thing (seeing the 
hexagon as composed of six triangles), in demonstrating to each other that they see 
this new way, and then in building on each other to count the small triangles 
visually. They thereby collectively go beyond the co-presence of seeing the same 
thing to actually build knowledge together about the shared object. This group 
knowledge constitutes an intersubjective shared understanding of the 
mathematical structure of the object. Through the sequence of steps outlined 
above, the members of the group have articulated an understanding that they share 
as a result of their co-presence and of their shared textual and graphical actions.  

 

726 19:21:29 qwertyuiop side length is the same... 
727 19:22:06 Jason yeah 
728 19:22:13 Jason so it'll just be x6 for # triangles in the hexagon 

 

729 19:22:19 137 Each one has 1+3+5 triangles. 
730 19:22:23 Jason but then we're assuming just regular hexagons 
731 19:22:29 qwertyuiop the "each polygon corrisponds to 2 sides" thing 

we did last time doesn't work for triangles 
732 19:23:17 137 It equals 1+3+...+(n+n-1) because of the 

"rows"? 
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733 19:24:00 qwertyuiop yes- 1st row is 1, 2nd row is 3... 
734 19:24:49 137 And there are n terms so... n(2n/2) 
735 19:25:07 137 or n^2 
736 19:25:17 Jason yeah 
737 19:25:21 Jason then multiply by 6 
738 19:25:31 137 To get 6n^2 
    

Log 8-3: “To get 6n^2”—accomplishing group cognition. 

 

Note in the chat in Log 8-3 how the three students build on each other’s postings 
to construct the general formula for any size array: 6n2. Having collaboratively de-
constructed the complicated problem into visually simple units, they now take 
turns in re-constructing the problem symbolically and for any size hexagon. They 
are able to work on this together because of their co-presence, which allows them 
to orient to the same objects, with a shared understanding of the terms (e.g., 
“hexagonal array,” “side length”), graphics (colored border lines), procedures (divide 
into 6, then multiply by 6) and goals (“find a formula”). Note that they have 
articulated each of these in the chat text, so that they can share the experience of 
each. The words evoke the phenomena, making them co-present for the students. 

Having counted the number of triangles in the array during this excerpt, the 
students will next want to count the number of line segments. This is more 
complicated, but the group will extend the methods we have just observed to 
accomplish their task. Taking advantage of multiple symmetries, they will use 
colored lines to break the pattern down into visually simple patterns, outline 
specific focal areas and attend to shared objects, where their optical systems can 
do the counting. Some of the smaller units are harder to visualize and there are 
issues of possible overlap among the sectors. But using the skills we observed and 
developing those skills incrementally, the group will succeed in achieving a 
sequence of group-cognitive accomplishments (for a detailed analysis, see Çakir 
& Stahl, 2013).  

Co-presence in Computer-Supported Discourse 
Co-presence—through co-attending as a basis for shared understanding—by a 
small group includes many of the basic features of an individual attending to and 
interpreting an object of interest. Attending to something involves focusing on it 
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as the foreground object, assigning everything else to its background context 
(Polanyi, 1966). For instance, the students in the excerpt above foreground a 
specific hexagon against the background of the larger array of lines by coloring its 
outline or highlighting it with the pointing tool. Attending to an object involves 
seeing it “as” something or some way (Goodwin, 1994; Heidegger, 1927/1996; 
Wittgenstein, 1953). Co-attending supports a shared interpretation, viewing or 
understanding by creating the co-presence of attending in a shared way to a shared 
object in a shared world. For instance, the students view the larger hexagon “as” a 
set of six triangular sectors by visually dividing the hexagon with red lines that 
outline the sectors and by texting, “it might be easier to see it as the 6 smaller triangles.” 
(Note that the terminology Qwertyuiop naturally uses here explicitly involves “to 
see it as….”) 

Co-attending supports a shared 
interpretation, viewing or understanding 
by creating the co-presence of attending 
in a shared way to a shared object in a 
shared world. 

Intersubjective Shared Understanding  
The establishment of shared understanding in a small group through co-attending 
to shared objects is essential for collaboration (Evans et al., 2011; Mercer & 
Wegerif, 1999). However, in an online context the usual techniques of body 
positioning, gaze and gestural pointing with fingers are not available for creating 
and maintaining shared attention. Virtual teams must invent new methods to 
coordinate attention or make use of special tools in the software that may be 
provided to support this. 

Previous VMT studies have analyzed cases in which small groups of online 
students have developed methods for creating, maintaining and repairing shared 
understanding—similar to what was discussed in the previous section. For 
instance, small groups working in the VMT environment have: 

• Co-experienced a shared world (Stahl et al., 2011) by developing shared group 
practices (Medina, Suthers & Vatrapu, 2009; Stahl, 2011b). 

• Used the posing of questions to elicit details needed to establish and confirm 
the sharing of understandings (Zhou, Zemel & Stahl, 2008).  
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• Built a “joint problem space” (Teasley & Roschelle, 1993)—i.e., a shared 
understanding about a set of topics—with ways of referencing them—an 
“indexical ground” (Hanks, 1992)—that is shared and supports co-attending 
(Sarmiento & Stahl, 2008). 

• Developed group methods for bridging across temporal breaks in interaction 
to reestablish a group memory or shared understanding of past events 
(Sarmiento & Stahl, 2007). 

• Repaired their shared understanding in the face of breakdowns (Stahl, Zemel 
& Koschmann, 2009). 

• Integrated text chat and sequences of whiteboard actions to communicate 
complex mathematical relationships (Çakir, Zemel & Stahl, 2009).  

• Solved math problems by proceeding through logical sequences of steps 
collaboratively (Stahl, 2011a). 

The analysis of the excerpt of interaction presented above and these other studies 
of VMT have identified the following features of the mediation of digital 
interaction: co-presence, intersubjective shared understanding and group 
cognition.  

One can distinguish two paradigms of shared understanding:  

(i) A rationalist paradigm assumes that individuals each have a stock of 
propositions in their minds that represent their current beliefs or opinions. 
The corresponding conception of shared understanding starts from the 
individual understandings of two people and tries to establish equivalence 
of one or more propositions they hold. This is sometimes called “cognitive 
convergence,” where the goal is to converge the separate mental models, 
internal representations or propositional contents of the two people: 
Sharing as mutual exchange. 

(ii) The alternative paradigm of shared understanding—exemplified by the 
analysis in this chapter—starts from the shared world and a view of 
intentionality as consciousness of an object, rather than as a mental 
construct by an ego. This is the view of situated and distributed cognition, 
where individuals are situated in and active with a shared, intersubjective 
world consisting of meaningful objects for which they care: Sharing as 
acting together. 

Twentieth-century philosophy from Hegel (1807/1967) and Husserl (1936/1989) 
through Marx (1858/1939), Heidegger (1927/1996), Sartre (1968), Merleau-Ponty 
(1945/2002) and Wittgenstein (1953) has rejected the starting point of a 
transcendental ego in favor of consciousness as a social and fundamentally shared 
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phenomenon. Now, even at the neuron level, the discovery of mirror neurons 
points to a physiological, specifically human, basis for shared cognition (Gallese 
& Lakoff, 2005). We can immediately experience the world through the eyes and 
body of other people. We can feel their pain if we see another person’s body hurt 
and their face grimaced. As Wittgenstein (1953) argued in other ways, there is no 
such thing as private feelings of pain or of private meanings of language: we are 
co-present in an intersubjectively shared and commonly understood world. 

Group Cognition 
Vygotsky (1930/1978) claimed that intersubjective (group) cognition precedes 
intra-subjective (individual) cognition. He conducted controlled experiments to 
show that children were able to accomplish cognitive tasks in collaboration with 
others at an earlier developmental age than they were able to accomplish the same 
tasks on their own. Individual-cognitive acts are often preceded by and derivative 
from group-cognitive acts. For instance, individual reasoning or action (dividing a 
figure, coloring a border) by a student in the VMT data may be based upon earlier 
group practices. According to Vygotsky, individual mental thinking is 
fundamentally silent self-talk. Thus, individual-student reasoning can often be 
seen as reflective self-talk about previous group accomplishments. In such cases, 
self-reports about individual cognition—through think-aloud protocols, survey 
answers or interview responses—are what Suchman (2007) refers to as post-hoc 
rationalizations. They are reinterpretations of group cognitions by the individual 
(responsive to the interview situation and relying on commonsensical conceptions 
of individual cognition). In this reading of Vygotsky, group cognition has a 
theoretical priority over individual cognition. If one accepts this, then the 
theoretical analysis of shared understanding and the practical promotion of it 
become priorities. The emerging technologies of networked digital interaction 
provide promising opportunities for observing and supporting the establishment of 
shared understanding in online educational environments.  

Based on experiments in computer support of small-group knowledge 
building from 1995-2005, the construct of group cognition was proposed in (Stahl, 
2006) to begin to define the relevant focus on group-level cognitive achievements. 
Analyses of studies from 2006-2009 in (Stahl, 2009) continued to explore the 
practicalities of supporting group-level cognition. The present book extends this 
line of research, reporting on work from 2010-2013. 

Group cognition is not a physical thing, a mental state or a characteristic of all 
groups. It is a unit of analysis. What it recommends is that analysts who are 
studying digital interaction should look at the small-group unit of analysis (Stahl, 
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2010a). Too often, collaborative learning researchers reduce group-level 
phenomena either to individual psychological constructs or to societal institutions 
and practices (Stahl, 2013). But, as we have seen in the preceding excerpt, there 
are group methods and processes taking place at the small-group unit of analysis 
that are not reducible to the mental behaviors of an individual or to the institutions 
of a community.  

For instance, the three students above collaboratively solved their problem through 
a sequence of postings that elicit and respond to each other. Qwertyuiop proposed 
the view of the hexagon as six sectors; 137 summed the series of triangles in one 
sector to n2; Jason provided the answer by multiplying the value for one sector by 
the number of sectors. The result was a group product of the group interaction.  

If one student had derived this result, we would call it a cognitive achievement of 
that student. Since the group derived it, it can be called an achievement of group 
cognition. This does not mean there is some kind of “group mind” at work or 
anything other than the interaction of the three students. Rather, it means that the 
analysis of that cognitive achievement is most appropriately conducted at the group 
unit of analysis, in terms of the interplay of the posting and drawing actions shared 
by the group. 

The absolute centrality of public discourse and shared understanding to the success 
of group cognition—successful knowledge building at the group level—in the 
context of digital interaction implies the need for productive forms of talk within 
the group. Digital environments to support collaborative knowledge building must 
be carefully designed to foster co-presence, intersubjective shared understanding 
and group cognition. 

Resources For Connecting Levels of Analysis 
As we have seen in this chapter and in the philosophy chapter (Chapter 3. ), it is 
possible to analyze interactions in VMT by focusing on different units of 
analysis—typically on the individual (personal), small-group (interactional), and 
community (social) units. In the following, we will explore the idea that the levels 
of personal learning, group cognition and community knowledge building may be 
connected by emergent interactional resources, which can mediate between the 
levels. A preliminary theory of the connection of the levels will be sketched. This 
will have implication for later chapters in which curriculum for gradually 
providing math teachers and math students with a complex of resources relevant 
to dynamic geometry is described as an example of how to support the connection 
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of small-group interaction with individual understanding and with cultural 
practices in the study of collaborative dynamic geometry. 

Analysis of learning, cognition, and knowledge building in CSCL are often 
conducted on one of the three levels of individual learning, small-group cognition 
or community knowledge building. This tri-partite distinction is grounded in the 
nature of CSCL. With its focus on collaborative learning, CSCL naturally 
emphasizes providing support for dyads and small groups working together. In 
practice, CSCL small-group activities are often orchestrated within a physical 
classroom or virtual community context by providing some initial time for 
individual activities (such as background reading or homework practice) followed 
by the small-group work and then culminating in whole-class sharing of group 
findings. Thus, the typical classroom practices tend to create three distinguishable 
levels of activity. Often, the teacher sees the group work as a warm-up or 
stimulation and preparation for the whole-class discussion, which is then 
facilitated directly by the teacher. Conversely, the importance of testing individual 
performance and valuing individual learning posits the group work as a training 
ground for the individual participants, who are then assessed on their own, outside 
of the collaborative context. In both of these ways, group cognition is treated as 
secondary to either individual or community goals. By contrast, the role of 
intersubjective learning is foundational in Vygotsky (1930/1978), the seminal 
theoretical source for CSCL. Regardless of which is taken as primary, the three 
levels are actualized in CSCL practice, and the matter of their relative roles and 
connections becomes subsequently problematic (Dillenbourg et al., 1996; Rogoff, 
1995; Stahl, 2006). 

While these different units, levels, dimensions or planes are intimately intertwined, 
research efforts generally focus on only one of them, and current analytic 
methodologies are designed for only one (Stahl, 2013; Suthers et al., 2013). 
Furthermore, there is little theoretical understanding of how the different levels are 
connected. To the extent that CSCL researchers discuss the connections among 
levels, they often rely upon commonsensical notions of socialization and 
enculturation, popularizations of traditional social science, based on face-to-face 
interactions. There are no explicit empirical analyses of the connections for online 
groups, and it is even hard to imagine where one would find data that would lend 
itself to conducting such analyses (Stahl et al., 2012). 

The individual unit of analysis is the traditional default in the learning sciences and 
in cognitive psychology. It is supported by widespread training of researchers in 
the methods of education and psychology. In the era of cognitive science, analysis 
made heavy usage of mental models and representations (Gardner, 1985). With the 
“turn to practice” (Lave & Wenger, 1991; Schatzki, Knorr Cetina & Savigny, 
2001), the focus shifted to communities-of-practice. Group cognition lies in the 
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less-well-charted middle ground (Stahl, 2006). It involves the semantics, syntactics 
and pragmatics of natural language, gestures, inscriptions, etc. These meaning-
making processes involve inputs from individuals, based on their interpretation of 
the on-going context (Stahl, 2006, esp. Ch. 16). They also take into account the 
larger social, historical, cultural, linguistic context, which they can reproduce and 
modify (Stahl, 2013).  

This chapter will argue that the connections between the individual, group and 
community planes can be analyzed as taking place through the mediation of 
interactional resources. Applying this approach to the learning of mathematics, 
the chapter adopts a discourse-centered view of mathematical understanding as the 
ability to engage in significant mathematical discourse (Sfard, 2008; Stahl, 
2008b). Here, “discourse” includes gesture, inscription, drawing, computer 
representation and symbol, as well as speech and text; these multiple modes are 
often closely interwoven in effective interaction in VMT (Çakir & Stahl, 2013; 
Çakir, Zemel & Stahl, 2009). 

The connections between the individual, 
group and community planes can be 
analyzed as taking place through the 
mediation of interactional resources. 

Computer technologies play a central role in mediating the multi-level, intertwined 
problem-solving, learning, and knowledge-building processes that take place in 
CSCL settings. From a CSCL perspective, innovative technologies should be 
carefully designed to support this mediation. This involves considering within the 
socio-technical design process of collaboration environments how to prepare 
groups, individuals and communities to take advantage of the designed 
functionality and to promote mathematical thinking at all levels. The following 
discussion suggests that it is important to supply appropriate resources, to allow 
groups to understand, enact and adapt those resources to their needs and to 
facilitate the emergence of new resources from the group interactions. This can 
permit processes at different units of analysis to connect and support each other. 

