

Gerry Stahl’s assembled texts volume #2

Tacit & Explicit
 Understanding
 in Computer
 Support

Gerry Stahl

 Tacit and Explicit Understanding in Computer Support 2

Gerry Stahl's Assembled Texts

1. Marx and Heidegger

2. Tacit and Explicit Understanding in Computer Support

3. Group Cognition: Computer Support for Building Collaborative Knowledge

4. Studying Virtual Math Teams

5. Translating Euclid: Designing a Human-Centered Mathematics.

6. Constructing Dynamic Triangles Together: The Development of Mathematical Group
Cognition

7. Essays in Social Philosophy

8. Essays in Personalizable Software

9. Essays in Computer-Supported Collaborative Learning

10. Essays in Group-Cognitive Science

11. Essays in Philosophy of Group Cognition

12. Essays in Online Mathematics Interaction

13. Essays in Collaborative Dynamic Geometry

14. Adventures in Dynamic Geometry

15. Global Introduction to CSCL

16. Editorial Introductions to ijCSCL

17. Proposals for Research

18. Overview and Autobiographical Essays

19. Theoretical Investigations

20. Works of 3-D Form

21. Dynamic Geometry Game for Pods

 Tacit and Explicit Understanding in Computer Support 3

assembled texts volume #1

Tacit & Explicit
Understanding

Gerry Stahl

 Tacit and Explicit Understanding in Computer Support 4

Gerry Stahl

Gerry@GerryStahl.net

www.GerryStahl.net

Copyright © 1993, 2017, 2022, 2025 by Gerry Stahl

Published by Gerry Stahl at Lulu.com

Printed in the USA

ISBN 978-1-329-85858-9 (ebook)

ISBN 978-1-387-85792-0 (paperback)

 Tacit and Explicit Understanding in Computer Support 5

 Note

This volume contains the doctoral dissertation of Gerry Stahl in Computer Science
at the University of Colorado at Boulder. It was entitled: “Interpretation in Design:
The Problem of Tacit and Explicit Understanding in Computer Support of
Cooperative Design” and was defended on August 5, 1993.

The dissertation explored the implications of the theory of tacit knowledge for the
problem of computer capture of design rationale. It discussed a software system
for design by teams of NASA designers. The computer environment captured
design ideas in a flexible system of professional perspectives. This research led to
explorations after graduation in prototyping collaboration software incorporating
mechanisms to support perspectives and negotiation.

INTERPRETATION IN DESIGN:

THE PROBLEM OF

TACIT AND EXPLICIT UNDERSTANDING

IN COMPUTER SUPPORT OF COOPERATIVE DESIGN

by

GERRY STAHL

B.S., Massachusetts Institute of Technology, 1967

University of Heidelberg, Germany, 1968

M.A., Northwestern University, 1971

University of Frankfurt, Germany, 1973

Ph.D., Northwestern University, 1975

M.S., University of Colorado, 1990

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Computer Science

1993

This dissertation for the Doctor of Philosophy degree by

Gerry Stahl

has been approved for the

Department of

Computer Science

by

Gerhard Fischer

Raymond J. McCall, Jr.

Date: August 5, 1993

Dissertation Committee:

Gerhard Fischer, Computer Science (co-chair)

Raymond McCall, Environmental Design (co-chair)

Clayton Lewis Computer Science

Mark Gross Environmental Design

Michael Eisenberg Computer Science

Wayne Citrin Electrical and Computer Engineering

Stahl, Gerry (Ph.D., Computer Science)

INTERPRETATION IN DESIGN:

THE PROBLEM OF TACIT AND EXPLICIT UNDERSTANDING

IN COMPUTER SUPPORT OF COOPERATIVE DESIGN

Thesis directed by Professors Gerhard Fischer and Raymond McCall

Abstract

his work analyzes the central role of interpretation in non-routine design.
Based on this analysis, a theory of computer support for interpretation in
cooperative design is constructed. The theory is grounded in studies of

design and interpretation. It is illustrated by mechanisms provided by a software
substrate for computer-based design environments, applied to a sample task of
lunar habitat design.

Computer support of innovative design must overcome the problem that designers
necessarily make extensive use of situated tacit understanding while computers
can only store and display explicit representations of information. The automation
techniques used for routine design are not applicable: techniques are needed to
support creative, tacit human understanding with explicit computer
representations.

