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Abstract: This qualitative study considers middle grades’ mathematics teachers’ abilities to 
make sense of drawn representations of fraction and decimal operations. Our interest was in 
understanding how teachers interpret these drawings and whether they can flexibly move 
within and between the various drawings. Our findings focus issues of relevant mathematics 
that emerged as well as teachers’ abilities to move between and within the various drawings of 
interest. The conclusions tie our findings to the need for more professional development to 
support teachers in using drawn representations. 

 
Introduction 

 The National Council of Teachers of Mathematics (NCTM, 2000) and others (e.g., Kilpatrick, 
Swafford, & Findell, 2001) have suggested that engaging students in mathematics through multiple 
representations is powerful and necessary to support students’ development of mathematical understandings. 
Flexibility in utilizing representations is a primary characteristic of competent problem solvers (e.g., Dreyfus & 
Eisenberg, 1996). This flexibility supports conversations about students’ understandings (NCTM, 2000; Goldin, 
2002) and supports connection-making among mathematical concepts (Lesh, 1987; NCTM, 2000). Despite the 
widespread belief that using drawn or physical representations to support student learning is critical, teachers 
generally do not use them in their classrooms. We hypothesize that this underutilization is, at least in part, a 
product of teachers’ lack of comfort in using and interpreting drawn representations. We further hypothesize 
that this lack of comfort relates to a critical gap in teachers’ mathematical knowledge for teaching (Sowder, 
Philipp, Armstrong, & Schappelle, 1998). That is, one or more pieces of the ideal teacher’s “knowledge 
package” (Ma, 1999) are weak. The knowledge package a teacher needs for effective teaching of mathematics 
includes knowing content deeply, knowing content conceptually, and knowing the connections among ideas as 
well as “the representations for and the common student difficulties with particular ideas” (Ball, Lubienski, and 
Mewborn, 2001, p. 448). 

To explore our hypothesis that an incomplete knowledge package may be at play in teachers’ use (or 
lack thereof) of representations, we sought to understand whether and how teachers could interpret 
representations and how they relate the drawn representations to the mathematics that they teach. In this study, 
we consider 12 teachers’ responses to questions about seven different assessment items that required them to 
make sense of drawn representations of fraction and decimal operations. These included area and number lines 
models for various operations appropriate to sixth and seventh grade content.  

This work addresses some important gaps in the literature. First, much of the research on multiple 
representations has been conducted in the area of algebra with emphasis on student learning (Rider, 2004) with 
little attention paid to representations in other mathematical strands. Second, work done on representations has 
often focused on translating between disparate representations such as moving from a graph to a verbal 
description (e.g., Gagatsis & Shiakalli, 2004), rather than translating between drawn representations. 
Furthermore, while the research abounds on student conceptual understanding of rational numbers, the literature 
has yet to provide adequate knowledge of teacher understanding and use of multiple representations, specifically 
the use of drawn representations in the domain of rational numbers. 
 
Literature Review 
 As a way of understanding the field in terms of teachers’ abilities to interpret drawn representations, we 
provide an abbreviated overview of two areas of the literature. First, we discuss mathematical knowledge for 
teaching because it is critical to the assessment used in the study and because it provides a framework for 
thinking about teacher knowledge. Then, we discuss the existing literature on teacher knowledge of fractions 
and decimals. The overview presented here is not meant to be exhaustive, rather it is meant to situate this work 
in the domain of existing research.  
 



Mathematical Knowledge for Teaching 
For the purposes of this study, we focus on the knowledge construct called mathematical knowledge for 

teaching (MKT; Ball, 2003) which has been defined as being similar to Shulman’s pedagogical content 
knowledge (Shulman, 1986) but with additional emphasis on the specific knowledge a teacher needs to teach 
particular content. In short, it is the knowledge that is uniquely necessary for teaching students mathematics. A 
teacher with stronger MKT has the knowledge and skills to not only introduce content, but also to interpret 
student work and support students in moving from their current mathematical understandings to new 
understandings by providing them with opportunities to make connections between and among mathematical 
ideas. This is critical because using mathematical representations may open the classroom to more novel student 
approaches to solving problems, thus, creating a situation in which the teacher needs to interpret and respond to 
novel student thinking on the fly. MKT is a recent addition to the field in terms of its conceptualization, 
however, major efforts to develop instruments for measuring MKT have already taken place. The Learning 
Mathematics for Teaching (SII/LMT, 2004) assessment is a widely used instrument focused on MKT. In recent 
research, the LMT developers were able to show not only that MKT is important, but that differences among 
teacher LMT scores at the third grade level were as strongly related to students’ achievement as was the 
students’ SES level (Hill, Rowan, & Ball, 2004). This strongly suggests that understanding the extent to which 
teachers have MKT is important for understanding their likely ability to impact student performance.  