Interconnected Planes 
How are the major planes of learning connected; how can we connect 
investigations at different units of analysis? In Figure 8-2, we see highway ramps 
or bridges used as resources for connecting road levels or landmasses. While we 
are interested in linguistic interactional resources in this chapter, it may be helpful 
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to first consider the more intuitive case of a physical resource. A ramp or bridge 
often creates a possibility that did not otherwise exist for going from one level to 
another at a given point. To go from a local road to a limited-access superhighway, 
one must first find an available on-ramp. To cross a river from one side to the other, 
one may need a bridge. This is the individual driver’s view. From a different 
vantage point—the perspective of the resource itself—the creation of a ramp or the 
building of a bridge “affords” connecting the levels (Dohn, 2009).  

 

 
Figure 8-2: Connecting ramps for the I-90 bridge across the Hudson River. Photo: G. Stahl, 
Albany, NY, 2012. 

By “affords,” we do not simply mean that the connecting is a happy characteristic 
or accidental attribute of the bridge, but that the bridge, by its very nature and 
design, “opens up” a connection, which connects the banks of the river it spans. 
This view of artifacts was largely introduced in the philosophy of Heidegger; it 
later became influential in CSCL through various theories derived from his 
approach. In his early work, Heidegger (1927/1996) analyzed how the meaning of 
a tool was determined by the utility of the tool to the human user, within the 
network of meaning associated with that person’s life and world. In his later 
writings, Heidegger (1935/2003) shifted perspective to focus on things like bridges 
(see Figure 8-3), paintings, sculptures, pitchers and temples in terms of how they 
themselves opened up new worlds, in which people could then dwell. In 
considering the intersubjective world in which collaboration takes place on 
multiple connected levels, we might say that the work of resources like bridges is 
to contribute the spanning of shores within the way that the world through which 
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we travel together is opened up as a shared landscape of resources for discourse 
and action.  

The work of resources like bridges is to 
contribute the spanning of shores within 
the way that the world through which we 
travel together is opened up as a shared 
landscape of resources for discourse and 
action. 

This transformation of perspective away from a human-centric or individual-mind-
centered approach became characteristic for pioneering theories in the second half 
of the 20th century, including various theories of situated and distributed cognition. 
It is a shift away from the individualistic, psychological view to a concern with 
how language, tools, and other resources of our social life work. It is a post-
cognitive move since it rejects the central role of mental models, representations 
and computations in traditional cognitive science. The things themselves have 
effective affordances; it is not just a matter of how humans manipulate models in 
which the things are re-presented to the mind.  

 

 
Figure 8-3: The bridge across the Neckar River, discussed by Heidegger (1950/1967). 
Photo: G. Stahl, Heidelberg, Germany, 2012. 

The analytic focus and even the locus of agency are shifted from the individual 
mind to tools, artifacts, instruments, discourse, and inscriptions. In 
phenomenology, Husserl (1929/1960) called for a return to “the things 
themselves” (die Sache selbst) and Heidegger (1950/1967) analyzed “the thing” 
(das Ding) separate from our representation of it. In ethnomethodology, Garfinkel 
and Sacks (1970) followed Wittgenstein’s (1953) linguistic turn to focus on the 
language games of words and the use of member methods as conversational 
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resources (Koschmann, Stahl & Zemel, 2004). In distributed cognition, Hutchins 
(1996) analyzed the encapsulation of historical cognition in cultural artifacts like 
navigational instruments. In actor-network theory, Latour (1990; 1992; 2007) 
uncovered the agency of various kinds of objects in how they move across levels 
in enacting social transformations. Recently, Rabardel (see Lonchamp, 2012; 
Overdijk et al., 2012; Ritella & Hakkarainen, 2012) analyzed the genesis of socio-
technical instruments, which only gradually become useful as they are adapted and 
enacted in practice. 

Our proposal to use the term “resources” is intended to carry forward into the 21st 
century these groundbreaking approaches to the study of how the various planes 
of human interaction are connected. The phrase “interactional resource” is 
proposed as an inclusive expression for all the kinds of things that can be brought 
into discourse. Vygotsky (1930/1978) used the term “artifact” to refer to both tools 
and language as mediators of human cognition; we prefer to use the broader term 
“resource” as it has more recently been used in sociocultural analysis (Ackerman 
et al., 2008; Arvaja, 2012; Cekaite, 2009; Furberg, Kluge & Ludvigsen, 2013; 
Karlsson, 2010; Linell, 2001; Medina, Suthers & Vatrapu, 2009; Suchman, 1987) 
for entities referenced in discourse. Like artifacts, resources are often identifiable 
units of the physical world (including speech and gesture) that are involved in 
meaning-making practices—spanning the classical mind/body divide of the 
physical vs. the mental. 

It is important to avoid assuming that just because a noun like “resource” is used 
that it refers to a certain kind of object: 

(i) Interactional resources can take on many forms—as will be discussed 
here—including physical and verbal artifacts, but also social practices, 
group methods, gestures, syntactic markers, etc. They can be anything that 
enters into the interaction and helps to enable it. 

(ii) Interactional resources are created, developed, adapted, situated, evolved 
and made meaningful within the process of interaction. They are not 
something previously fully formed, simply taken as is and used within the 
interaction. 

Rather than starting out from some preconceived ontology of interactional 
resources—even one as broad as Vygotsky’s inclusion of tools and language—we 
start from the question of interactional resources. In looking for actors—to use 
Latour’s generic term—that play a role in mediating interactions within small 
online teams of math students, we are open to all sorts of things that effect, are 
useful for, influence or make possible the interaction in the way that it concretely 
takes place. It is obvious that a broad range of linguistic elements, such as technical 
terms, symbols, methods of repair, forms of questioning, etc. must be included. 



Translating Euclid 

      

169 

Also, to be included are tools or artifacts, such as hardware and software 
communication media, specific interface functions, training materials, established 
construction procedures, etc. Moreover, as we conduct specific analyses of 
collaboration and fine-grained investigations of interaction we discover additional 
forms of interactional resources, as do relevant theories, such as theories of 
representation, reference, semantics, linguistics, interaction, collaborative 
learning, discourse, dialog, and technology. 

A central research issue for CSCL is how collaborative knowledge building takes 
place. The main problem seems to be to understand the role of both individual 
cognition and societal institutions in the small-group meaning-making processes. 
Figure 8-4 shows a diagram in which “Cultural Artifacts” serve to connect the 
three planes of meaning-making processes. The diagram was originally based on 
an eclectic combination of major theories influential in CSCL. Some of those 
approaches—collaborative knowledge building, group and personal perspectives, 
mediation by artifacts and interaction analysis—were further described in (Stahl, 
2002). Work on the theory illustrated there led to a need for new case studies to 
explore collaborative knowledge building. 

 

 
Figure 8-4: A diagram of factors involved in knowledge building. Adapted from (Stahl, 
2000). 
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In recent years, the VMT Project has conducted case studies of small-group 
problem solving. In doing so, it has tried to focus exclusively on the small-group 
unit of analysis. This approach is based upon three observations: 

1. That most CSCL studies in the past have focused either on the individual 
(cognitive) plane or on the community (practices) plane. For instance, 
studies either code utterances of individuals (Strijbos & Stahl, 2007) and 
reduce interaction to contributions of individuals or else they view 
interaction as participation in community processes and institutions. In 
terms of strict methodology, the small-group unit of analysis has been 
under-researched in CSCL. 

2. That the small-group unit is fundamental to learning. As Vygotsky 
(1930/1978) said, one learns most human skills in social interaction first, 
only then being able to develop those skills individually. Furthermore, 
processes of meaning making and knowledge building are more visible in 
small-group interaction than in individual cogitation, making them easier to 
study. 

3. That the multiple levels are so complexly intertwined that it is hard to 
imagine studying them all together without first understanding much of 
what takes place at each level, temporarily taken on its own.3 

Based on the studies of virtual math teams (Stahl, 2009), the connections of 
resources from the small-group plane to the individual and community planes were 
then pictured as shown in Figure 8-5. The interaction of students in a typical CSCL 
setting is most appropriately analyzed at the small-group unit of analysis as a 
sequential progression (Schegloff, 2007; Suthers, 2007). The collaborative 
knowledge-building activity that takes place there is mediated by a variety of 
interactional resources (indicated in the figure by arrows).  

 
3 Different scientific approaches have accordingly focused on different units of analysis 

(Stahl, 2013): cognitive science on the individual; ethnomethodology on the small-group 
interaction; quantitative social science on the community. These incommensurate 
methodological commitments rendered it almost impossible to theorize the connections 
between the levels (but see Suthers et al., 2013). 
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Figure 8-5: A diagram of sources of interactional resources and the connections they 
mediate. Adapted from (Stahl, 2013). 

Figure 8-4 and Figure 8-5 are not meant to reify different levels or processes as 
necessarily having some kind of independent existence outside of our analyses, but 
to suggest some constraints between different phenomena to hypothesize, and 
flows of influence to measure. The distinctions and resource-mediated connections 
represented by boxes and arrows in the chart are intended to help operationalize an 
infinitely complex and subtle matter of collaborative knowledge building for 
purposes of concrete analytic work by CSCL researchers.  

Levels in Conversation Analysis? 
Some researchers, such as ethnomethodologists, argue 
against distinguishing levels. However, the view of levels of 
analysis in this chapter may actually be consistent with 
ethnomethodology. For instance, in their introduction to 
ethnomethodologically inspired Conversation Analysis 
(CA), Goodwin and Heritage (1990, p. 283)—two of the 
writers most explicit about the theory underlying 
ethnomethodological studies—open with the following 
claim. “Social interaction is the primordial means through 
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which the business of the social world is transacted, the 
identities of its participants are affirmed or denied, and its 
cultures are transmitted, renewed and modified.” This 
statement implicitly distinguishes social interaction, 
individual identities and community cultures—asserting the 
tight connections between them, and invoking a priority to 
the first of these. (This is exactly what the preceding section 
tried to do.) 
Social interaction typically takes place in dyads and small 
groups, so interaction analysis can be considered to be 
conducted at the small-group unit of analysis. Although CA, 
as a branch of sociology, refers to community-level social 
practices and linguistic resources, its case-study analyses 
usually involve interactions within dyads or small groups.  
While CSCL researchers focus on small groups, they also 
want to analyze the levels of the individual and of the culture 
as such—e.g., individual identities and learning changes, or 
cultural practices and institutional forces. In this chapter, we 
propose that interactional resources are centrally involved in 
mediating these connections within CSCL settings.  
The resources that CSCL must analyze are different from 
those of interest to CA, and the approach to interaction 
analysis is different. CA studies the interactional structure of 
informal conversation (e.g., adjacency-pair typology and 
turn-taking rules) rather than the building of knowledge in 
online chat about school mathematics; CA has a different 
conception of resources for interaction as community 
practices (“member methods”); and CA is interested in the 
co-construction of social order rather than in inquiry about 
domain knowledge.  
However, analysis of the ways in which interactional 
resources bridge from group phenomena to individual and 
community phenomena should be of similar concern to CA 
and CSCL. 
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CSCL sequential small-group discourse brings in—through interactional 
references, as described in the next section—resources from the individual, small-
group, and community planes and involves them in procedures of shared meaning 
making. This interaction requires co-attention to the resources—and thereby shares 
them among the participants. The process results in generating new or modified 
resources, which may then be retained at the various planes. The resources that are 
brought in and those that are modified or generated often take the form of designed 
physical artifacts and adopted elements of language. The resources tend to 
originate in group interaction, and then they are subsequently established as 
effective for individuals and communities. In words similar in intent to those of 
Goodwin and Heritage, “small groups are the engines of knowledge building. The 
knowing that groups build up in manifold forms is what becomes internalized by 
their members as individual learning and externalized in their communities as 
certifiable knowledge” (Stahl, 2006, p. 16). 

The Collaborative Emergence of Resources 
The question of how the local interactional resources that mediate sequential small-
group interaction are related to large-scale socio-cultural context as well as to 
individual learning is an empirical question in each case. These connections across 
levels take place in many ways. It is likely that they often involve mechanisms that 
are not apparent to participants. In the following, we explore how such connections 
can occur thanks to interactional resources. 

In his study of how social institutions can both affect and be affected by small-
group interactions, Sawyer (2005, p. 210f) argues that we can conceptualize the 
interactions between processes at different levels as forms of collaborative 
emergence: “During conversational encounters, interactional frames emerge, and 
these are collective social facts that can be characterized independently of 
individuals’ interpretations of them. Once a frame has emerged, it constrains the 
possibilities for action.” The frames that emerge from small-group interactions can 
take on institutional or cultural-level powers to influence actions at the individual 
unit. This interplay among levels involves both ephemeral emergents and stable 
emergents. Sawyer’s theory of emergents suggests a relationship among different 
kinds of resources along the lines pictured in Figure 8-6.  
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Figure 8-6: A diagram of emergent interactional resources bridging levels of analysis 
through reification, sedimentation, personalization, and institutionalization. 

While Sawyer’s analysis addresses a broad “sociology of social emergence,” it can 
be confined and adapted to the concerns of CSCL. What is most relevant in his 
theory is the view of emergence arising out of the subtle complexities of language 
usage and small-group interaction—rather than from the law of large numbers, the 
interaction of simple rules, or the chaotic behavior of non-linear relationships. He 
thereby rejects the approaches of most popular theories of emergence for CSCL 
and shifts the focus to the discourse at the small-group unit of analysis.  

The vast variety of interactional emergents form an intermediate level of analysis 
between the level of individuals and the level of community structures, providing 
a dynamic and processual understanding of social structures and infrastructures. 
Analysis focused on these emergent artifacts can deconstruct the reifying processes 
of emergence that span from the group level to both the individual and the social. 

The small-group interaction represented in the center of Figure 8-6 can be 
theorized as being based on an “indexical ground of deictic reference” (Hanks, 
1992). This means that the “common ground” (Clark & Brennan, 1991)—which 
forms a foundation for mutual understanding of what each other says in 
conversation—consists of a shared system of indexical-reference resources, such 
as deictic pronouns, which are used to point to unstated topics or resources. The 
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coherence of the interaction and its comprehensibility to the group participants is 
supported by a network of references, each of which is defined indexically, that is 
by a pointing within the on-going discourse context (“here,” “it,” “now,” “that 
point”). Interactional resources, which can be indexically referenced in the 
interaction, can typically only be understood within their discourse context, but 
they facilitate meaning making within that context.  

Interactional resources can undergo a process like Rabardel’s instrumental genesis 
(Rabardel & Beguin, 2005; Rabardel & Bourmaud, 2003). They may initially be 
constituted as an object of repeated discussion—an interaction frame (Goffman, 
1974)—which we might call a reified resource, something capable of being picked 
out as having at least an “ephemeral-emergent” existence. Through repetition 
within a group discussion, a term or the use of an object might take on a settled 
significance within the group’s current work. Over time, continued usage can result 
in a sedimented resource, something whose existence has settled into a longer-term 
“stable-emergent” form, which retains its meaning across multiple group 
interactions.  