The process by which designers transform their tacit preunderstanding into explicit
knowledge is termed “interpretation.” Interpretation is necessary for solving
design problems and collaborating with other designers. Considerable explicit
knowledge is thereby generated in the natural course of designing. Often this
knowledge includes the most valuable information that can be presented to
designers who revisit these design projects or undertake similar projects in the
future. If representations of this knowledge have been defined using computer-
based design support systems, then the representations can be captured by these
systems for the support of subsequent design work.

A theory of computer support for interpretation in design is presented in three
stages. First, the role of interpretation in design is explored by reviewing
descriptions of design by Alexander, Rittel, and Schön; by conducting a protocol
analysis of lunar habitat design; and by applying Heidegger’s philosophy of
situated interpretation. Second, this analysis of interpretation is extended to define

T

 Tacit and Explicit Understanding in Computer Support 9

a theory of computer support. The features of this theory—support for the situated,
perspectival, and linguistic characteristics of interpretation—are used to evaluate
previous work on software design rationale systems. Third, design principles are
discussed for HERMES, a prototype hypermedia substrate for building computer-
based design environments to support interpretation in tasks like lunar habitat
design. The hypermedia integrates a perspectives mechanism and an end-user
language to capture and modify representations of the design situation, alternative
perspectives on design tasks, and terminology for conceptualizing design issues.

Acknowledgements

The perspective on design methodology and the approach to computer support for
design presented here grew out of the research of Raymond McCall of the School
of Environmental Design, Gerhard Fischer of the Department of Computer
Science, and other members of the Human-Computer Communication (HCC)
group at the University of Colorado at Boulder. I have been privileged to work
closely with Ray for three years as his graduate research assistant. My HERMES
prototype began as a rewrite of his PHIDIAS project, and incorporated much of its
approach. Even where my ideas have gone off in new directions, they have been
helped along by Ray's unbounded interest and unstinting assistance. For the same
three years I have participated in the HCC research group led by Gerhard,
particularly the weekly seminars on computers and design. Gerhard guided me
from vague interests in theoretical issues to a coherent view and a concrete
dissertation project, using his characteristic style that provides a model of non-
directive critiquing at its most effective.

Clayton Lewis' courses on AI and interface design raised many of the concerns I
have tried to address in my dissertation. The HERMES language benefited not only
from Clayton's programming language evaluation methodology, but more from his
personal perceptive analysis. Michael Eisenberg also contributed to my
understanding of the language, bringing his understanding of (and support for) the
role of languages in programmable applications. Each member of my committee
contributed his own strong perspective to my work. However, I was able to rely on
Mark Gross for balanced reality checks. Mark placed each draft I gave him in the
broader view of AI and design practice, and wondered in a friendly but insistent
way what these esoteric notions really had to do with making better habitats.
Although I have tried to address many concerns of my professors and fellow
graduate students, I have used Mark to represent my target audience: skeptical but
informed and interested. Wayne Citrin played a similar role as reader of this
dissertation.

While individual professors had specific effects on my work, the most pervasive
influence was that of the HCC research group as a whole, which included about
twenty graduate students during my stay. They built the systems, gave the

 Tacit and Explicit Understanding in Computer Support 11

presentations, and made fun of my ideas. A series of student reading groups on
situated cognition was particularly important in helping me start to grapple with
the ideas of Schön, Suchman, Winograd, Ehn, and Dreyfus. Research groups like
this where people's very different perspectives are brought together under the
constraints of shared work and common vocabularies exert pervasive influences
that are impossible to acknowledge in detail. Nevertheless, I must single out my
beta-testers, Tamara Sumner, Jonathan Ostwald, and Kumiyo Nakakoji, who
relentlessly critiqued drafts of every chapter. Many of the ideas and formulations
in the dissertation arose during reviews of those drafts with them and with Ray
McCall. Special note should also be made of the dissertation work of Brent Reeves,
Kumiyo Nakakoji, and Frank Shipman, which is closely related to the themes of
this dissertation.

Implicit in this dissertation is the question about the relationship of AI to
philosophy, which has intrigued me since my undergraduate days at MIT. In 1966
I attended a debate between my teachers, Marvin Minsky and Herbert Dreyfus.
Convinced by Dreyfus' arguments that the approaches of AI were fundamentally
flawed, I wondered what an AI based on Heidegger's philosophy would be like.
What I am proposing now is a partial answer to that question, although one quite
different from anything I could have imagined 25 years ago. For my understanding
of Heidegger and hermeneutics I am indebted to Sam Todes, Ted Kiesel, Hans-
Georg Gadamer, and members of the Frankfurt School of critical social theory.