This is particularly important to the current study for several reasons. The most pressing reason is that 
the assessment items used for the teacher interviews included some from the LMT as well as additional items 
that were written by our own research team using the same approaches as those in the LMT. The questions 
included in the interviews provided teachers with one or more drawn representations for a fraction or decimal 
operation and asked the teacher to interpret different aspects of the representations. For example, some of the 
questions simply asked the teachers about what the drawing was showing them. Other questions provided 
sample student drawings and asked the teacher to determine whether the approaches used by the hypothetical 
students were appropriate. Many of the teachers who took the assessment indicated that the test was difficult and 
very different from other assessments they had taken. However, many of them also claimed to enjoy the 
opportunity to engage with the problems in the assessment. 
 
Teacher Knowledge of Fractions and Decimals 

While there is a rich body of research on students’ understandings about rational numbers and 
operations with them in the mathematics education literature, there is a distinct shortage of research on teacher 
knowledge in this area. It is generally known that many elementary and middle school teachers are not strong in 
their knowledge of fractions and fraction operations (e.g., Ma, 1999; Ball, Lubienski, & Mewborn, 2001). 
However, teacher thinking about fractions and decimals has generally not been as carefully explored as student 
thinking about these topics (e.g., Behr, Khoury, Harel, Post, & Lesh, 1997; Steffe, 2002).  

There are relatively few studies related to deep understanding of teacher knowledge. In one such study, 
Izsák (2008) examined a teacher’s knowledge of fraction multiplication as she interpreted students’ work with 
drawn representations and used drawn representations to teach fraction operations in the classroom. Izsák 
analyzed the teacher’s work utilizing Steffe’s (2002) notion of unit structure. This allowed analysis of teachers’ 
abilities to attend to referent units – that is their ability to keep track of what the whole was in each operation. 
While this is relatively straightforward in addition and subtraction situations because both parts of the problem 
relate to the same unit (i.e., whole), it is more difficult in fraction multiplication and division because the answer 
refers to different units (i.e., a part of a part). For example, in a problem such as 1

2
−

1
3

, the referent unit for both 

numbers is a whole (e.g., I have one-half pan of brownies and I take away brownies that equal one-third of the 
entire pan; See Figure 1). However, in a problem such as 1

2
×

1
3

, you are considering a quantity that is one-half 

of the part that is one-third of a whole (e.g., you have one-third of a pan of brownies and you want to take half 
of that piece of brownies away; See Figure 2). 

 

 
Figure 1. One-half of a pan minus one-third of a pan. 

 



 
Figure 2. One-half of one-third of a pan of brownies. 

 
In his study, Izsák found that this teacher could adapt linear or area representations in her teaching 

because she had flexibility in her ability to identify the referent units. However, the study uncovered that the 
participant found the intended use of drawn representation unclear. Thus, the study indicated that at least some 
teachers can use drawn representations flexibly, but that the reasons for using them may not be apparent to the 
teachers, therefore the teachers do not capitalize on the opportunities representations present.  

In another study, Izsák, Tillema, and Tunç-Pekkan (2008) explored both teacher and student 
knowledge of fraction addition using number lines in one classroom. In this study, the researchers conducted 
interviews with the teacher and with several pairs of students in the class in which they were asked to solve 
problems and to explain their understanding of different classroom events as prompted by video of the 
classroom. From detailed analysis of interactions between the teacher and one student, Izsák et al. determined 
that drawings can lead to miscommunication between teachers and students. Each of the different strategies the 
teacher and her student used to solve problems confounded each other’s understanding of fractions. Specifically, 
there were several cases where the teacher imposed her own thinking about fraction addition because she was 
unable to understand the student’s approach to coordinating units to solve fraction addition problems. Further, 
and relevant to the current study, the teacher clearly only valued number line representations as stepwise 
replacements for the addition algorithm. That is, according to the teacher, representations were used to model an 
answer rather than as a tool to solve problems. Together, Izsák’s studies suggest that MKT needs to include not 
only teachers’ recognition of different kinds of drawn representations for solving problems, but also a clearer 
understanding of when and why they should be used as well as how students might use them.  
 