A sedimented resource is susceptible to being taken up by a larger community as 
an institutionalized resource within a structured network of such resources, as in 
Latour’s social-actor networks (Latour, 2007), contributing to the socio-cultural-
historical context surrounding the interaction. Thus, the institutional resource not 
only references the social context, but also partially reproduces it in a dialectical 
relationship of mutual constitution by contributing a new element or revitalizing 
an old set of resources.  

On the other hand, interactional resources at various degrees of reification can also 
be taken up into the individual understanding of community members as 
personalized resources, integrated more or less into the intra-personal perspective 
of one or more group members. The personalization of previously inter-personal 
resources by individuals renders them into resources that can be referenced in 
activities of individual understanding—corresponding to processes of micro-
genesis in Vygotskian internalization. 

The various components of this view of interactional resources have been hinted 
at in previous theoretical contributions grounded in empirical examples. The 
progressively emergent character of resources can be seen in the logs of virtual 
math teams, as phrases and actions proposed by one participant are taken up 
repeatedly and come to have a meaning for the group.  

The term “reification” goes back to Hegel’s dialectical philosophy of mediation 
(Hegel, 1807/1967)—as discussed in Chapter 3. . Sfard (Sfard, 2000; 2008; Sfard 
& Linchevski, 1994) has applied it to the formation of mathematical concepts. 
Husserl (1936/1989) argued that the ideas of the early geometers became 
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“sedimented” in the cultural heritage of the field of geometry. Livingston (1999) 
differentiated discovering a mathematical proof from presenting the proof; a 
transformational process takes place, in which the byways of exploration and 
possibly even the key insights are suppressed in favor of conforming to the 
“institutionalized” template of formal deductive reasoning. Netz (1999) 
documented the important role of a controlled (restricted and reified) vocabulary 
to the development, dissemination and learning of geometry in ancient Greece. 
Analogously, Lemke (1993) argued that learning the vocabulary of a scientific 
domain such as school physics is inseparable from learning the science. Vygotsky 
(1930/1978, esp. pp. 56f) noted that the micro-genetic processes of “personalizing” 
a group practice into part of one’s individual understanding—which he 
conceptually collected under the title “internalization”—are lengthy, complex, 
non-transparent and little understood. These seminal writings name the processes 
of reification, sedimentation, institutionalization and personalization of 
interactional resources; their empirical investigation remains as a major task for 
future CSCL research. 

According to the foregoing discussion of resources as products of collaborative 
emergence, we can see that resources are neither pre-existing objects given in 
advance of their involvement in group interactions nor completely arbitrary 
creations ex nihilo of the group interaction. Their nature is discovered by the group 
in its attempts to reference or index the resource in different ways, some of which 
work and some of which do not work. One cannot say that the nature of the 
resource already existed prior to or independent of the group’s exploration. Neither 
pure realism about an existent world not pure idealism about a free subject captures 
the whole picture. The character of a resource is created through a constrained 
process of creative discovery.  

To understand this concept of resource, one must overcome the traditional 
categories of beings. Resources are not necessarily physical tools, like hammers. 
They can be verbal expressions, social practices or any type of object, physical, 
mental, linguistic, etc. What is important is the kinds of processes that they can be 
involved in and the sorts of transformations they undergo. A resource is an analytic 
term, much as group cognition is an analytic stance. Group cognition does not 
imply a certain number of human bodies acting in a certain way, but a 
methodological perspective on the unit of analysis. Analogously, a resource is not 
necessarily a fully defined physical object like a hammer, textbook, or drawing. 
Rather it can be anything that can emerge in interaction, be repeatedly taken up, 
be progressively articulated, be reified into an identifiable object, be passed down 
to new contexts of use and be recognized as having taken on a certain social 
persistence and mediating role. 
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Resources are not necessarily physical 
tools…. What is important is the kinds of 
processes they can be involved in and the 
sorts of transformations they undergo. A 
resource is an analytic term, much as 
group cognition is an analytic stance. 

As the theory of affordances (Dohn, 2009) emphasizes, a resource is associated 
with certain potentialities that are manifested in response to relevant approaches. 
The same tension exists in Rabardel’s theory of instrumental genesis, where a 
designed technical instrument (such as a software interface) continues to evolve as 
users adapt it to their practices and adapt their understanding to it. Similarly, the 
theory of enactment in sense-making processes in organizations involves an 
interplay between the actors and the available resources: “The external 
environment literally bends around the enactments of people, and much of the 
activity of sense-making involves an effort to separate the externality from the 
action” (Weick, 1988).  

The classic philosophic debate between idealism and realism is related to the 
Cartesian division between mind and body. In Heideggerian terms, the analysis 
should not start from a thinker opposing a world, but from a unity of human being-
in-the-world. Through the gradual development of understanding, the possibilities 
given by the past are created in the present in terms of our future-oriented projects. 

In the interaction example at the beginning of this chapter, three students explore 
hexagons in a grid of lines. The drawing provides a resource for the collaborative 
work involving patterns of hexagons. But the resource only gradually takes shape 
and becomes useful to them as they collaboratively explore it, sharing different 
ways of looking at it visually, marking it up graphically, talking about it in text 
chat and representing it symbolically in algebra. As the group works out what is 
and is not possible in the drawing, the drawing emerges as an effective resource, 
which supports the group in its mathematical work. 

The group made use of many resources, including mathematical terminology, 
computer skills, visual capabilities, and the drawing. Most of these were inherited 
from the past as elements of their individual skilled being-in-the-world or of their 
group’s already established intersubjective shared understanding. Their group 
project of solving a math problem as given in the session instructions (but still 
needing to be understood, negotiated, explained, shared, enacted, evolved) 
oriented their group-cognition effort toward a future. Within these temporal 
dimensions, the group established and maintained a co-presence, which allowed 
them to collaborate effectively. We should be able to see similar processes in other 
examples of collaborative interaction. 
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Research on Artifacts 
Among the theories influential in CSCL—such as activity theory, distributed 
cognition and actor-network theory—artifacts play a central role as “mediators” 
of thought and action. The construct of interactional resource is intended to play a 
similar role in the theory of group cognition.  

In the foundations of activity theory, Vygotsky (1930/1978) conceives of artifacts 
as including language as well as tools. In the seminal study of distributed cognition, 
Hutchins (1996) analyzes how the complex of navigational tools, naval procedures 
for trained teams of people and specialized language work together to accomplish 
cognitive tasks like ship navigation. He even analyzes discourse data to show how 
an indexical term (“total”) becomes reified within a dyad’s interaction to take on 
significance that could have led to intra-personal and/or institutional usage (p. 
342). In a witty essay, Latour (1992) shows how a common mechanical door-closer 
artifact can act to fill the role of an individual person (a doorman), to participate in 
the politics of a group and to enforce institutional rules. He also argues (Latour, 
1990) that an inscription artifact like a map on paper—a stable emergent that he 
refers to as an “immutable mobile”—can traverse levels from a local discussion in 
ancient Asia to the social niveau of imperial Europe. However, studies like these 
have not often been duplicated in the CSCL literature. 

Reviews of CSCL research show that few papers in this field have bridged multiple 
levels of analysis (Arnseth & Ludvigsen, 2006; Jeong & Hmelo-Silver, 2010). Yet, 
the desired CSCL research agenda (Krange & Ludvigsen, 2008; Stahl, Koschmann 
& Suthers, 2006; Suthers, 2006) calls for a study of representational artifacts and 
other resources that traverse between individual, small-group and community 
processes to mediate meaning making. The preceding sketch of a theory of 
emergent forms of evolving resources could be taken as a refinement of the 
research agenda for the field of CSCL: a hypothesis about how levels in the 
analysis of learning are connected; and an agenda for exploration.  

Table of Rockets 
An early attempt within CSCL to analyze the role of artifacts 
and resources appeared in (Stahl, 2004). The analysis was 
grounded in a half-minute interaction among four students 
working with a computer simulation of model rockets. The 
excerpt involved the students coming to understand how to 
interpret a textual resource: a table of rocket components 



Translating Euclid 

      

179 

arranged to facilitate comparisons among differently 
configured rockets.  
At first, none of the students could see the designed 
affordance of the table, but after the half minute, they could 
all see the shared artifact as a resource for their scientific 
discourse. The interaction analysis of this excerpt showed 
how aspects of the table artifact were brought in as resources 
for the group discourse, as were shared and repeated words 
like “same” and “different.” The words of one student were 
reused in the interaction by others in order to orient him to a 
new, shared understanding of the co-attended-to table.  
The resource that emerged for the group’s subsequent 
practice was a sophisticated understanding of the 
organization of the table (Stahl, 2006, Ch. 12 & 13). This 
locally achieved understanding was congruent to a standard 
scientific understanding, which the instructor had assumed 
in designing the table and offering it as a resource for the 
group task.  
Here we can see the use of interactional resources 
connecting ideas from novice-individual and scientific-
community planes in the small-group discourse, which led 
to a significant advance in the group’s meaning-making 
ability. The table of rocket components was one such 
resource, which went through a process of instrumental 
genesis for the students, situated in their scientific problem-
solving activity. The use of terms like “same” and 
“different”—introduced into the discourse by one member 
and then picked up by others as indices pointing to the 
problematic issue—became reified resources for the group. 
Interestingly, sameness and difference are fundamental 
concepts for mathematical discourse (aka thinking) 
according to Sfard (2008) (see also Stahl, 2008b). 
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Resources for Collaboration and Mathematics  
The idea of viewing interactional resources as central to mathematical discourse 
around dynamic geometry was proposed by Öner (2013). Building on an earlier 
analysis of mathematical learning (Çakir, Zemel & Stahl, 2009), she argued that 
rather than focusing on the “coordination of interaction,” collaborative activity 
should be analyzed in terms of the “coordinated use of resources.” Participants rely 
on two major categories of resources when working on a geometry problem within 
a computer-based dynamic-geometry environment: (1) mathematical and tool-
enabled resources (math-content-related) and (2) collaboration resources 
(relational or social). Öner proposed a focus on the coordination of these 
resources—which, she argued, characterize collaborative dynamic-geometry 
problem solving—for understanding what goes on in such productive math 
learning. 

The combination of social and content resources brought to bear on geometric 
problem solving often bridges levels. Social resources—such as greetings, 
invitations to speak, checks on discourse direction, even insults—may function to 
cohere the group out of its individual members, drawing upon community 
standards and institutional routines. Uses of math resources—such as manipulating 
visual representations, referencing recent findings, expressing relationships 
symbolically—move fluidly between individual perceptual behavior, group 
problem-solving sequences, and the cultural stockpile of mathematical knowledge. 
Perhaps the incessant traversal of levels is particularly visible in collaborative math 
discourse because of its explicit use of multiple layers of reality involved in 
mathematical work: a physical drawing, the intended figure, a narrative 
description, a symbolic expression, the conceptualization, the abstract 
mathematical object. 

Öner’s methodological proposal is to track both the math-content-related and the 
social/collaborative/relational resources used by students solving dynamic-
geometry problems. Math resources may come from graphical, narrative, and 
symbolic representations or expressions of the math problem or from previous 
math knowledge of culturally transmitted concepts, theorems, procedures, 
symbolisms, etc. Social resources include communication practices, such as the 
rules of conversational discourse (transactivity, sequentiality, shared attention, 
argumentation, turn taking, repair, etc.). 

Öner cites a number of distinctions drawn in the CSCL literature for contrasting 
social/collaborative/relational resources with content-related resources:  

• An inter-personal-relations space versus a content space (Barron, 2000);  
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• Building a joint problem space (JPS) versus solving a problem (Roschelle & 
Teasley, 1995);  

• Temporal dimensions of the JPS versus diachronic content (Sarmiento & 
Stahl, 2008); 

• Text chat versus shared-whiteboard graphics (Çakir, Zemel & Stahl, 2009);  

• Project discourse versus mathematical discourse (Evans et al., 2011);  

• Spatio-graphical observation (SG) versus technical reflection (T) (Laborde, 
2004).  

The “space” that a group builds up and shares is a structured set of resources 
gathered by the group (JPS, indexical field, common ground). The resources are 
"indexical" in the sense that they are only defined within (and thanks to) this 
constructed space of the specific problem context. Through their discourse, the 
group compiles these resources as potentially relevant to the problem. In turn, the 
resources help to define the emergent problem. 

Öner generated data to explore the interaction of the contrasting dimensions by 
having two people work together face-to-face in front of a shared computer using 
Geometer’s Sketchpad. They collaborated on the inscribed triangles problem (see 
Chapter 7. and Figure 8-7). She selected this problem because its solution required 
a mix of spatio-graphical observation and technical reflection involving 

mathematical theory—a mix of SG and T resources, to use the distinction she 
adopted from Laborde. She uses this distinction among resources to structure her 

 
Figure 8-7: Constructing equilateral triangle and inscribed triangle. 
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analysis. In doing so, she shows how these various resources bridge the different 
units of analysis. Resources of individual perception (during dragging of geometric 
objects on the computer screen) feed into the group problem solving, just as do 
references to classical theorems passed down through cultural institutions. They 
make possible and stimulate the group interaction. This analysis provides 
examples of interactional resources at work in a CSCL setting. 

By analyzing both social and content resources, Öner shows how interrelated these 
can be (Öner, 2013). For instance, at one point one student says, “now two isosceles, 
oops, equilateral triangles are formed here.” This utterance is deeply indexical. It is 
pointing to the “here” and “now” of the geometric construction. The student is 
narrating his work, intersecting two circles to locate the vertices of the desired 
equilateral triangle (see Figure 8-7). The method he is using refers back over 2,500 
years to Euclid’s first proposition, which teaches this construction. It also notes 
that one could use either of two potential intersections to construct alternative 
triangles. This leads his partner to see first one of the intersection points and then 
the other. Öner notes that the two students collaboratively accomplished this 
construction; they collectively recalled the procedure in the doing of it, which they 
had performed in the past but forgotten. She also emphasizes that this utterance 
includes a self-repair, in which the speaker substitutes a correct term 
(“equilateral”) for an incorrect one—a move she considers social. Repairs are 
conversational moves aimed at avoiding or correcting potential 
misunderstandings. The utterance is a resource that is used to foster co-presence, 
attending to the graphical resource of the computer figure. The repair 
conversational method is a resource for correcting a mistake and avoiding 
confusion; it is part of constructing the utterance as meaningful. The graphical 
resource contains two intersection points of the circles; the point used as a vertex 
of the triangle is immediately salient, whereas the other intersection point only 
gradually comes into view. The repaired utterance and the constructed figure work 
together to further the mathematical collaboration of the dyad. The effect of the 
resources is quite complicated and could be analyzed in much greater depth from 
different perspectives. 