Writing a dissertation is part of living a life. Accordingly, this dissertation owes its
existence to Carol Bliss, my wife, without whom I would never have moved West
to pursue this study. She both tolerated my long hours at the computer and enriched
the remaining times.

Johnson Engineering (JE) of Boulder contributed generously the time and
expertise of Designer Mike Pogue and Vice President John Ciciora. They provided
the primary source of information about lunar habitat design, its needs, and its
methods.

The research in providing computer support for the task of lunar habitat design was
supported in part by grants to Ray McCall from the Colorado Advanced Software
Institute (CASI) for 1990-91, 1991-92, and 1992-93 in collaboration with IBM and
JE. CASI is sponsored in part by the Colorado Advanced Technology Institute
(CATI), an agency of the State of Colorado. CATI promotes advanced technology
education and research at universities in Colorado for the purpose of economic
development.

Material from the following chapters has been previously published in different
formats: Chapter 1 (Stahl, 1993a), Chapter 8 (Stahl, 1993b), Chapter 9 (Fischer, et
al., 1993a, 1993b), Chapter 10 (Stahl, et al., 1992)

Contents

NOTE ... 5	
ACKNOWLEDGEMENTS ... 10	
CONTENTS .. 12	

INTRODUCTION .. 15	

CHAPTER 1. OVERVIEW ... 21	
1.1.	 UNDERSTANDING INTERPRETATION 21	
1.2.	 THE METHODOLOGY OF DESIGN ... 29	
1.3.	 THE EXAMPLE OF LUNAR HABITAT DESIGN 31	
1.4.	 THE ANALYSIS OF SITUATED INTERPRETATION 33	
1.5.	 TACIT AND EXPLICIT KNOWLEDGE IN DESIGN 38	
1.6.	 CONSEQUENCES FOR A THEORY OF COMPUTER SUPPORT

 .. 41	
1.7.	 PREVIOUS SOFTWARE SYSTEMS FOR DESIGN 46	
1.8.	 HYPERMEDIA IN THE HERMES SYSTEM 48	
1.9.	 PERSPECTIVES IN HERMES .. 51	
1.10.	 THE HERMES LANGUAGE .. 52	
1.11.	 CONCLUSION ... 56	

PART I. INTERPRETATION IN DESIGN 57	

CHAPTER 2. THREE METHODOLOGIES OF DESIGN 59	
2.1.	 ALEXANDER: THE STRUCTURE OF A DESIGN SITUATION60	
2.2.	 RITTEL: DELIBERATING FROM PERSPECTIVES 65	
2.3.	 SCHÖN: TACIT KNOWING AND EXPLICIT LANGUAGE ... 70	

CHAPTER 3. INTERPRETATION IN LUNAR HABITAT DESIGN 82	
3.1.	 SITUATIONS OF PRIVACY AND THE PROBLEM OF

REPRESENTATION ... 83	

 Tacit and Explicit Understanding in Computer Support 13

3.2.	 PERSPECTIVES ON PRIVACY ... 91	
3.3.	 CAPTURING THE LANGUAGE OF PRIVACY 103	

CHAPTER 4. HEIDEGGER’S PHILOSOPHY OF INTERPRETATION
 .. 112	

4.1.	 DEFINITION OF THE SITUATION AS BASIS FOR TACIT
UNDERSTANDING ... 117	

4.2.	 THE ROLE OF SHARED TRADITIONS AND PERSONAL
PERSPECTIVES ... 126	

4.3.	 INTERPRETATION AS EXPLICATION IN LANGUAGE 133	

PART II. THE PROBLEM OF TACIT AND EXPLICIT
UNDERSTANDING .. 145	

CHAPTER 5. GROUNDING EXPLICIT DESIGN KNOWLEDGE . 146	
5.1.	 APPLYING HEIDEGGER’S PHILOSOPHY TO DESIGN 147	
5.2.	 THE SOCIAL AND HUMAN GROUNDING OF