Methods 

The data reported in the present study emerged from a larger study of middle school teacher 
professional development for which a rational numbers teacher assessment was developed and piloted with 
middle school teachers. In the validation effort, over two-hundred teachers took the assessment and 
approximately 25 were interviewed about selected items on the assessment. As part of the assessment validation 
effort, these interviews were conducted as a means for understanding how teachers were approaching solving 
the items on the assessment. The test items were taken, with permission, from the University of Michigan’s 
LMT assessment or were created by the project team. The content of the questions focused solely on fraction, 
decimal, ratio and proportions concepts, although their form varied between verbal, numeric, and drawn 
representations. The focus in this study was on 12 teachers’ interviews that included discussion of their 
approach to up to seven rational number items that focused on drawn representations. All of the teachers were 
interview on at least five of the items of interest to the present study. The teachers were selected because they 
were the total population interviewed on the two pilot forms of the assessment (13 additional teachers were 
interviewed to validate the final version of the assessment form and one teacher’s data were removed from 
consideration due to technical difficulties). The teachers each completed the multiple-choice assessment on 
paper, then were asked to talk about the test items in these interviews, which occurred within three days of the 
original assessment administration. In all cases, the teachers were given their test paper as a prompt for thinking 
about how they answered each item.  

The participants were from three school districts (one rural and two urban). They were selected for 
interviews based on their district (i.e., to maximize our personnel resources, we only interviewed in a small 
number of districts, though the overall sample for the test itself was a national one) and their willingness to 
participate. Because of our selection criteria, we were able to obtain a sample of teachers that included one 
special education teacher and 11 regular mathematics teachers. The participants ranged in experience from 
second-year teachers with undergraduate degrees in Middle Grades Education to teachers with alternative 
certification to teachers with 20 or more years of experience. Several of the teachers had masters degrees or 
higher. The sample included four men, four African-Americans, and five rural teachers. Some of the teachers 
had experience with the standards-based Connected Mathematics Program (Lappan, Fey, Fitzgerald, Friel, 
Phillips, 2002) that promotes the use of representations (as laid out by NCTM) while others had primarily used 
more traditional teaching materials. 

The twelve teachers interviewed were videotaped with two cameras (one focusing on the written work 
and hand gestures, the other on the entire view of the interviewer and interviewee). These videos were mixed 
into one file, thus creating a restored view (Hall, 2000) and then transcribed verbatim. The transcripts, thus, 



became the primary data source. However, the videos were used as a secondary source when clarification was 
needed on a gesture or statement. 

The initial analysis focused on uncovering the primary categories in the data. Each transcript was 
analyzed by at least two members of the research team using emergent codes and memoing (Strauss & Corbin, 
1998) to find emergent themes, which were used to develop pools of meaning in the participants’ discussions 
(Coffey & Atkinson, 1996). These pools of meaning represent the researcher identified context to which the 
comments belong. Once the initial coding was complete, we capitalized on our opportunity to triangulate across 
researchers (Denzin, 1989) by discussing our individual findings within and across participants to develop the 
consensus findings for the study. We also saw looking across research participants as a source of triangulation 
for our research (Denzin, 1989). As the findings began to emerge, further analysis was used to make sense of the 
emerging trends. To this end, each researcher focused on particular emergent findings to make sense of them, 
again relying on the other team members to identify inconsistencies in the analysis. 
 
Findings 

In our analysis of how and whether these middle school teachers were able to make sense of drawn 
representations of fraction operations, we found that teachers relied on four approaches to solving problems with 
drawn representations. Further, we found that the teachers struggled to move between different representations 
and, at times, even within a single drawn representation when it was used in a different kind of problem. Finally, 
we saw that teachers struggled with their flexibility in interpretation on a number of problems. This limited 
flexibility was sometimes related to mathematical issues such as constraints in flexibility with referent units 
while other times it was related to particular issues participants were having with specific representations. 