This raises a methodological point. Should the quoted utterance be analyzed, 
categorized, or coded as a social resource or as a mathematical one? What is the 
resource here? Is it the generic conversational resource of self-repair as a “member 
method” (Garfinkel, 1967), or is it the word “equilateral” in the shared language, 
or is it the geometric concept of equilateral polygon? Is it a conversational move, 
a linguistic term, or a mathematical concept? This is a matter of what unit of 
analysis an analyst has chosen, because one could characterize it in any of these 
ways. Alternatively, one could argue that the interactional resource that exists here 
spans multiple levels of analysis, providing an object for analysis at the 



Translating Euclid 

      

183 

conversational, linguistic and mathematical levels of the interacting group, the 
speaking individual and the cultural conceptualization.  

Öner succeeds in analyzing how her students collaborated on their geometry 
problem by focusing consistently on the interplay between social and content 
resources. This is a proposal for one way of filtering out some of the complexity 
of what takes place with interactional resources. It may be that we can often follow 
the movement of discourses across different levels by keeping our eyes on 
consequential resources. However, other CSCL researchers interpret the theme of 
resources differently from Öner. This leads them to different insights about their 
data. It may be that we can use the concept of resource as a boundary object (Star, 
1989) to bring together the disparate theoretical voices and the multiple levels of 
analysis. Too often, analysts seem to talk at cross-purposes, emphasizing 
differences when they might well be seeing the same phenomenon from different 
angles. 

Referential Resources for a Math Problem 
A recent article (Zemel & Koschmann, 2013) analyzing VMT data takes an 
ethnomethodological look at the role of resources, representations, referential 
practices and indexical properties in mathematical problem-solving interactions. 
The paper by Zemel and Koschmann illustrates the importance of tracking the use 
of resources, and it emphasizes that it is the on-going specification-in-use that 
determines the significance of a given resource. It also adopts a concern with 
representations, and makes explicit the extent to which representational 
practices—how the representation was built and worked with—contribute to the 
problem clarification and problem solution.   

In theoretical terms, the analysis by Zemel and Koschmann further develops the 
discussion of indexical reference resources by Hanks (1992). It considers two 
virtual math teams who were presented with the same problem statement involving 
combinatorics. The two groups identified completely different sets of “indexical 
properties,” which allowed them to formulate implicitly, share collaboratively, and 
solve mathematically the “same” problem, which, however, they specified quite 
differently. In the first team, one student specified a “given” stair-step pattern of 
squares in terms of two symmetric sets of lines. Each set of lines followed the 
pattern: 1, 2, 3, …, n, n. In the second team, a student specified the problem initially 
as: “the nth pattern has n more squares than the (n-1)th pattern.”  

Ethnomethodologists are keen to observe the work that people do to accomplish 
what they do. Both teams engaged in intricate coordination of text understanding, 
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sequential drawing, retroactive narrative, and symbolic manipulation to make 
sense of the problem statement they faced and to arrive at a mathematical solution. 
The work involved in this can be characterized as discovering, proposing, and 
negotiating successive determinations of indexical properties of the problem they 
are working on. The indexical properties are ways in which the team members can 
reference aspects of the problem, such as in terms of sets of lines arrayed in specific 
identifiable patterns.  

These indexical properties are tied to the local problem-solving context of the 
respective team. They specify the problem for the team in practical terms, which 
allow the team to make progress in both understanding and solving the problem. 
This approach is appropriate for what Rittel (Rittel & Webber, 1984) called 
“wicked problems.” These are non-standard problems, for which the approach to 
problem solving is not obvious and turns out to be a matter of coming to understand 
the problem itself.  

One can imagine a student logging into VMT and entering a completely unknown 
territory. Initially, he was not familiar with the online environment, had never seen 
the kind of problem statement that was displayed, did not know the other team 
members and was unclear about what was expected of him. He spotted (visually) 
an interesting symmetry in the problem and started by stating it as an initial 
specification about how to view (perceptually and conceptually) the problem. Then 
he started to draw the problem, so specified, on the shared whiteboard. The student 
in the other team entered a similarly unknown territory. She started drawing the 
pattern for N=4, as suggested in the text. In so doing, she developed some copy-
and-paste practices, which she presented (in the sequentiality of her drawing 
process as well as in her accompanying description) as tentatively mathematically 
relevant.  

Of course, no student starts in a world devoid of meaning and has to make sense 
out of nothing. He comes to the VMT environment—regardless of how unfamiliar 
it may appear to him at first—with a lifetime (however brief) of experience with 
social interaction, perception of drawings, skill with computer software and 
mathematical practices. In addition to this dimension of bringing along his past, he 
is oriented toward some future projects. He came to the VMT chat room with some 
motivations and expectations. He intended to solve some kind of math problem 
and he had some notion of possibilities for going about doing such a thing. For 
instance, his initial idea to break the figure into two symmetric parts and to look at 
each part as a pattern that could be expressed as a numeric sequence was probably 
based on past experience or previous practice that he situated in the local group 
context from a personal or institutional source. While resources have to be situated, 
adapted, enacted, and evolved within the local discourse context in order to 



Translating Euclid 

      

185 

function as specific and effective resources, they are generally brought in as 
potentialities for group use as resource from an individual or community source. 

Starting from individual suggestions of indexical properties by a member of their 
team, each group developed a growing shared indexical ground of deictic 
reference. The work of building that space of possible references led the group to 
make sense of a problem and to discover a path to a solution in mathematical terms. 
The indexical ground itself is a set of shared interactional resources that allows the 
team to refer to their object of concern in mutually intelligible ways. By gradually 
moving from purely deictic terms like “it” or “this,” to mathematical terms or 
abstract symbols, the indexical resources incorporated cultural knowledge and 
contributed to a less locally situated store of understanding that could be relevant 
in a larger classroom or culture of school mathematics (including standardized 
tests). The analysis of how these groups successively and collaboratively re-
specify their referential resources suggests approaches to studying how groups 
make sense of problems and artifacts whose indexical properties are initially 
unknown or underspecified. This is a foundational concern for CSCL, as “a field 
of study centrally concerned with meaning and the practices of meaning making 
in the context of joint activity, and the ways in which these practices are mediated 
through designed artifacts” (Koschmann, 2002).  

Toward a Theory of Resources 
This chapter has explored the proposal that interactional resources play important 
roles in traversing the levels of individual learning, group cognition and 
community knowledge. In the process, it clarified three prerequisites of effective 
collaborative learning: co-presence, group cognition and intersubjective shared 
understanding. Then it developed a number of perspectives on resources as 
emergent and enacted artifacts. 

The different ideas discussed here and the theories referenced along the way show 
that there are many ways to conceptualize, analyze, and theorize resources. One 
can conceive of the resources as interactional resources, indexical-reference 
resources, ephemeral emergents, immutable mobiles, social and content resources, 
structuring resources, representational resources, framing resources, cognitive 
resources, level-traversing or boundary-spanning resources. 

Resources do not just take the form of physical artifacts and linguistic terms; they 
can also take the form of practices. For teaching dynamic geometry, among the 
most important resources are the practices of dragging objects, constructing 
figures, and building dependencies. These practices may be acquired at the group 
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level through guided collaboration. Community-level math content—the culture 
of doing mathematics and the effective practices of mathematics—can be 
introduced into group activities, for instance in the form of scaffolded resources 
defining topics of discussion and exploration. Through participation in group 
practices that emerge in the interaction in which they participate, individuals can 
then develop the corresponding personal skills. 

For teaching dynamic geometry, among 
the most important resources are the 
practices of dragging objects, 
constructing figures and building 
dependencies 

For instance, Chapter 7.  provided examples of practices being developed and 
moving across levels. The practice of constructing an equilateral triangle and the 
practice of using the compass tool to copy segment lengths both played major roles 
in the work by researchers, teachers, and students on the inscribed triangles 
problem. Each of these practices is rooted in established knowledge of the 
mathematics community: specifically Euclid’s 1st and 2nd Proposition. These 
practices are also well known in the GeoGebra developer and user communities, 
where they are associated with specific software tools and have been illustrated in 
YouTube videos. The WinterFest curriculum, documented in Chapter 10. , has 
been carefully designed to convey knowledge of these practices and to engage 
students in experiences with them. The groups whose chats were analyzed all 
adopted these two practices. The individuals in the groups demonstrated that they 
understood and could take advantage of these practices.  

In an analysis of a VMT group working a few years ago, Medina, Suthers and 
Vatrapu (2009) traced how several practices involving chat and drawing actions 
had emerged from the interaction of the virtual math team. The analysis showed 
that these practices had been introduced in various ways, but had been absorbed 
into the work of the group. They also demonstrated that each of the members of 
the team in the end had adopted these practices as interactional resources that they 
could bring to collaborative mathematics efforts. 

The theory of interactional resources developed in this chapter is quite tentative. It 
probably raises more questions than it answers. However, it may serve to suggest 
the importance of providing materials of many kinds to learners, such that the 
learners can turn them into effective interactional resources to guide their group 
and individual absorption of community knowledge. Chapter 9.  will specify some 
principles for the design of resources for collaborative dynamic geometry and 
Chapter 10.  will present some of the resources that are currently used by groups 
of students in the VMT Project’s WinterFest. 
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Chapter 9.  Pedagogy: Designing 
Geometry 

Chapter Summary 
Based on the preceding analyses of interaction during cycles 
of design-based research and on the theoretical 
considerations concerning interactional resources, a number 
of design principles are discussed for a pedagogical 
approach to dynamic geometry. These principles focus on 
providing resources for collaboration, exploration, 
construction, proof, geometry content, and math discourse. 4 

 

In order to support translating Euclid, the VMT Project is developing a socio-
technical system to support group cognition among online teams of math students 
focused on discourse about dependencies in dynamic-geometry constructions. The 
following analysis of a pilot trial in an early cycle of the project’s design-based-
research approach reveals barriers to group success from both software and 
mathematics issues, and demonstrates that participants “cycled” between these 
types of issues. The Project responded by developing a curriculum to address the 
uncovered technical and cognitive issues—in addition, of course, to improving the 
software. This chapter presents the findings of the early pilot study and the 
curriculum-design criteria that emerged from subsequent cycles of re-design, 
prototyping, testing and analysis. 

Design-Based Research Cycles of Trials 
Chapters 5 and 6 discussed some of the technical issues in developing the VMT 
collaboration environment and in transforming GeoGebra from a single-user 
application to a multi-user client integrated with VMT. However, when developing 
a socio-technical system, in addition to the technical development, we need to 
guide the group-cognitive work by providing helpful resources and scaffolding 

 
4 Rachel Magee and Christopher Mascaro contributed to an earlier draft of this chapter. 
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group practices. In designing resources for learning, we have to remember that the 
users will enact what we design to serve as effective resources based on their own 
circumstances and actions; designed artifacts are not resources until they are put 
into use concretely. 

To get a realistic sense of how groups of students will interact within the 
environment using the resources or affordances we design into the environment, 
we need to conduct pilot tests throughout our design process. In order to try out 
our system in naturalistic settings as part of our socio-technical, design-based-
research approach—as well as to provide a basis for eventual deployment—we 
have developed relationships with two teacher-professional-education schools, 
where we deploy our system with practicing math teachers. However, arranging to 
test innovative software and disruptive curriculum in school classrooms is a time-
consuming, expensive and difficult process. The software has to already be robust 
and easy to use, the curriculum has to be well conceived and aligned with the 
institutional curriculum, teachers have to be prepared, school authorities need to 
give permission and IRB procedures have to be followed. 

In our preliminary research stages, we have run informal pilot tests with available 
teams, such as groups of VMT project team members or groups of college students 
studying the software development process. This can give us very fast feedback on 
things we are considering incorporating without subjecting young students to 
untested materials. In one of these early tests, we used teams of masters-level HCI 
students. Our findings showed that these students encountered significant 
problems due to a lack of preparation for using the technology and for engaging in 
the mathematics. As a result of the analysis of these sessions—as discussed 
below—we realized that we would have to carefully craft a curriculum, which the 
teachers taking our professional-development training could follow and then adapt 
for their own classrooms. This curriculum would need to incorporate not only math 
lessons, but also tutorials about the VMT-with-GeoGebra technological 
environment. 

We started to sketch out a curriculum based on existing best practices and theories. 
We were fortunate that the Common Core State Standards for Mathematics 
(CCSSI, 2011) had recently been released and adopted by most states in the US. 
This provided an up-to-date, research-based outline of content for a geometry 
course, which was widely accepted. We also looked at progressive geometry 
textbooks and training materials for GeoGebra and Geometer’s Sketchpad. 

As we reflected on the results of the initial trials analyzed below, we realized that 
there were still many problems to be addressed. These involved design issues in 
extending VMT, in making GeoGebra multi-user, in supporting collaboration 
around the activities, in teaching the deep conceptual ideas in geometry, in taking 
advantage of computer-supported dynamic math and in promoting significant math 
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discourse. We ran several cycles of additional trials within our research group and 
with available college students. In each cycle, we revised the curriculum, revised 
the software, ran the trial, and analyzed the behaviors. Generally, there were clear 
lessons from each trial, which led to the next cycle. 

Gradually, a set of design criteria for the curriculum was formulated and allowed 
to evolve. In this chapter, we report findings from the early session without 
curriculum to identify challenges faced by technologically adept individuals when 
attempting to engage in significant math discourse within the GeoGebra 
environment. Then we review some of the lessons for the technology and some of 
the aspects of the discourse that we believe are important. Based on these lessons, 
we then developed a curriculum based around online, small-group activities. This 
chapter discusses the criteria for the design of that curriculum, as it emerged from 
testing of trial curriculum drafts. The next chapter will present some of the 
activities we subsequently designed. 

We will focus here on the curriculum design because, from a socio-technical 
standpoint, the curriculum plays a central role of mediating between the people 
and the technology. It tells the people what activities they should be engaging in 
while communicating through and working within the technology. It also models 
for them how to talk about math. For an online course, in which there is no teacher 
present to orchestrate activities and interaction, the textual curriculum provides the 
major scripting of collaborative sessions and the primary scaffolding of the group 
cognition. 

A Trial without Curricular Resources 
In Fall 2011, we held an hour-long chat with four groups of information-science 
graduate students taking a course on CSCL using the VMT environment. In these 
chats, the groups met online and attempted to solve a geometry problem within the 
GeoGebra environment. The students had used the VMT environment to perform 
collaborative writing exercises in previous weeks, but had not previously used 
GeoGebra. These students were enrolled in majors related to technology, 
suggesting that they were engaged rather than nervous about technology use. As 
part of the exercise, there was no explicit introduction to the GeoGebra tool or 
further instructions other than the assigned problem. 

We were interested in analyzing these groups’ interactions and their strategies for 
navigating a new online collaborative environment. Two research assistants 
examined each log independently, using a thematic-analysis approach to reveal 
themes that were typical stages of conversation. The stages that emerged in the 
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analysis included: social niceties, problem identification, technical discourse, math 
discourse, design suggestions, and future planning. While these are separate stages 
of conversation, we found that each group moved back and forth between 
technological and mathematical discourse; we termed this behavior “cycling.” 