INTERPRETATION .. 155	
5.3.	 TRANSFORMATIONS OF TACIT TO EXPLICIT

UNDERSTANDING ... 163	
CHAPTER 6. A THEORY OF COMPUTER SUPPORT 169	

6.1.	 A PEOPLE-CENTERED APPROACH 170	
6.2.	 SUPPORTING SITUATED, PERSPECTIVAL, LINGUISTIC

INTERPRETATION .. 172	
6.3.	 A MODEL OF COMPUTER SUPPORT 178	

CHAPTER 7. RELATED COMPUTER SYSTEMS FOR DESIGN .. 183	
7.1.	 EXTERNAL MEDIA FOR DESIGN ... 186	
7.2.	 PERSPECTIVES FOR DELIBERATION 195	
7.3.	 LANGUAGES FOR HUMAN PROBLEM-DOMAIN

COMMUNICATION ... 202	

PART III. COMPUTER SUPPORT OF COOPERATIVE DESIGN
 .. 215	

CHAPTER 8. REPRESENTING THE DESIGN SITUATION 217	
8.1.	 A COMPUTATIONALLY ACTIVE MEDIUM FOR DESIGNERS

 .. 218	
8.2.	 KNOWLEDGE REPRESENTATION IN THE HERMES

SUBSTRATE ... 224	
8.3.	 LUNAR HABITAT DESIGN ENVIRONMENTS 228	

 Tacit and Explicit Understanding in Computer Support 14

CHAPTER 9. INTERPRETIVE PERSPECTIVES FOR
COLLABORATION .. 235	

9.1.	 A SCENARIO OF COOPERATION ... 237	
9.2.	 A HYPERMEDIA IMPLEMENTATION OF PERSPECTIVES248	
9.3.	 EVOLVING PERSPECTIVES .. 255	

CHAPTER 10. A LANGUAGE FOR SUPPORTING INTERPRETATION
 .. 264	

10.1.	 AN APPROACH TO LANGUAGE DESIGN 267	
10.2	 ENCAPSULATING EXPLICIT MECHANISMS IN TACIT FORMS

 .. 284	
10.3	 DEFINING INTERPRETIVE CRITICS 290	

CONCLUSION .. 301	

CHAPTER 11. CONTRIBUTIONS ... 302	
11.1	 CONTRIBUTIONS TO A PHILOSOPHY OF INTERPRETATION

 .. 304	
11.2	 CONTRIBUTIONS TO A THEORY OF COMPUTER SUPPORT

 .. 305	
11.3	 CONTRIBUTIONS TO A SYSTEM FOR INNOVATIVE DESIGN

 .. 306	
BIBLIOGRAPHY .. 309	
APPENDIX ... 320	

A.	 PROGRAMMING WALKTHROUGH OF THE HERMES
LANGUAGE ... 321	

B.	 TACIT USAGE OF THE HERMES LANGUAGE 336	
C.	 EXPLICIT STRUCTURE OF THE HERMES LANGUAGE 351	

Introduction

 “Not angels, not humans,

 and already the knowing animals are aware

 that we are not really at home in

 our interpreted world.”

 Rainer Maria Rilke

 Duino Elegies

 (1912, p.10)

 Tacit and Explicit Understanding in Computer Support 16

A few words from the author’s perspective may help to orient the reader

for the task of interpreting the discussions that follow.

The focus of this dissertation is interpretation in design. This theme is motivated
by the desire to provide computer support for the work of designers. The initial
impetus for thinking about the support of design as the support of an interpretive
process came from two sources (one theoretical and one empirical):

(i) I felt that a new theoretical perspective was needed on computer support of
professional work, or more broadly human-computer interaction and computer
supported cooperative work. The old view that thought was a form of
computation—or that mind was functionally equivalent to software—has
outlived its usefulness as a theoretical foundation for the design of software. I
suspected that ideas from Heidegger’s philosophy could help here. Readings
of situated cognition theorists reinforced this suspicion.

(ii) After videotaping an initial session of lunar habitat designers at work, I was
struck by how involved they were in processes of interpretation. In particular,
issues of privacy in the habitat dominated their thinking and they concentrated
on working out an interpretation of what privacy meant under lunar mission
conditions and what implications that interpretation had for the habitat layout.