  
Approaches to Solving Problems with Representations 
 Four key approaches emerged as teachers explained their approaches to these problems. One approach 
was focused on looking for a set of perceived requisite features of the diagram with little or no attention paid to 
the mathematics of interest. A second approach was for teachers to work from the solution of the problem to 
find the representation that best showed that response. In other words, they used representations as a means to 
illustrate their solution rather than as a means to find a solution. Third, some teachers used the process of 
solving the problem as a basis for selecting the best answer. The fourth approach involved the teachers applying 
measurement approaches to solving the problems. 
 
Identifying Requisite Parts 
 This approach was pervasive for some teachers. They tended to describe their selections in terms of 
identifying the parts of the diagrams they were attending to. For example, in a situation such as that shown in 
Figure 2, a teacher using this approach would note that she could clearly see the one-third, the one-half, and the 
“answer”, thus the problem would be counted as correct. This is an interesting approach because it assumes that 
the representations somehow contain specific stepwise elements that are required for their correctness. When 
viewing the representations this way, the teachers were less likely to accept representations with slight 
modifications as being correct. For example, in Figure 3, a teacher using this approach would accept (a) because 
it shows an area that is 1

4
 designated by vertical bars with 2

3
 indicated by the horizontal bars. The answer is the 

shaded area where 1
4

 and 2
3

 cross. However, a few teachers did not accept (b) which shows 2
3

 of a square that 

is 1
4

 of the whole and several rejected (c) which shows 2
3

 of 2
8

. While several of the teachers acknowledged 

that (c) relied on equivalent fractions, they did not accept the model because it did not meet the requirement of 
each piece being present exactly as it is in the statement of the problem. This, of course, is important because 
teachers need to be able to make sense of student work – which is not predictable and prescribed – on the fly in 
the classroom. 
 
 
 
 
 

 
Figure 3. Examples of Multiplication with Area Models.1 

 



Looking for the Diagram that Matches a Solution  
 Seven of the interviewed teachers solved at least some of the items with an algorithm before they 
selected their responses. In fact, three used that approach throughout the assessment. This resulted in the  
representation serving only as a model of the answer. This is to be expected, to an extent, given that most 
mathematics teachers are experts in working with traditional algorithm-based approaches to mathematics. On 
the assessment, however, we constructed items so that teachers needed more than rules to select the correct 
answer – they needed deep understanding of the concept (Lesh, Post, & Behr, 1987). In fact, in most cases, the 
assessment provides the correct answer as part of the question stem because we are interested in understanding 
how teachers interpret the situation rather than their ability to solve the problem. This led some teachers to 
accept answers that illustrated correct quantities derived in inappropriate ways. For example, on one number-
line fraction multiplication item, one answer choice number line modeled multiplication and the next modeled 
subtraction, but both had the same quantity highlighted as a solution. Teachers who looked for a diagram to 
match the solution reported that either of these representations was appropriate because they both showed the 
correct answer – and the teachers were drawn to answers rather than processes.  
 
Using the Process of Solving to Select Solutions 
 This was the least common of the four approaches taken by the teachers who adhered to these 
approaches. In this approach, when the teachers were asked to find the correct representation of a problem such 
as 2

5
÷

1
7
=

14
5

, they stated that their decision for selecting the correct diagram was based on what they know 

about fraction division – that is, they knew that they needed to “flip and multiply”, therefore they looked for a 
solution that showed a length of 2

5
 repeated seven times. While rare, this approach was the one used by most of 

the participants who responded to this item correctly. We speculate that this was true because adults have been 
taught to automatically invert and multiply the divisor in the fraction division, and if teachers view drawing as a 
representations of algorithm, then this approach is sensible.  
 
Measuring to Find a Solution 
 Unlike the other three approaches, this approach seemed to be a last resort in that participants only used 
it in cases where they were visibly unable to use any of their other approaches to select an answer. In all we saw 
more than six teachers use this approach at least one time. In the measurement approach, the teachers relied on 
some aspect of measurement to determine the answer. In its most pronounced form, this included teachers 
drawing particular lengths on their papers and comparing them to the lengths on the diagrams to determine 
whether an answer was feasible. In it’s more subtle form, teachers would report that they had selected answers 
because the shaded areas were equal to other drawings or because the lengths all “looked” the same. 
Specifically, we saw six teachers try to use this method on the single decimal multiplication item – which was 
an item most of the teachers were unable to find appropriate answers for. Of those six, two used this approach 
on fraction multiplication with area and three with the number line multiplication problems.  