We examined the logs further, using our initial categories as a guide to analyze this 
process of cycling. In our subsequent look, we identified the cyclical behavior 
triggered by individual statements distinctly indicating technical issues (involving 
software usage issues or software problems) versus mathematical issues and 
discourse (involving attempts to understand, represent and solve the geometry 
problem). By examining the chat logs we were able to observe phases of group 
interaction, how technology affects each phase and how the technology can both 
facilitate and inhibit successful completion of the task in an online environment 
new to group members. 

Analysis of the group chat logs illustrated the presence of a variety of stages of 
conversation by the members of the groups in the context of the problem-solving 
task. Each of the chats begins with an orientation, including the exchange of social 
niceties and resolution of unrelated issues, typically lasting two to three lines per 
group member.  

Following the orientation stage, the groups formulated the problem by either 
explaining it in the chat to the other group members or by referring to the posted 
problem in another tab. This typically involved a statement to orient the group:  

Quick summary – we have to work thru the problem (see topic). Summarize the 
process in the Summary tab and post a few sentences on the wiki too. We good? 
(Group 1, line 16)  

This quote illustrates some of the important characteristics of this type of focusing 
statement, including a description of what the speaker is going to do with the 
statement, instruction and then a leading question to ensure the team is on the same 
page.  

Table 9-1 illustrates the different stages identified in the chat logs of the four 
groups and the different places in the discussion in which math discourse began. 
This varied for each group, and even when groups did not start with technical 
issues, they arose very quickly.  

Table 9-1: Stage identification of each of the groups 

 Group 1 Group 2 Group 3 Group 4 
Opening 
Stages 

Orientation; Problem Identification 
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Intermediate 
Stages 

Role 
Assignment 

Math 
Discourse 

Technical 
Issues 

Technical 
issues 

Technical 
Issues 

Technical 
Issues 

Math 
Discourse 

Role 
Assignment 

Math 
Discourse 

Design 
Suggestions 

Math 
Confusion 

Math 
Discourse 

  Technical 
Issues 

Use of 
Alternative 
Tools 

  Technical 
Confusion 

 

Concluding 
Stages 

Summarization of task/experience; social niceties; next 
steps 

 
Once Group 3 reached math discourse, they experienced confusion about the 
mathematical concepts, compounded by technical issues with the tool that further 
confused the participants in the group and degraded the quality of math discourse:  

I’m trying to figure out how to delete this line… I kind of messed up… do you still 
see a line on the screen? (Group 3, line 24-25) 

This quote highlights a number of issues that were common across multiple 
groups: not knowing how to delete an object (an option expected by participants), 
and group members being unsure that they were looking at the same objects as 
their fellow group members.  

Both Group 1 and Group 4 achieved significant math discourse as each of the team 
members attempted to solve the problem, but did so with the help of outside tools. 
Group 1 used PowerPoint. Group 4 experienced confusion because the VMT 
environment did not display the same screen to all group members, so one emailed 
a screenshot to share the solution. This indicates that use of familiar tools or tools 
that work intuitively enables groups to more quickly reach effective math discourse 
that achieves a solution.  

Overcoming Technological Barriers 
The technological tool of multi-user GeoGebra—while providing many 
opportunities and options—often raised barriers for users. Barriers could be as 
simple as not being able to undo an action. However, even simple barriers stopped 
the groups from engaging in fluid math discourse and sometimes even went 



Translating Euclid 

      

192 

unresolved as the individuals found ways to work around issues. One example of 
this is the issue of not being able to easily rename an object. The mathematical 
problem these groups were attempting involved constructing an angle ABC (see 
Figure 9-1). 

  

 
Figure 9-1: Task for groups of graduate students. 

Groups began playing with the system by adding objects to their GeoGebra screen. 
However, each group discovered that they were unable to simply rename the points 
on their screen, and the names they needed (e.g., A, B and C) were already in use 
by the system, although the objects they developed later in the process were better 
suited to solving the problem. This meant that their refined objects were 
confusingly named (for example, J, K and L), making math discourse about the 
objects in relation to the problem statement more complicated: 

One thing we can state is how the lettering got messed up… I think that is helping 
to confuse us. (Group 3, lines 58-59) 

Each group experienced this issue, and because of their lack of familiarity with the 
system, none were able to fix this problem. Other barriers were easier for the 
groups to creatively work around.  
Because of the nature of the work, as groups overcame tool issues and moved into 
math discourse, new mathematical objectives (e.g., renaming a point, adding a ray) 
resulted in a return to the tool and often the discovery of a new technological 
barrier. Even in the face of such issues with the tool, multiple groups managed to 
achieve effective math discourse that led to solutions. Each successive cycle of 
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math discourse and tool use also led to difficulty with the mathematical concepts 
at hand, which we will now discuss.  

Discourse about Math Difficulties 
The goal of these chats for the students was to experience a new CSCL software 
tool, but also to engage in mathematical discourse around the visualization and 
solution of a geometry problem. Reaching a stage of significant math discourse 
proved to take some time for most groups, despite the fact that they were actively 
pursuing this goal. Typically, the first approach involved developing a shared 
understanding of what the mathematical problem was, which we termed “problem 
identification” in our stage-identification process. Groups quickly entered into 
discussion of technological issues with the tool, but had difficulty returning to the 
larger goal of mathematical discourse. 

Participants often employed a question structure to encourage a return to math 
discourse, and usually included words like “okay,” “well,” or “so” to bridge from 
the previous topic, which was typically a technological issue. In Group 4, one 
participant states: 

Ok, we are on the same page now… we need a point in the middle. (lines 179-
180) 

In an attempt to move past the technological barrier of not being able to effectively 
rename objects and establish common ground among the participants, one 
participant transitioned with:  

Well, anyway, do we all at least see i, j, k? (Group 4, line 83) 
In addition to bridging words, participants also employed explicit questions to 
reorient the group, for example:  

Can i start by drawing two lines to create an angle? (Group 3, line 22) 
These structures serve to call attention to a reorientation and to give other 
participants the opportunity to request a pause in that reorientation to ensure they 
share understanding with the rest of the group.  

Reorienting questions also served to highlight an understanding gap, pulling the 
group back into a math discussion to provide an explanation or confirm an 
understanding. One example of this math-question reorientation comes from 
Group 2:  
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If you try to construct a line EF trying to connect AB and BC, wouldn’t that mean 
A=C. (line 94) 

The use of reorienting statements rotates through group members, indicating that 
it was not always the same participant to return the group to math discourse. 
Talking about technological issues could quickly grab the attention of the group, 
but these reorienting statements were effective at refocusing the group’s attention 
on the mathematical issues.  

When groups returned to this higher level of math discourse, there were a variety 
of approaches employed by individuals. Multiple participants displayed something 
akin to math anxiety, highlighting their lack of experience or inability:  

I haven’t done geometry in a long time… I’ll need the hints. (Group 1, line 18) 
Often, members of the group shared in their confusion, as evidenced by Group 3’s 
experience with making the decision to look at the hints during a series of math 
discourse. The group looked at the hints as a whole, but each member admitted to 
being more confused after doing so, imagining that it could be their unfamiliarity 
with math causing the issue:  

I’m not sure if its cause I haven’t done these types of problems in a while or the 
hints just aren’t that good. (Group 3, line 95) 

However, Group 1 and Group 4 were able to achieve math discourse and a solution, 
notably, with the use of familiar outside technologies.  

Cycles of Problems 
The analysis of this pilot trial revealed cycles of problems, with the groups having 
to go back and forth between confronting technical problems with the software and 
cognitive problems with the mathematics. The cyclic nature of the alternation 
between technical and mathematical difficulties may have been an artifact of the 
task and the preliminary state of the software prototype. Although the task was to 
work on a geometry construction, within the online environment software 
problems intervened and distracted the group. Groups tried to quickly get around 
the technical problems and cycle back to the math. There, they found themselves 
poorly prepared to tackle a geometry problem. Both the technical and the cognitive 
problems were consequences of the situation of pilot-test participants in a design-
based-research project. The socio-technical goal of the project was still in the 
distant future and the necessary supports for the participants were not yet in place. 
Thus, the subjects met with many difficulties. The point is to learn from the pilot 
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trial: what are the most important social and technical features to be developed 
next? 

The experiences of the groups highlight 
interesting aspects of group-cognitive 
processes and how tool and math skills 
can hinder the ability to solve the 
problem by otherwise competent users. 

The experiences of the groups highlight interesting aspects of group-cognitive 
processes and how tool and math skills can hinder the ability to solve the problem 
by otherwise competent users. Clearly, while math discourse was a goal of each 
group, it proved difficult to achieve in the face of tool issues and feelings of math 
anxiety. When faced with a technical issue, the individuals blamed the tool for the 
inability to solve the problem, because they felt they were technically competent 
in general:  

I’m an IT consultant and have to deal with various software programs meaning 
I’m familiar with how software should be designed and navigating my way 
around…this was definitely tough. (Group 4, lines 310-313) 

On the other hand, when faced with a mathematical concept that they were not 
familiar with, members of the groups blamed themselves for not being 
mathematically focused:  

My High School Math teachers are furious with me right now I can feel it. (Group 
3, line 96) 

This dichotomy between technical ability and mathematical inability was 
identified in each log. While this is an interesting case in our specific dataset 
pertaining to mathematically oriented online-learning contexts, we suspect that this 
phenomena may be evident in other collaborative-learning situations. Working to 
learn both content and the technology used to deliver that content can be 
overwhelming and may distract from the conceptual intent of the lesson. These 
difficulties are evident in our analysis as triggers of cycling and may be applicable 
to many technologically mediated learning situations. Because of these identified 
issues, it is important to build technological familiarity into any educational 
groupware environment to overcome technological issues early in the process. We 
find that in the face of tool adversity individuals defaulted to tools they were 
comfortable with such as PowerPoint, paper/pencil or screenshot/email. The use 
of familiar tools allowed the members of the groups to focus on the actual math 
discourse and problem solving, and isolate negative effects of the prototype tool 
on their productivity.  
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One of the most striking elements of our analysis is the concept of cycling in the 
group process between tool issues and math discourse, including math anxiety, 
confusion and solutions. Our observations in this environment indicate that there 
was a salient presence of software functionality issues that, when coupled with 
gaps in knowledge, derailed mathematical discourse. This derailment and interest 
in getting back on task led to cycling. Although each group experienced cycling, 
the groups that were most successful were able to quickly manage technological 
barriers and return to math discourse for the majority of their chat.  

In the future, it seems clear that reducing tool issues and increasing the time 
available for math discourse is key for productive computer-supported 
collaborative mathematical problem solving. While we are not arguing that all 
technological systems will include these barriers, the experience of technological 
confusion does seem to be a common occurrence for, at least, new users of 
technological systems. As highlighted by one of the participants,  

The issue with our first attempts was the usability of the tools – and lack of 
familiarity of the capabilities available within GeoGebra (Group 1, line 109)  

An increase in familiarity with the system may reduce cycling.  

In addition to our analytical findings, each of the groups had recommendations for 
ways to improve the technology and the process of group math problem solving in 
the VMT-with-GeoGebra environment. These ranged from calls for an undo option 
to hopes for a primer or tutorial to alleviate some of the early technological issues. 
In Group 2, one individual thought they missed a tutorial because of difficulty with 
the system:  

Was there a tutorial on GeoGebra that we were supposed to read first? (Group 
2, line 91) 

The ability for individuals to get exposure to the core functionality of the 
GeoGebra environment may allow for more comfort with the tool, which may 
facilitate better math discourse between the group members and make the 
GeoGebra tool more transparent. 

Curriculum Design Criteria 
In response to the analysis of the GeoGebra use sessions, we drafted a set of 
dynamic-geometry curricular activities, interspersed with tutorials of the 
technology features. Curriculum activities were designed to promote collaborative 
learning, particularly as exhibited in significant mathematical discourse about 
geometry. Collaborative learning involves a subtle interplay of processes at the 
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individual, small-group, and classroom levels of engagement, cognition and 
reflection. Accordingly, the activities are structured with sections for individual 
work, small-group collaboration and whole-class discussion. It is hoped that this 
mixture will enhance motivation, extend attention and spread understanding. 

The curriculum is designed to provide a systematic pathway to skills in a number 
of dimensions simultaneously. It is hoped that building up the required skill sets 
systematically, without assuming many skills initially, may avoid the math anxiety 
that students feel when they get stuck. In addition, the collaborative approach 
allows students to support each other, filling in for each other’s deficits.  

The goal of the set of activities is to improve skills in collaborative and 
mathematical discourse, in exploring dependencies, in geometric construction, in 
analytic explanation and in domain content for math teachers and students: 

1. To engage in significant mathematical discourse; to collaborate on and discuss 
mathematical activities in supportive small online groups. 

2. To collaboratively explore mathematical phenomena; to make mathematical 
phenomena visual in multiple representations; and to vary their parameters 
through dynamic dragging. 

3. To construct mathematical diagrams—demonstrating a practical 
understanding of their structure. 

4. To design dependencies in geometric figures to establish desired relationships. 

5. To notice, wonder about and form conjectures about mathematical 
relationships; to justify, explain and prove mathematical findings. 

6. To understand core concepts, relationships, theorems and constructions of 
basic high-school geometry. 

The working hypothesis of the Project is that these goals can be furthered through 
activities that specify an effective combination of: 

1. Collaborative experiences in mathematical activities with guidance in 
collaborative, mathematical, and accountable geometric discourse. 

2. Exploring (e.g., by dragging) dynamic-mathematical diagrams and multiple 
representations. 

3. Constructing geometric figures. 

4. Designing dependencies in dynamic-mathematical constructions. 

5. Explaining conjectures, justifications, and proofs. 

6. Engagement in well-designed activities around basic high-school geometry 
content. 
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In other words, the activities seek a productive synthesis of the six areas of: 
communication, exploration, visualization, design, and mathematical skills applied 
in the domain of beginning geometry. They operationalize “deep conceptual 
learning” of mathematics in terms of these measurable outcomes:  

1. The quality and quantity of significant mathematical discourse in collaborative 
interactions. 

2. Involvement in group explorations of mathematical objects and 
representations, including noticing and wondering. 

3. Effective constructions of mathematical objects with specified characteristics. 

4. Establishment of robust dynamic dependencies among geometric objects. 

5. Articulation of explanations, justifications and proofs of conjectures. 

6. Engagement with geometric notions of congruence, symmetry, dependencies, 
relationships, transformations, and deduction. 

The set of activities is designed to provide a hands-on educational experience in 
basic geometry to math teachers and students, taking them from a possibly novice 
level to a more skilled level, from which they can proceed more effectively without 
such designed, scaffolded activities. By providing activities on different levels for 
each of the dimensions, we hope to help math teachers and students to increase 
their relevant skills – in different ways for different people.  

Our focus has centered increasingly on facilitating and supporting lessons 
involving geometric dependencies. GeoGebra allows one to construct systems of 
inter-dependent geometric objects. Students have to learn how to think in terms of 
these dependencies. They can learn through visualizations, manipulations, 
constructions, and verbal articulations. These can all be modeled and these skills 
can be developed gradually; our pilot study indicates that for successful math 
discourse to be achieved, supporting these skills must be an explicit priority of the 
socio-technical system. 