These ideas were only tacitly understood by me as I worked on the programming
of the HERMES system, a software substrate for design environments to support the
work of lunar habitat designers. I would have been hard pressed to state why I
thought Heidegger was relevant or how design was a matter of interpretation.
Above all, I could not articulate what implications this all had for the HERMES
software. When my programming was done, I proceeded to try to put my implicit
commitments into words and provide supporting evidence for them. I did this by
writing the chapters of this dissertation, basically in their current order:

Chapter 1. Because HERMES was actually programmed before the issues about
supporting interpretation were explicitly clear to me, the writing of the dissertation
as a process of articulating my formerly tacit understandings in language has been
a journey of gradual discovery. The HERMES system has served in this journey as
an artifact to stimulate interpretation. The resultant dissertation is, to a large extent,
a research document, sharing with the reader a contact with the raw phenomena
that make its claims understandable. To some extent, I have attempted
retrospectively to impose an argumentative structure on the text. So, for instance,

 Tacit and Explicit Understanding in Computer Support 17

Chapter 1 provides a road map through the other chapters, so the reader has a
clearer sense of where the journey is going than the author originally did.
Undoubtedly, I have failed to provide sufficient direction to make the long journey
comfortable. I rationalize this by reminding myself that in order to accept new
ideas each reader must have some contact with the phenomena themselves (hence
the level of detail and proliferation of quotations), and that each reader will
construct his or her own conclusions from the material I have offered (hence the
lack of parsimony with respect to related thoughts and side paths).

Chapter 2. I turned first to three writers who I felt shed the most insight into the
nature of the design process. As I tried to pinpoint their central ideas I was struck
by the correspondence between these ideas and the three features of
preunderstanding in Heidegger’s theory. While Alexander, Rittel, and Schön
discussed these three features in very different ways, they each paid special
attention to one of them, and discussed the other two secondarily. I decided that
these three writers could be taken as spokespeople for the three features of
preunderstanding: its (a) situated, (b) perspectival, and (c) linguistic
characteristics.

Chapter 3. In turning to the videotapes of the lunar habitat designers, I focused
on a pivotal passage in which the direction of the rest of the designing was
determined. Here the three features of interpretation could be seen at work: The
designers were trying to design a situation for astronauts to live in where there
would be a comfortable balance of private and public space. The emphasis on
privacy defined a forceful perspective that determined their design work. Lengthy
discussions among the designers articulated in language their tacit understandings
of privacy and raised the question of how such understandings could be
represented in design guidelines, including NASA’s design standards.

Chapter 4. Heidegger’s philosophy provided an analysis of interpretation that
clarified many of the issues raised by the design methodologists and the video
protocol analysis. It also offered a basis for a theory of computer support. For
Heidegger, interpretation is the process of transforming tacit preunderstanding
into progressively more explicit forms. In this process, the understanding is
significantly altered; for instance, surprise discoveries may be made and the
interpretive framework may require revision. The three features that are already
present in tacit preunderstanding are each carried along and transformed in the
more explicit forms of understanding: The situation is the tacitly preunderstood
network of interrelationships, which may need to be revised as interpretation
proceeds and discoveries are made that do not fit in. Interpretation always focuses
on something as viewed from a particular perspective. As understanding becomes
increasingly explicit, it can be communicated in language.

 Tacit and Explicit Understanding in Computer Support 18

Chapter 5. Applying Heidegger’s analysis of being-in-the-world to the
imaginative realm of design clarified the structure of the successive
transformations of understanding that Heidegger eludes to. Like a designed
artifact, reality is socially constructed. Human intentionality grounds the
interpretive construction of reality in tacit preunderstanding. Transformations of
initially tacit preunderstandings can eventually be explicated and formalized so
that knowledge can be reflected upon, communicated, documented, and stored in
computer representations.

Chapter 6. Building on this analysis of interpretation in design, I sketched my
theory of computer support. I argued that Heidegger provides theoretical grounds
for requiring that computer systems for innovative tasks (like lunar habitat design)
be subservient supports for the people who use them and who must make the
critical decisions and judgments based on intentionality and understanding that
computers cannot have. Such systems to support interpretation should support the
three features of understanding discussed above: representing the situation,
offering choices of perspectives, and providing linguistic expressions. Of course,
software design environments could provide many other features, but these are the
ones I focused on as illustrative of a people-centered approach to supporting
interpretation in design. I extended the model of successive transformations of
understanding to include a model of computer support for this process of
interpretation.