The analysis on teacher approaches to representations revealed that they did not activate their 
conceptual knowledge of fraction operations when making sense of these drawings. This may be due to 
teachers’ deep-rooted procedural knowledge of approaching fractions. We had hoped to see teachers use the 
representations in place of algorithms – particularly in those cases where the teachers were using classroom 
materials that capitalized on representations. Clearly, this analysis raises questions about the reasonable 
expectations for using drawn representations and about the need for professional development to support 
teachers in thinking about representations in different ways. 
 
Translating and Transforming  
 Consistent with earlier studies (e.g., Gagatsis & Shiakalli, 2004), we found that teachers had varying 
abilities to “translate”3, that is, move from one representation to another (e.g., number line to area model). 
Further, we found that knowledge of a single representation was not an indicator of a universal ability with that 
representation as our participants struggled to “transform” or move between different instances of the same 
representation. For example, few of the teachers were able to successfully reason about an area model for 
decimal multiplication, but all were able to reason about at least one area model for fraction multiplication. For 
our participants, the representation for modeling fraction division and decimal multiplication presented the most 
difficulty. Participants generally made explicit comments about their lack of understanding of those particular 
representations. Overall, participants’ inattention to referent units, their lack of flexibility with a model as 
representing more than one fraction simultaneously, or their general unfamiliarity with a particular 
representation were the three main reasons for the challenges they demonstrated while working with these 
drawn representations. In cases where the participant was especially confused about a particular representation, 
s/he typically demonstrated inattentiveness to units or demonstrated a loss of mathematical reasoning.   



Challenges in Transforming  
All participants exhibited difficulty when presented with variations of a single representation. How 

those difficulties manifested varied from participant to participant. Issues with transforming were most 
pronounced in items that considered area models for fraction multiplication, fraction division, and decimal 
multiplication. Most participants (11 out of 12) commented or exhibited familiarity with the most basic area 
model for fraction multiplication (See Figure 3a). When asked to extend their knowledge of the array model for 
fraction multiplication to division or decimal multiplication, nearly all participants (11 out of 12) exhibited some 
type of challenge in their mathematical thinking.  

For example, one participant expressed familiarity with area model in fraction multiplication because 
she had experienced it in her undergraduate work and in her teaching materials. However, when asked to 
determine a correct answer for a division problem using arrays, the participant selected the one that most closely 
modeled multiplication rather than division. In her rationale, she explained that she was selecting the one with 
recognizable attributes. For example, in a problem such as 3

4
÷

1
8

, the participant would have incorrectly 

selected Figure 4a over Figure 4b because it had shaded overlap much like the multiplication problems with 
which she was familiar. In her interview, the participant described her rationale, saying, “I guess on this one my 
thinking was, kind of like an area model, where you look for the overlap and there are two pieces that overlap on 
this one [Figure 4a]. And that’s why I felt it showed the answer.”  

 
 

 
 
 

 
 

Figure 4. Examples of Division with Area Model. 
 
Challenges in Translating  

As discussed above, most participants were familiar with the area model for multiplication. However, 
10 out of 12 participants experienced difficulty when translating between an area model for an arithmetic 
operation (e.g., fraction multiplication) to the number line model of the same operation. For example, the 
participants who showed some level of facility in their use of the area model for fraction multiplication were 
familiar with the representation shown in Figure 3a. However, when faced with a number line representation for 
the same concept, these participants incorrectly selected a representation that showed fraction subtraction but 
had a computational result equivalent to that of fraction multiplication3. Only one teacher showed greater 
facility with number lines than area models. 

In short, our analysis of teachers’ abilities to move within and between different representations 
indicated that teachers’ understanding of the representations appears to be contextualized. Perhaps because they 
perceive the representations as either illustrations of a solution or as stepwise procedures to be used in the same 
way traditional algorithms are used, these participants were not always able to translate their understanding of a 
representation from one situation to another. The less familiar they were with a drawn situation, the more likely 
they were to struggle with translating it. In the extreme cases, our participants failed to make mathematical 
connections even when they had already demonstrated adequate knowledge to interpret the drawings. 
 