Our design work is guided by socio-technical implications of continuing pilot 
studies as the technology and pedagogy of our project co-evolve. We are 
countering the problems that caused negative cycling of technical and cognitive 
distractions by improving the software and testing the curriculum. The curriculum 
integrates tutorials about using the VMT and GeoGebra interfaces with carefully 
structured sequences of dynamic-geometry activities for virtual math teams. The 
activities systematically build up the background knowledge, group practices, and 
problem-solving orientation needed for engaging in significant mathematical 
discourse. 
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The set of activities should gradually increase student skill levels in each of these 
dimensions. The design starts out assuming relatively low skill levels and 
gradually increases the level of skill expected. For instance: 

1. The discourse begins with having students greet each other online and then 
negotiate about who will do what, when in the online environment. Students 
are then asked to comment on their noticings and wonderings. Later, they are 
to make conjectures. Finally, they are expected to explain things to each other, 
make sure that everyone understands, and produce presentations of group 
findings. Practices developed in collaborative work eventually contribute to 
individual skills. 

2. The exploration begins with being introduced to software widgets and tools. It 
goes on to increasingly complicated geometric drawings. Then, students are 
expected to construct geometric objects themselves and in small groups. 
Finally, they are given open-ended scenarios and encouraged to figure out how 
to explore unknown mathematical territory. 

3. Construction skills gradually grow from dragging existing objects, to 
constructing with step-by-step instructions, to figuring out how to construct 
objects with specific dependencies, to defining their own construction tools, to 
constructing objects of their own design in open-ended micro-worlds. The skill 
level progresses from novice to a reasonable command of GeoGebra’s 
geometry tools. A transition to GeoGebra’s algebra connection (analytic 
geometry) is provided at the end, opening up GeoGebra’s multiple 
representations of geometric diagrams, analytic geometry graphs, spreadsheet 
data, 3-D transformations, and a computer algebra system. 

4. Dependencies are stressed as a key to understanding dynamic geometry. They 
frequently provide the goal of a construction, the means to building a 
relationship or the insight for a proof. 

5. Proof in geometry is introduced slowly, with a focus on noticing and 
wondering. This is followed by formulation of text-chat-based explanations 
and multi-media documentation of findings. The explanations gradually entail 
increased levels of justification, finally approaching formal proofs, without 
ever reaching the completely formalized version of two-column proof. 

6. The geometry content starts by covering most of the activities in Book I of 
Euclid’s Elements (300 BCE), but translated into and implemented in the 
computer-supported collaborative-learning medium of multi-user dynamic 
geometry. It incorporates most of the initial standards for high-school 
geometry in the new Common Core Standards (2011), including congruence, 
symmetry, and rigid transformations. The fundamental features of triangles are 
examined first, and then students are encouraged to explore similar features 
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for quadrilaterals. For instance, students are involved in designing hierarchies 
of kinds of triangles or quadrilaterals based on alternative representations and 
dependencies of congruence, symmetry, and rigid transformations. Finally, a 
sampling of creative objects, micro-worlds, and challenge problems are 
offered for student-centered exploration. 

There is a theoretical basis for gradually increasing skill levels in terms of both 
understanding and proof in geometry. Here “understanding” and “proof” are taken 
in rather broad senses. The van Hiele theory (see deVilliers, 2003, p. 11) specifies 
several levels in the development of students’ understanding of geometry, 
including: 

1. Recognition: visual recognition of general appearance (something looks like a 
triangle). 

2. Analysis: initial analysis of properties of figures and terminology for 
describing them. 

3. Ordering: logical ordering of figures (a square is a kind of rectangle in the 
quadrilateral hierarchy). 

4. Deduction: longer sequences of deduction; understanding of the role of 
axioms, theorems, proof. 

The implication of van Hiele’s theory is that students who are at a given level 
cannot properly grasp ideas presented at a higher level until they reach that level. 
Thus, a developmental series of activities pegged to the increasing sequence of 
levels is necessary to effectively present the content and concepts of geometry, 
such as, eventually, formal proof. Failure to lead students through this 
developmental process is likely to cause student feelings of inadequacy and 
consequent negative attitudes toward geometry. 

Citing various mathematicians, deVilliers (2003) lists several roles and functions 
of proof, particularly when using dynamic-geometry environments: 

1. Communication: proof as the transmission of mathematical knowledge. 

2. Explanation: proof as providing insight into why something is true. 

3. Discovery: proof as the discovery or invention of new results. 

4. Verification: proof as concerned with the truth of a statement. 

5. Intellectual challenge: proof as the self-realization/fulfillment derived from 
constructing a proof. 

6. Systematization: proof as the organization of various results into a deductive 
system of axioms, major concepts and theorems. 
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In his book, deVilliers suggests that students be introduced to proof by gradually 
going through this sequence of levels of successively more advanced roles of proof 
through a series of well-designed activities. In particular, the use of a dynamic-
geometry environment can aid in moving students from the early stages of these 
sequences (recognition and communication) to the advanced levels (deduction and 
systematization). The use of dragging geometric objects to explore, analyze, and 
support explanation can begin the developmental process. The design and 
construction of geometric objects with dependencies to help discover, order and 
verify relationships can further the process. The construction can initially be highly 
scaffolded by instructions and collaboration; then students can be guided to reflect 
upon and discuss the constructed dependencies; finally, they can practice 
constructing objects with gradually reduced scaffolding. This can bring students to 
a stage where they are ready for deduction and systematization that builds on their 
exploratory experiences. 

The set of activities can be used as is, following the given sequence. Alternatively, 
a classroom instructor, workshop facilitator, or group of learners can select 
activities and adapt them to local circumstances and interests. Although they build 
on specific knowledge explained in previous activities, the activities are each self-
contained. While they are designed for a small group of learners to progress 
through them using the VMT-with-GeoGebra collaboration environment, the 
activities can be adapted for other approaches. 

Practices as Resources 
As discussed above in Chapter 8. , the key resources for learning may not be 
physical artifacts, but can, for instance, be practices. The most important learning 
outcome may not be the ability to reproduce factual knowledge, but the skill to 
engage in certain social or domain-specific practices. The Common Core standards 
include a set of recommended mathematical practices for proficient students. The 
goals of our curricular design of dynamic-geometry resources align closely with 
those practices. 

The following set of practices state the main skills that we want to instill. They 
integrate math and discourse skills. They are specifically oriented to dynamic 
geometry and its unique strengths: 

1. Visualize: View and analyze constructions of geometric objects and 
relationships. 

2. Drag: Explore constructions of geometric objects through manipulation. 
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3. Discourse: Notice, wonder, conjecture, strategize, discuss relationships in 
constructions, and how to investigate them further. 

4. Dependencies: Discover and name dependencies among geometric objects in 
constructions. 

5. Construction: Construct dependencies among objects, and define custom tools 
for doing so. 

6. Argumentation: Build deductive arguments, explain, and prove them in terms 
of the dependencies. 

7. Math Accountability: Listen to what others say, solicit their reactions, re-voice 
their statements, re-state in math terminology and representations. 

8. Collaboration: Preserve discourse, reflect on it, and organize findings; refine 
the statement of math knowledge; build knowledge together by building on 
each other's ideas. 

These practices can be placed in rough isomorphism with the Common Core math 
practices: 

1. Make sense of problems and persevere in solving them: (b). 

2. Reason abstractly and quantitatively: (c). 

3. Construct viable arguments and critique the reasoning of others: (g). 

4. Model with mathematics: (a). 

5. Use appropriate tools strategically: (e). 

6. Attend to precision: (f). 

7. Look for and make use of structure: (d). 

8. Look for and express regularity in repeated reasoning: (h). 

It may be possible to organize, present, and motivate our course activities in terms 
of these practices. Then pedagogy could be discussed in terms of how to promote 
and scaffold each of these; formative assessment (including group portfolio 
construction) could also be structured according to these practices. 

The next chapter will illustrate the foregoing principles of design with examples 
from the current curriculum of dynamic-geometry activities. 
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Chapter 10.  Practice: Doing 
Geometry 

Chapter Summary 
To provide a concrete example of human-centered geometry, 
a number of sample activities are presented here for student 
groups to engage in collaborative dynamic mathematics. 
They include the basic exploration of triangles and 
quadrilaterals—largely translated from Euclid’s Elements—
as well as the concepts of congruence, symmetry and 
transformation. They build sequentially, emphasizing 
student exploration, hands-on construction, awareness of 
dependencies, explanation of reasoning and collaborative 
mathematical discourse at every stage. 

 

 

A sample curriculum in dynamic geometry has been designed, based on the 
principles in Chapter 9. It consists of twenty topics. Gradually, these topics guide 
groups of students through a series of interactive experiences intended to 
encourage them to develop practices that provide a shared understanding of 
dynamic geometry. Each topic consists of three or more tabs within the VMT 
interface. Each of these tabs is a multi-user GeoGebra environment in which the 
group can work.  

A Curriculum of Resources 
Figure 10-1 shows a VMT chat room, pre-loaded with a topic. Notice that there 
are six tabs and the students are currently working in the tab entitled “Objects.” 
They are discussing point 13 in the list of instructions. They have created a couple 
of objects in the GeoGebra tab in addition to the objects that were provided. They 
created a circle with a radius, LM. One student asks the others what they notice, in 
accordance with point 13. Another says she noticed, “no matter where the radius is, 
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it will be the same length.” Other students agreed. Then the group decided to move 
to the next tab. 

 

 
Figure 10-1: A VMT chat room for Topic 1 seen in the VMT Replayer. 

Building Up Geometry from an Intuitive Starting 
Point 
The first topics allow students to explore the elements of dynamic geometry: the 
point, line, circle and polygon. They can drag them, create new ones, and explore 
their behavior and dependencies. In an initial warm-up exercise (Figure 10-2), 
they are introduced to the elements and encouraged to drag them.  
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Figure 10-2: The Warm-up tab, “Warm Up.” 

In the first stage of the first session (tab A of Topic 1), they are stepped through a 
collaborative approach to using the GeoGebra tools (Figure 10-3). The second tab 
provides some advice on using the VMT tools. 
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Figure 10-3: Topic 1, tab A, “Welcome.” 

The third tab steps the students through the creation of dynamic geometry (Figure 
10-4). A point is operationally defined solely as a location in the tab’s workspace. 
Students can create points at any location in the tab and drag them to any other 
location.  

A line segment is then defined as a locus of Points between any two end points. By 
dragging point J—which is constrained to stay on an existing segment—students 
will observe a visual locus of the path covered. They can physically drag the point 
along the segment and visually observe the formation of the segment as the path 
of a point. Similarly, a circle is defined as a locus of points the same distance from 
a center point. Again, a student can drag a point G on a circle and observe a display 
of the locus of points traversed. Taking this a step further, the students can connect 
the center of a circle with a point on the circumference to create a radius and then 
drag the point around the circumference to observe the behavior of the radius.  
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Figure 10-4: Topic 1, tab C, “Objects.” 

In this way, one can see the objects of dynamic geometry built up from the simple 
point. Moreover, the student is already exposed to some basic notions of dynamic 
geometry, such as that a point can be constrained to remain on a segment or a circle 
and that all radii of the circle are the same length by definition of the circle as a 
locus of points the same distance from the center. 

One can see the objects of dynamic 
geometry built up from the simple Point. 

The fourth tab (Figure 10-5) provides further experience with dragging and 
constructing points that are constrained to stay on a segment or are dependent upon 
the point of intersection of two lines. This introduces from the start the concepts 
of constraint and dependence as central to dynamic geometry. Students may not 
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fully comprehend these concepts right away, but the terms are introduced into the 
discourse vocabulary, where they can be played with and mature.  

 

 
Figure 10-5: Topic 1, tab D, “Dragging.” 

The next tab (Figure 10-6) explores an aspect of these terms. First, it has the 
students contrast the results of copy-and-paste with dynamic-geometry 
construction. They see that there is a dependency maintained between segment AB 
and segment CD, but not with the copy-and-pasted segment A1B1. Further, the 
terms “constrained” and “dependent” are differentiated by distinguishing “partially 
constrained” from “completely dependent.” 
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Figure 10-6: Topic 1, tab E, “Constructing.” 

Finally, for those groups who have time for a sixth tab, a challenge construction is 
presented. A central operation in dynamic geometry is copying a length from one 
segment to another, maintaining the dependence of the new length on the old, even 
if the original length is changed by dragging. In this tab (Figure 10-7), students 
must copy two lengths using GeoGebra’s compass tool, which is tricky to use. 
They are instructed to drag all points to check that the dependencies are maintained 
and the lengths dynamically adjust properly.  
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Figure 10-7: Topic 1, tab F, “Dependencies.” 

The Dependencies of Triangles 
Much of Euclid’s geometry is implicit in his first proposition, the construction of 
an equilateral triangle. In dynamic geometry, many of the fundamental resources 
of dynamic dragging, dynamic construction, and dynamic dependencies can be 
experienced by working on this construction. Topic 2 focuses on this. The first tab 
(Figure 10-8) steps the students through the construction, including dragging to 
check the dependencies and then discussing the dependencies among the distances 
between the three points, and hence the lengths of the equal sides. The mastery of 
this construction—including a shared understanding of its design rationale—
signifies an initial level of expertise in dynamic geometry. 
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Figure 10-8: Topic 2, tab A. 

The second and third tab (Figure 10-9) provide an extension of the equilateral-
triangle construction to make explicit some of the relationships inherent there. This 
will lead to constructions in Topic 3 involving perpendiculars and bisectors. The 
exploration of various constraints and dependencies in this construction are related 
to the same constraints in different kinds of triangles. 
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Figure 10-9: Topic 2, tab C. 

The fourth tab (Figure 10-10) displays a variety of triangles, with built-in 
(invisible) constraints. The students can drag the triangles and their vertices to see 
how they are each constrained and to see which can be made to overlay others 
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Figure 10-10: Topic 2, tab D. 

Designing Custom Tools 
As part of having the students build up dynamic geometry themselves, Topic 3 has 
them create their own custom tools before giving them access to the corresponding 
GeoGebra tools. It has them construct perpendicular bisectors and perpendiculars 
through a given point. It then leads them through the creation of a custom tool that 
encapsulates their construction (Figure 10-11).  
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Figure 10-11: Topic 3, tab B. 

The group members can use this custom tool to quickly construct perpendiculars 
to lines. Applying their custom tool twice, they construct a perpendicular to a 
perpendicular, which is a parallel to the original line. They can then use this to 
create a custom tool for generating parallel lines (Figure 10-12). 
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Figure 10-12: Topic 3, tab C. 

The Hierarchy of Possible Triangles 
Topic 4 encourages the students to think about all the different kinds of triangles 
that are possible—given three line segments joined at three vertices. They create 
custom tools for generating right triangles using their perpendicular tool, for 
instance. Then they are asked to organize the variety of differently constrained 
triangles into an inheritance hierarchy (Figure 10-13). This introduces a systematic 
view of the phenomena.  
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Figure 10-13: Topic 4, tab C. 