Chapter 7. Previous software systems have suggested how to support particular
points along the continuum between tacit and explicit understanding. At the other
extreme, domain-oriented design environments provide direct manipulation
representations of the tacit situation. Domain-independent design rationale
systems propose explicit systems of perspectives, query languages, or explicit
programming languages. Each of these ideas from related work have had their
influence on the HERMES system. But none of them have tried to support
interpretation in design in a theoretically motivated way. I explored a number of
suggestions in the literature for providing external media for designers to work in,
several mechanisms for perspectives to organize viewpoints, and some end-user
language approaches. These led to ideas for ways HERMES could provide a proper
mix of support for tacit and explicit understanding, and for the transformation of
one into the other.

Chapter 8. Three key features of HERMES are discussed in the dissertation. They
correspond to the features of human interpretation, which they are intended to
support. (a) The hypermedia structure provides an integrated knowledge
representation structure that incorporates (b) a perspectives mechanism and (c)
expressions in an end-user language. It is intended to support tacit understanding
of a design situation by representing that situation with multimedia elements that

 Tacit and Explicit Understanding in Computer Support 19

can be tacitly reused and modified. To the extent necessary, a designer using the
system can make the representation structure more explicit in order to modify it to
meet the needs of innovation. The hypermedia substrate provides functionality for
a computationally active medium, on which design environments can be built for
tasks like lunar habitat design.

Chapter 9. Design is generally a cooperative endeavor, involving the deliberation
of multiple individual design perspectives and the construction of a shared
perspective. HERMES supports this by organizing all knowledge in the system with
a hierarchy of perspectives. While a designer is working, all knowledge retrieval
and display by the system is done within a selected perspective, without the
designer needing to be aware of this filtering of knowledge. However, designers
can also use the perspective mechanism explicitly in order to incorporate
knowledge from other perspectives or to create new perspectives that inherit
information from existing ones. I described a scenario of how designers using
HERMES could capture the knowledge that arose in the videotaped design session.
The scenario included creation and merging of perspectives to support the
evolution of knowledge. A discussion of the scenario presents the details of the
hypermedia implementation of perspectives.

Chapter 10. The HERMES language supports tacit expression by providing a
vocabulary of domain-oriented terminology that can be reused without concern for
the (potentially quite complex) underlying definitions. At the same time, the
interface to the language allows a designer to explore the definitions of particular
terms and modify them in accordance with innovative needs, personal
perspectives, or collaborative agreements. While the HERMES language serves as
a programming language for communicating algorithmic definitions to the
computer, many of the concerns that programmers must keep explicitly in mind
when using conventional general-purpose programming languages are
encapsulated in tacit forms and implicitly taken care of by the HERMES language.
To test the power of the language, I worked out the definition of complex
interpretive critics for privacy issues in detail.

Chapter 11. What has been accomplished here? I set out to define a new
theoretical perspective for the computer support of professional work, taking lunar
habitat design as my concrete example. I proceeded by trying to rethink recent
attempts that were around me, notably the PHIDIAS and JANUS design
environments developed at the University of Colorado. First, I programmed my
own design environment substrate in order to work out implementation details for
myself. Then I studied the design methodologists and situated cognitionists who
had influenced the development of these systems. I also took time to familiarize
myself with a particular design domain, that of lunar habitat design. Guided by
Heidegger’s analysis of interpretation, I tried to question as radically as I could the

 Tacit and Explicit Understanding in Computer Support 20

rationale given for the approach of PHIDIAS and JANUS. The theory of computer
support I arrived at is, however, not so different. I concluded that the general
approach of those systems was consistent with my theory.

What I feel I have achieved is not a recipe for a new kind of software, but a more
carefully articulated way of thinking about the design of software for innovative,
collaborative design as epitomized by lunar habitat design. Previous rationale for
design environments did not explicitly recognize the centrality of interpretation in
human-computer interaction or analyze the transformations from tacit human
understanding to explicit computer representations. Not only does this dissertation
work out these themes and their related issues in considerable detail, but it also
provides technical descriptions of software mechanisms that extend previous
design environment techniques in order to support interpretation in design.

CHAPTER 1. OVERVIEW

he following chapters present a theory of computer support for innovative
(non-routine), cooperative design based on an analysis of interpretation in
design. They will argue that the central impediment to computer support of

innovative design is that designers make extensive use of situated tacit
understanding while computers can only store and display explicit representations
of information.