Flexibility of Identifying Referent Units 
 The theme of flexibility was important in our effort to understand how the teachers were interpreting 
drawn representations. In our analysis we uncovered a general lack of flexibility related to referent units. Such 
flexibility is is critical to understanding the representation. Because these problems all focused on fractions and 
decimals, teachers who were unable to flexibly move between different interpretations of the units struggled to 
make sense of the problems. In one simple example, the teachers were provided with a problem similar to 
Figure 5. Most of the teachers recognized this problem as showing a common mistake students make and readily 
identified that one interpretation of the problem is that the first square is one-fourth which is added to a 
rectangle equal to three-fourths. In that case, the answer would be four-fourths or one rectangle completely 
colored in. However, three teachers were unwilling and two more were only tentatively willing to accept that the 
small square could be one whole and that the resulting shaded rectangle would then be equal to four wholes. We 
interpreted this as a limitation in the teachers’ flexibility with units. 
 
 

 
Figure 5. A fraction addition problem. 



 We saw this same limited ability to understanding multiple interpretations of a single drawing in one 
fraction division problem where teachers were unable to accept that a large square was equal to anything other 
than one or five (they were being asked to interpret a division response of 5/3 which was acceptably modeled in 
the diagram). In all, only two teachers were able to accept that problem as correct, one was tentative and the 
other nine were unable to conceptualize the diagram as showing anything other than one or five.  

We also saw limitations in flexibility in the decimal multiplication problem, which showed only the 
portion of the area being modeled and not the unit. All twelve participants struggled with this item and only 
three of them successfully determined that the drawing provided in the item did not include any rectangles with 
an area equal to one. Interestingly, based on our analyses, we posit that the participants’ difficulties on this 
problem were linked to their inability to make sense of a drawing that did not show the unit. While nine teachers 
explicitly referred to the representation as showing the area – with one side equal to 1.5 and the other equal to .5 
– when asked about the grey shaded area, the participants shifted from this area view of the diagram to interpret 
the grey area as being equal to five. They explained this was true because the grey area was five tall and one 
wide.  

 
 
 
 
 
 

Figure 6. An area model for decimal multiplication. 
 
 Our participants’ lack of flexibility in identifying and interpreting units was somewhat surprising and is 
clearly problematic in terms of their abilities to use drawn representations in their classrooms. When given the 
opportunity, middle grades students draw myriad novel representations and the teachers need to be able to 
interpret them on the fly. Otherwise, like the teacher in Izsák’s (2008) study, they will redirect students to work 
the problems the “right” way rather than support them in developing their own mathematical understanding. 
 
Conclusion 
 This study considered how twelve middle grades teachers made sense of drawn representations, 
specifically number lines and area models, of fraction and decimal operations. Our interest in this was driven by 
the calls for teachers to use such representations in their classrooms as tools for promoting student 
communication about mathematical ideas and connections between mathematical ideas. In our own work, we 
have seen teachers use representations in a variety of ways, but had little understanding of what the teachers 
think the representations show or how they work. This study allowed us to explore this issue. 
 While the findings presented here indicate there are a number of deficits in these teachers’ 
understandings of fraction and decimal representations, the problem cannot be seen as belonging exclusively to 
the teachers. After all, many of them have never had opportunities to explore mathematics with drawn 
representations. Above all, this study raises a number of issues to be addressed in professional development. For 
example, professional development for supporting teachers in learning to use representations clearly needs to 
focus on interpreting and generating a variety of models rather than simply focusing on how to draw one “right” 
model of each problem. In order to be empowered to interpret representations, teachers need to be given the 
opportunity to connect their own mathematical knowledge to the representation and, perhaps, even build new 
understandings about area and length as it relates to drawn representations.  
 If we work from the premise that using representations is good for students in developing mathematical 
connections (Lesh, 1987; NCTM, 2000), then most certainly representations are equally important for teachers 
in their professional learning. Professional development needs to support teachers in being able to take what 
they know (e.g., how to determine area) and apply it in novel situations to make sense of them.  
  
Endnotes  
(1)  All questions for this assessment are secure, therefore all illustrations provided in the paper are examples meant to give 

a sense of the mathematics and representation rather than the actual question from the assessment. 
(2)  We borrowed the terms “translate” and “transform” from the work of Lesh, Post, and Behr, 1987. 

(3)  Fractions 1
a

and 1
b

 where b − a = 1  and a, b are real numbers would yield: 1
a
−

1
b
=

b − a
ab

=
1

ab
. 
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