Discovering Dependencies 
The exercise involving inscribed equilateral triangles has been found to be a 
fruitful one because of how strongly it involves the detection of dependencies and 
the attempt to re-construct them—thus integrating exploratory dragging, analyzing 
dependencies and designing constructions. Accordingly, Topic 5 starts with that 
exercise in the first tab (see Section 0). Its second tab extends the problem to 
inscribed squares. This is then generalized to N-sided regular polygons inscribed 
inside each other, illustrated with inscribed regular hexagons (Figure 10-14). The 
challenge is stated to come up with a general conjecture for all inscribed regular 
polygons and even to prove the conjecture. If students do not figure out the key to 
the inscribed triangles in tab A, they are encouraged to explore the figures in the 
other tabs so that they might see the dependency that is common to them all. This 
Topic introduces a mathematical sense of generality of dependencies and the 
connection of this to proof. 
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Figure 10-14: Topic 5, tab C. 

The Intriguing Centers of Triangles 
As we already saw in Chapter 4, the incenter of a triangle possesses interesting 
properties (due to the dependencies designed into its construction). There are a 
number of “centers” that are typically studied in geometry. They are useful for 
constructing an inscribing or a circumscribing circle, for instance, or for locating 
a point such that the sum of the paths from there to the sides or to the vertices is 
minimal (Figure 10-15).  
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Figure 10-15: Topic 6, tab C. 

In Topics 6 and 7, students construct custom tools for the incenter, circumcenter, 
centroid and orthocenter. They can then easily construct Euler’s segment and 
explore the associated 9-point circle (Figure 10-16). 
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Figure 10-16: Topic 7, tab D. 

Transformations, Symmetries and Proofs 
The rigid transformations of an object (e.g., a triangle) are introduced in Topic 8, 
including the possibility of sequences of transformations. Students are encouraged 
to explore the use of GeoGebra’s transformation tools. Transformations are then 
used to introduce the concept of symmetry. The ideas of rigid (i.e., area preserving) 
transformations and symmetry are then used to motivate the conjecture that the 
area of a triangle is one-half the area of the rectangle that contains it (Figure 
10-17). It is suggested that a proof could follow from a consideration of the 
dependencies.  
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Figure 10-17: Topic 8, tab C. 

The ideas of rigid transformations and symmetries are used in Topic 9 to derive 
and/or prove several propositions of Euclidean geometry. These include that the 

sum of the angles in a triangle equal a straight line ( 
Figure 10-18). This is generalized to a conjecture about the sum of the angles in 
an N-sided polygon. 

 
Figure 10-18: Topic 9, tab A. 
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Visualizing Similarity and Congruence 
The dilation transformation is introduced in Topic 10. It is one way to construct 
similar triangles. Another way is to copy the angles so corresponding vertices of 
an original triangle and a constructed copy have the same size angles (Figure 
10-19). The students can consider the relationship of these two different 
approaches to similarity of triangles. 

 

 
Figure 10-19: Topic 10, tab B. 

Topics 11 and 12 are devoted to giving students a hands-on visualization of why 
certain combinations of equal sides and angles produce congruent or similar 
triangles. This includes the standard rules of SAS, SSS, ASA. The last case 
considered is the tricky one of SSA (Figure 10-20). The construction with the SSA 
constraint almost determines that the constructed triangle will be congruent to the 
original, but there is sometimes a second possibility. It is hoped that students will 
internalize the figures constructed in these tabs to understand why certain 
combinations of constraints guarantee congruence, rather than simply memorizing 
the list of acronyms.  
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Figure 10-20: Topic 12, tab C. 

From Triangles to Quadrilaterals 
One can experience a lot of the basics of dynamic geometry by studying triangles. 
Their structural simplicity avoids confusing clutter. The lessons of triangles can 
then be extended to more complex polygons, starting with quadrilaterals. Topic 13 
involves the exploration of the many different kinds of quadrilaterals one can 
construct by selecting different constraints on the number of equal sides, equal 
angles, right angles, parallel sides, lines of symmetry or characteristics of their 
diagonals (Figure 10-21). Students can identify these constraints in the presented 
quadrilaterals and then try to construct their own copies. 
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Figure 10-21: Topic 13, tab A. 

Like triangles, quadrilaterals seem to have mysterious properties. One is that 
connecting the midpoints of an arbitrary quadrilateral produces a parallelogram 

with half the area of the original figure. In Topic 14, the students are stepped 
through a proof explaining this ( Figure 10-22).  
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Figure 10-22: Topic 14, tab B. 

Then the students are asked to explore whether there is an incenter of quadrilaterals 
that behaves like the incenter of a triangle (Figure 10-23); interestingly the answer 
is that it is only similar under certain constraints on the quadrilateral. 
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Figure 10-23: Topic 14, tab C. 

The hierarchy of triangles was relatively simple. Now that systematic approach is 
applied to the more complex zoo of differently constrained quadrilaterals (Figure 
10-24). In traditional geometry, there are several names for kinds of quadrilaterals 
and it is difficult for students to remember the names and the corresponding 
definitions. In Topic 14, it becomes clear that many distinct kinds of quadrilaterals 
exist that have no special name. Furthermore, there are certain kinds that can be 
defined in multiple ways, in terms of different sets of constraints. Working out and 
debating the structure of a hierarchy of quadrilaterals can be a rich exercise. 
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Figure 10-24: Topic 14, tab D. 

Advanced Topics 
The initial topics are designed to introduce teams of students to dynamic geometry 
and to give them a sense of the core resources of dynamic dragging, dynamic 
constructing, and dynamic dependencies. Ties are made to materials from 
Euclidean geometry. This introduction should prepare groups and individual 
students to use the technology of dynamic mathematics to explore further realms 
of mathematics. As a taste for this, students are offered a number of problems to 
solve or open-ended micro worlds to explore.  

This introduction should prepare groups 
and individual students to use the 
technology of dynamic mathematics to 
explore further realms of mathematics. 

Topic 15 provides some challenge problems that can be explored using dynamic 
geometry. Some of these came from Math Forum’s Problem of the Week. 
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Topic 16 provides a series of explorations of rigid transformations and their 
possible compositions. The students are asked to pretend that they are designing a 
factory operation using machines that can translate, rotate and flip objects. What 
are the most efficient fleet of machines to purchase and use, assuming various 
physical and economic constraints? 

Topic 17 translates transformational geometry into the world of taxicab geometry 
(Krause, 1986), in which all points and lines are confined to a grid. The students 
are asked to redefine the meaning of triangle, circle and distance in this world and 
then to explore how rigid transformations can be carried out and composed. 

Topic 18 imagines a jeweler with two identical squares of gold for a broach. She 
wants to attach a corner of one square at the center of the other in a way that will 
maximize the amount of gold that is visible. The students are encouraged to 
consider special cases of the arrangement of the squares, come up with a 
conjecture, and explain why their conjecture is true. 

Topic 19 proposes a new form of polygon: a “crossed quadrilateral” that looks like 
an hourglass. Students are asked to explore its properties, such as the sum of its 
angles. They are presented with an argument for measuring the angles in a way 
that maintains properties from the “uncrossed” quadrilateral.  

Topic 20 makes a transition to using GeoGebra’s algebra interface. This view 
allows construction by entering symbolic descriptions and it also displays numeric 
values of objects. First, a construction of a tangent to a circle from a point outside 
the circle is carried out using the tools the students already understand. Then the 
students are shown how to do the same construction using the algebraic approach. 
From here on, the students should be able to explore the wide range of functionality 
available in GeoGebra on their own. Meanwhile, they may have internalized an 
approach to mathematical thinking that includes emphasis on exploratory inquiry, 
construction design, and understanding of dependencies. 

An Introductory Trajectory 
The sequence of topics presented in this chapter is designed to accomplish multiple 
goals. It introduces students to collaborative dynamic geometry at a technical level 
by guiding them in the use of the VMT and GeoGebra software tools. It does this 
by providing heavily scaffolded exercises in constructing basic geometric objects 
and discussing them with team members. These exercises familiarize the student 
with the elemental structure of dynamic geometry: how points can be located and 
moved; how lines (segments, rays, infinite lines, vectors, circles) connect points; 
how points can be confined to lines or intersections; how hierarchies of 
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dependencies determine the possible movements or behaviors of dynamic-
geometry objects. Simultaneously, small-group chats about what team members 
notice and wonder begin to instill effective collaboration practices, such as taking 
turns controlling the construction, recognizing the contributions of others, 
assuming helpful roles, directing work on given tasks, summarizing findings, 
repairing misunderstandings, negotiating differences of opinion, focusing attention 
on mathematical issues, providing innovative perspectives, proposing creative 
approaches. 

Exploration of dynamic construction begins with Euclid’s first two propositions: 
constructing an equilateral triangle and copying a segment length. These are both 
transformed into their dynamic analogues. Careful study of these two examples 
reveals the core of dynamic geometry. To be dynamically equilateral, a triangle 
must not only have equal side lengths and equal angle measurements. The sides 
must remain equal to each other even when one of the sides is dynamically dragged 
to be longer or shorter and the angles must remain equal to each other even when 
a vertex is dynamically dragged to change the orientation of the angle. This 
introduces the notion of dependency—that one side’s length is dependent upon 
that of another side (due to both being constructed as radii of the same or congruent 
circles). Similarly, when copying a segment it is not sufficient to duplicate its 
current length since that might change. It is necessary to ensure that its length 
changes in accord with any dynamic change in the length of the original segment. 
This involves constructing a sequence of dependencies connecting the two 
segments. Incredibly, Euclid’s ancient construction methods for non-dynamic 
geometry suffice for dynamic geometry—given the dependency mechanisms of a 
software system like GeoGebra. 

Once students acquire a feel for working collaboratively with dynamic geometry, 
they can begin to explore the standard themes of geometry. Traditionally, this 
begins with the characteristics of triangles, the simplest closed figure composed of 
lines. Students can construct isosceles and right triangles and discuss how these 
are just some of the possible special cases of three-sided polygons. They can 
investigate various “centers” of triangles and different ways of establishing 
congruence of triangles. Already at this point, the notion of deductive proof enters. 
Many proofs—as well as many problem-solving strategies—rely on identifying 
congruent triangles and proving congruence. The GeoGebra topics on congruence 
emphasize visualizing in dynamic constructions (and discussing in chat) the 
dependencies that establish congruence of triangles. This is intended to bring 
together different senses of proof (visual, intuitive, explanatory, conceptual, 
systematic) to support each other.  

At the core of the establishment of congruence in dynamic geometry are the 
relationships of dependency. To the extent that students and groups can visualize 
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(construct and drag) and understand (discuss) these dependencies, they in effect 
prove them. Some researchers of dynamic geometry have argued that students who 
demonstrate that a conjecture is always true by dragging the relevant figure 
through many cases lose their motivation for developing a traditional formal proof. 
Other researchers counter that there are different levels of proof and that students 
must progress through them, including the levels supported by dynamic dragging. 
These views are focused on dragging rather than on construction and 
dependencies. The approach of the topics in this chapter is aimed at orienting the 
students and groups to construction as a design process for establishing 
dependencies. To establish the dependencies that guarantee that, for instance, two 
triangles are congruent is to prove that the triangles are congruent. This conception 
of proof contrasts to the formalist sense of axiomatic deduction, which has grown 
in geometry over the millennia. The conception of proof through the establishment 
of dependencies is central to dynamic geometry and provides the student with a 
visual and conceptual understanding of why a conjecture is true, allowing the 
group to engage in significant mathematical discourse about the conjecture. 

Following the investigation of triangles, the topics move to other areas of basic 
geometry, as defined by the Common Core standards, such as quadrilaterals and 
transformations. From here on, the topics are presented more as open-ended 
explorations, where the student groups can negotiate how to proceed. The goal is 
to encourage the groups to work like mathematicians exploring a new area of 
mathematics. The groups are encouraged to decide for themselves what the most 
interesting questions or conjectures are, how to investigate them, and what to 
conclude. 

The final topic connects the geometry interface of GeoGebra with the algebra 
interface, exposing the student to more of the power of GeoGebra for supporting a 
wide range of mathematical work. The hope is that students at his point will be 
able to adopt GeoGebra as a flexible toolkit for their future work in mathematics. 
In addition, they may have come to appreciate the power of collaborative learning 
in mathematics and will continue to engage in small-group interaction—whether 
online or face-to-face—around stimulating topics in mathematics. 

The goal of these topics is not to present a full course on dynamic geometry, but 
to equip students with the tools and more importantly the orientation to visualize, 
construct, and articulate relations of dependency as they study mathematics in the 
future. 
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Chapter 11.  Design-Based 
Research: Human-Centered 

Geometry 

Chapter Summary 
What can be concluded about the research presented in this 
book? Has it succeeded in translating Euclid? The design-
based research effort to develop a CSCL approach to 
dynamic geometry requires continued exploration of history, 
philosophy, mathematics, technology, collaboration, 
research, theory, pedagogy and practice to effectively 
translate Euclid’s geometry into a form appropriate to a 
perspective of human-centered informatics. 

 

 

What is the measure of a task like translating Euclid? There can be no question of 
complete and final success in such an enterprise. Did the first geometers succeed? 
Did Euclid succeed? We can say that the Greek geometers founded an intellectual 
pursuit that changed the world. We can say that Euclid compiled the most 
influential book of mathematical, rational, scientific thinking. However, we can 
only make these judgments from two millennia after the fact. Furthermore, it is 
still true that even among students exposed to many hours of training in geometry, 
a sizable proportion of them seem to have totally missed the point and failed to 
value the experience.  

Design-Based Research 
The effort in the Virtual Math Teams Project to translate Euclid into an approach 
that stresses creative discovery adopted a design-based research approach. This 
posits that one can strive to keep improving the form of geometry education being 
designed. It accepts that one will never reach a final product. Of course, the project 
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may end at some point—for instance, when funding runs out—but the effort will 
never reach a final goal state.  

It is clearly unreasonable to expect that any specific, fixed form of geometry 
education will meet every student’s needs under all conditions and in all respects. 
There will always be some students who catch on more quickly or who excel at 
certain aspects of geometry study and others who do not have the nutritional 
fortitude, the psychological self-discipline, the external motivation, the support 
system, the linguistic skills, etc. There is an infinity of conditions within which 
students could be situated as they enact collaborative dynamic geometry. No one 
design, however refined, can work in all these settings for all these unique people. 

Traditional formative assessments, structured to measure simple causal 
relationships, are not the most appropriate measures of success in an undertaking 
like ours. Standard experimental design assumes that conditions are fixed, 
controlled, and well understood. They assume that goals are simple, independent, 
specified in advance, and unproblematically measurable. However, the conditions 
in which collaborative dynamic geometry might be used if it is widely adopted are 
as unpredictable now as the math classroom you knew in high school would have 
been to Euclid. If it is successful, it will be because the spirit of our research will 
have been taken up by a community of educators distributed around the world and 
will be reinterpreted by teachers, parents, mentors, team coordinators, support 
groups and teams of learners in diverse settings. It will be adapted and evolved in 
ways we cannot foresee. 

Formative Assessment 
This is not at all to eschew assessment. Rather, it is to focus on situated formative 
assessment. The analysis of the triad of students in Section 0 provides an initial 
example. Here, we looked at how three students worked together using certain 
features of a specific version of the VMT-with-GeoGebra technology, on a given 
topic statement in their concrete motivational context. Rather than trying to 
measure how the students did against some preconceived expectations, we tried to 
understand what they accomplished on their own terms. Of course, we brought to 
our reading of the logs some guiding interests, such as a concern for geometric 
relationships of dependency. 

A positive reading of the analysis of the student team’s work might point to their 
demonstration that they could construct an equilateral triangle using what they had 
previously learned and that they figured out on their own how to construct a square. 
They also succeeded in the task of re-creating the inscribed triangle. Not only did 
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they describe what they did and provide some insightful reflections on why their 
solution was valid, but they also demonstrated a firm grasp of the insights into the 
solution procedure by immediately applying the same procedures to construct the 
inscribed square. Furthermore, the team worked collaboratively: each member 
explained what she was doing during the key GeoGebra actions, everyone 
confirmed that they understood each step and they took turns with the steps so that 
the major accomplishments were done by the group as a whole. They discussed 
relationships among geometric objects in terms of restrictions, constraints, and 
dependencies—sighting a number of forms of evidence. 

The quality of their collaborative discourse is probably the most important 
indicator of success. The VMT Project is based on the theory that learning 
mathematics is largely a matter of becoming more proficient at talking about 
mathematics. The centrality of discourse is the motivation for adopting an 
approach of collaborative learning—learning as a group that talks (or chats) 
together about math. The stated goal of the Project is to increase “significant math 
discourse.” To assess Project success is to analyze in various ways the quantity 
and quality of significant math discourse in the virtual math teams. Quantitative 
statistics comparing groups to each other and computing trends within individual 
groups can provide rough indications (see Section Chapter 0. ). However, closer 
qualitative analysis—such as detailed interaction analysis of chat and GeoGebra 
logs—is needed to provide closer understanding of changes in discourse practices. 

The example of the team in Section 0 seems to provide some indication that, at 
least in this instance, the intent of the project was in some ways achieved. Of 
course, this initial analysis is but a small first step. It raises many more questions 
than it answers. It calls for further analyses: 

• Would closer analysis of the same log—for instance, looking into the long 
sequences of GeoGebra actions during which there was no chat—confirm or 
contradict the positive impression? 

• How did the other groups in the same class with the same preparation and the 
same topic statement do? 

• How did other student groups from different classes, with different teachers 
and at other ages do? 

• If the students continue to experience collaborative dynamic geometry for a 
significant period of time this year and then take a traditional geometry course 
next year, how will this experience affect their ability to visualize and 
conceptualize geometry then? 
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How will this experience affect the ability 
to visualize and conceptualize geometry 
later? 

• How will this experience affect the participants’ scores on standard math tests? 
(Does this question make sense, given that this experience was a tiny fraction 
of the students’ math study and that the tests do not look for what we are trying 
to instill?) 

• How will their learning of geometry in this experience compare to that of 
students who spend the same amount of time learning geometry a different 
way? (Again, does this question make sense, given that such a “comparison” 
could never be comparable with different students and other tasks and 
resources?) 

These questions call for much more research to be done before any significant 
educational claims can be made. However, we are not really aiming to make claims 
about the current state of our approach. We are aiming for a vision of the future, 
one we know we are not very near. We are interested in using our analyses of the 
current state in order to improve that state, not to institutionalize it. That is the 
nature of design-based research (DBR) in computer-supported collaborative 
learning (CSCL). Both DBR and CSCL are future-oriented, visionary, 
evolutionary, emergent. That is why they go together well. The purpose of this 
book is not to claim that Euclid has been translated successfully, but to suggest a 
long and winding path for pursuing the translation. 

Issues for the Future 
Furthermore—as the chapters of this book should have indicated—the set of 
questions requiring further inquiry is not restricted to the preceding sort of learning 
questions. Rather, there are questions of history, philosophy, mathematics, 
technology, collaboration, research, theory, pedagogy and practice which have just 
been touched on in the VMT Project and which continue to morph as we address 
them. 

History: How should one translate the classic-education approach of Euclid’s 
geometry into the contemporary vernacular of social networking, computer 
visualization, and discourse-centered pedagogy? The “contemporary” forms of 
these dimensions have been rapidly changing during our project. It is impossible 
for a research project to keep pace with them and to re-conceptualize its approach 
adequately. How can we incorporate social networking motivations and the 
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connectivity of massively multiplayer online games (MMOG), massive open 
online courses (MOOC), Facebook, YouTube, etc.? What benefits can teachers 
and students get from new learning analytic and visualization tools? What new 
insights are available into discourse forms like accountable talk or the role of 
insults in group cohesion among teens that might help our effort? 

Philosophy: If the plight of geometry is part of a larger world-historical dialectic 
of enlightenment, in which reification and individualization accompany 
rationalization and socialization, then what are the larger counter-trends and what 
do they imply for geometry education? Post-cognitive theory has reached into 
human-computer interaction through activity theory, distributed cognition, actor-
network theory, and group cognition. What new inspiration and implications can 
we draw from these sources? 

Mathematics: Dynamic mathematics is an active field, with developments 
happening in theory and practice. For instance, the GeoGebra software has 
frequent new releases. The GeoGebra user community is growing rapidly, 
spreading into hundreds of countries. How can the efforts of one small research 
project keep up with this global phenomenon and feed into it with a perspective 
that emphasizes collaborative learning? 

Technology: Of course, both commercial collaborative software and affordable 
hardware platforms change continuously. Should we consider porting our software 
to the iPad and other tablets, to the more affordable Chromebook, to increasingly 
more powerful and ubiquitous smart phones? Do we need to rethink our client-
server architecture in order to scale up beyond what a central server can handle? 
Our system has been designed to support research; at what point should it be 
redesigned to support independent usage? 

Collaboration: The analysis of co-presence, intersubjective shared understanding 
and group cognition are not well developed. We need to understand them much 
better and to consider much more extensively how they can be supported in our 
technology, pedagogy, and curricular resources. More generally, we need many 
more studies of collaborative mathematics. When the VMT Project began, we did 
not even know that math could be done collaboratively, let alone that collaborative 
learning could be a powerful form of math education. Now we are exploring 
collaboration with dynamic geometry—and doing so in an online setting where 
there is not necessarily much institutional support or teacher involvement. 
Although we have gained a sense that this is do-able, we are also still discovering 
the difficulties that this can present to schools, teachers and students. 

Research: The VMT software has been instrumented to capture every detail of the 
interactions of virtual math teams. As the system becomes more complicated—
with GeoGebra tabs, shared whiteboards, wiki pages, web browser tabs—it 
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becomes more difficult for the software to capture everything coherently and to 
present it to analysts in meaningful formats. As more student teams work in the 
system, it becomes a daunting task to maintain an overview and to find the best 
excerpts for specific kinds of examination, the best sessions for specific kinds of 
comparisons or the best corpora for specific kinds of quantitative analysis. We 
need more tools to assist with this, but above all, we need to conduct more analyses 
now that we are generating rich data. 

Theory: The theory presented in this book is clearly currently “under construction.” 
It emerged largely out of specific analyses of brief excerpts of interaction in student 
teams—guided, of course, by perspectives from post-cognitive philosophies and 
theories prevalent in CSCL and HCI. The refinement of this theory requires more 
analysis of what is taking place in VMT sessions of collaborative dynamic 
geometry. In particular, we need to analyze instances of creative discovery in the 
chats and GeoGebra activities; this will clarify what could be meant by a human-
centered informatics. Theory is an essential element of the DBR iterative cycles. 
Theory drives the design of a next refined approach and directs the questions used 
to analyze the results of the latest intervention. Out of the deepened understanding 
gained by a new experience of a trial, the theory is developed further. For instance, 
the theory of group cognition emerged from the design-based research reported in 
(Stahl, 2006) and was significantly expanded by the research reported in (Stahl, 
2009) and elsewhere. This research profited from rich experiences involving 
designed supports for collaborative-learning discourse. The theory of resources 
proposed in Chapter 8.  similarly arose from recent studies of VMT-with-
GeoGebra, such as that in Section 7.3. The current experimental collaborative-
learning environment is instrumented to capture small-group enactment of 
complex configurations of resources, including the tools of VMT-with-GeoGebra 
and the topics of the dynamic-geometry curriculum. In this setting, the 
development of theory may be the most important product of DBR. Greek 
geometry’s real contribution to the world was not to produce propositions for 
generations of students to memorize, but to promote rational discourse in the 
culture at large. 

The development of theory may be the 
most important product of DBR. Greek 
geometry’s real contribution to the world 
was to promote rational discourse. 

Pedagogy:  The principles for the design of the topics presented to student teams 
arose largely from rethinking previous presentations of geometry and dynamic 
geometry, from Euclid to the Common Core Standards. They were translated in 
order to emphasize a human-centered perspective of creative discovery centered 
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on geometric dependencies. Now it should be possible to investigate how well this 
is working through detailed analysis of team logs. Are the student groups 
experiencing their discoveries as products of their own work or as otherworldly 
truths? What suggestions for refining the pedagogy can be gleaned from analysis 
of actual data from teams enacting the resources provided? 

Practice: Similarly, analysis of the data now starting to be generated can drive 
revision of the curriculum of topics. The sequence of topics was designed to 
achieve certain goals. The early topics introduced the basic paradigm of 
collaborative dynamic geometry: taking turns, chatting about what one is doing, 
making sure everyone on the team understands, dragging figures, creating objects. 
There was an attempt to show how all of geometry is built up step-by-step and 
tool-by-tool from the atomic point and the act of dragging. Students are guided to 
construct their own tools and to understand the basics of geometry in terms of how 
they can construct things. They are encouraged to see explanations of how things 
work in terms of dependencies—and to gradually come to understand the nature 
of dependencies in dynamic geometry. Finally, the scaffolded development of 
higher-level skills should allow groups to explore open-ended micro-worlds with 
considerable latitude. Now, we can start to see if these goals are being achieved. 
Analyses of how different teams enact the topics will provide a concrete source of 
detailed ideas for improving the topics, revising the curriculum, and refining the 
approach. The latest phase of the project has produced logs of over 100 sessions 
of virtual teams of math teachers working on selected GeoGebra topics and logs 
of 280 hour-long sessions of teams of students, mainly working on the first five 
topics. Most of the student groups worked together for eight sessions. This 
provides a wealth of data on how teachers and students enact the designed 
resources and environment and how they start to engage in effective math 
discourse and collaboration. So far, the only extended analyses of these logs are 
those in Chapter 7. The formative analysis of these complex interactions is the next 
major task of the project. 

Human-Centered Geometry 
This book has tried to provide a sense of how DBR can work in a CSCL project 
and to offer a vision of the potential translation of Euclidean geometry into an 
exciting experience of human-centered collaborative dynamic geometry. It has 
taken a number of chapters on diverse topics, but the aim has been to present a 
coherent, though multi-faceted argument, providing a model of concrete research 
proposing a way forward for a specific educational domain. The evolution of 
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geometry learning has been underway for a long time. Perhaps the reflections in 
the preceding pages will contribute to its continuing dynamic. 

What is an appropriate way to teach geometry today? This book opened with the 
following question: How should one translate the classic-education approach of 
Euclid’s geometry into the contemporary vernacular of social networking, 
computer visualization, and discourse-centered pedagogy? Current socio-cultural 
theories of learning suggest that students learn best through active, student-
centered, collaborative learning (Sawyer, 2006). They propose that to learn 
mathematics is to start to participate in the community or culture of mathematics: 
to engage in the discourse practices of mathematical activity oneself. In addition, 
there is pressure to instruct students in so-called 21st century skills, including social 
networking and computer-based inquiry. For instance, the international PISA tests, 
which measure the math skills of children in hundreds of different countries, will 
be adding evaluation of collaborative problem solving skills in 2015. The research 
behind this book has tried to present an approach to geometry that responds to 
these complex and ever-shifting challenges. 

The previous chapter presented illustrative topics for teams of students to explore 
in VMT-with-GeoGebra. These were not designed to comprise a traditional course 
in geometry. They do not attempt to address all the historic issues of geometry 
education in public schooling, such as those reviewed by Sinclair (2008). These 
problems are largely left to the teachers (potentially with professional 
development), who will have to decide how to integrate the topics into their classes 
or to encourage their use outside of class. The topics are meant just to provide an 
introductory experience in dynamic geometry, to train student visualization skills, 
collaboration practices, software literacy and an orientation to mathematical 
relationships or dependencies. The hope is that such a preparation—whether it 
comes before or during or even after a traditional geometry course—will help the 
students to make sense of geometry and to engage in it more deeply, actively, 
collaboratively and with greater understanding. 

The focus on deeper understanding applies to the issue of proof in geometry as 
well. Proof is a central and highly contentious notion in geometry. As discussed in 
the conclusion to the previous chapter, proof in dynamic geometry can be 
considered closely aligned with the design of dependencies in dynamic 
construction. Research in dynamic geometry has persuasively argued that proof is 
quite different in dynamic geometry, that the processes of dragging and 
constructing mediate the conception of proof (see Jones, 2000; Laborde, 2000; 
deVilliers, 2003; deVilliers, 2004). By focusing on the understanding of why a 
conjecture is true, the process of designing dependencies to construct a figure to 
behave as conjectured parallels the process of designing a corresponding proof. 
Furthermore, because the focus on dependencies leads to explanation, it is likely 
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to be more motivating than a formal deductive approach. The use of dynamic-
geometry environments that tends to reduce student motivation to explicitly prove 
conjectures is the kind of use that is limited to dragging and does not involve the 
student in designing, discussing, and constructing dependencies. Accordingly, the 
approach advocated in this book has focused on dependencies as central to the 
study of dynamic geometry. To reduce the use of dynamic geometry to dragging 
is counter-productive. 

Dependencies have an interesting ontological ambiguity. They can be experienced 
as objective barriers, which constrict our freedom to drag objects at will, or they 
can be experienced as tools, which allow us to impose our agency and rules on the 
objects that we design. In dynamic geometry, we discover pre-existing 
dependencies as we drag figures and we create new dependencies as we construct 
interrelated objects. Given a specific figure in GeoGebra, we can discover that it 
consists of two triangles that are constrained to be inscribed and equilateral. Then 
we can design and construct two new triangles such that they are similarly 
constrained to be inscribed and equilateral. Before dragging the first pair of 
triangles, we could not know that they were dynamically inscribed and equilateral; 
before properly constructing the second pair of triangles, they were not 
dynamically inscribed and equilateral. The world does not simply exist for us to 
passively observe; neither can we create it without encountering any constraints. 
We must engage in creative discovery—both in dynamic geometry and in the 
world at large. Perhaps if students collaborate in a human-centered mathematics 
environment they will be better prepared to work together in a socially constructed 
but highly constrained shared world. 
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