The process by which designers transform their tacit preunderstanding into explicit
knowledge is termed interpretation. (See Part I for an analysis of interpretation in
design.) Interpretation is central to the process of solving design problems and is
part of the process of collaborating with other designers; the explicit knowledge
that is generated by this interpretation is therefore a natural by-product of
innovative, cooperative design. (See Part II for a theory of computer support based
on this generated knowledge.) Representations of this knowledge defined using
computer-based design support systems can be captured by these systems for the
support of subsequent design work, including the maintenance and modification
of the designed artifacts. (See Part III for details of a computer system for
supporting interpretation in design.)

Chapter 1 provides a chapter-by-chapter overview of the dissertation. It discusses
the claims, arguments, and themes that arise in each of the subsequent chapters,
without going into the detail necessary to defend the claims, support the arguments,
or work out the themes. Its purpose is to provide a readers’ guide to the flow of the
dissertation, motivating how one discussion leads into or provides the background
for another. Section 1.1 offers a preliminary presentation of the central concept of
interpretation, anticipating the analysis of this concept from various approaches in
the dissertation. Each of the other sections provides an overview of a specific
chapter.

1.1. Understanding Interpretation
To say that interpretation is central to innovative design is to stress that in order to
design the designer must to some degree understand and be able to articulate the
significance of the artifact being designed. This may include, for instance,
understanding what is desired in a task specification, how possible composite parts
of the artifact will function and interact, or how people can use the designed

T

 Tacit and Explicit Understanding in Computer Support 22

artifact. According to the analysis presented below, such understanding is possible
for people but not for computers. People understand things because they are
actively involved with them in the world. The significance of artifacts for a person
is determined by the artifacts’ relationships to other artifacts, activities, and people
whose significance is already understood as part of the person’s situation.
Understanding combines personal and socially shared perspectives on the world.
All of this takes place primarily in tacit ways, i.e., unverbalized. However, one’s
tacit understanding of something can be partially articulated or expressed explicitly
in spoken, written, or graphical language—either to deepen one’s own
understanding or to communicate with others.

Two aspects of the process of interpretation can be distinguished.

(1) There is a tacit preunderstanding based on previous background knowledge;
items from this preunderstanding can be articulated explicitly.

(2) There is the possibility of revising that preunderstanding based on discoveries
that are opened up by it.

That is, one can interpret something as something that one already knows about,
or as a variation that differs from that in ways that are discovered as a result of the
breaking of one’s tacit expectations. Accordingly, interpretation in innovative
design involves both human understanding of extensive background and a creative
ability to revise one’s understandings iteratively.

The analysis of interpretation developed below distinguishes three characteristics
of interpretation: being situated, having a perspective, and using language.1

(a) Being situated means that what is to be interpreted is tacitly understood by
virtue of its associations within an open-ended network of related artifacts,
people, human purposes, and other concerns. All of these associations are
themselves understood as part of one’s background understanding of one’s
involvements.

1 Note that the numbering scheme of 1, 2 and a, b, c is used consistently in this

chapter as an organizing structure for the dissertation. It indicates
correspondences among items listed; in particular, it indexes the way in which
computer support features correspond to the characteristics of interpretation.
Subsequent chapters are also organized around discussions of these
characteristics and features, as emphasized in this Overview. Frequently, the
numbering system is dropped and key terms are italicized as reminders that the
discussion is focusing on (1) preunderstanding and (2) discovery, or on the (a)
situated, (b) perspectival, and (c) linguistic character of understanding.

 Tacit and Explicit Understanding in Computer Support 23

(b) Having a perspective means that there is a focus on a certain aspect or that a
specific approach is taken in interpreting something.

(c) Using language means that a particular vocabulary is available as part of a
tradition that provides a conceptual framework for the interpretive task.

Each of these characteristics of interpretation is grounded in a form of
preunderstanding that can be transformed through a corresponding phase of
discovery. This two-dimensional structure is presented in Table 1-1.

Table 1-1. The structure of human interpretation.

In articulating tacit understanding, interpretation both discloses inherent
implications and discovers unanticipated consequences in the situation. Through
interpretation, designers might (a) try to externalize their expectations about a
design situation by drawing a sketch and then discover surprises when they explore
the sketch. Similarly, they might need to revise their understanding as a result of
(b) shifting their focus on a problem and deliberating from alternative perspectives
or (c) changing the way they conceptualize an issue and refining the definitions of
terms in their language.

The structure of human interpretation carries over to design. The design process is
a cycle or spiral of interpretation: (1) some item of the initial preunderstanding—
the grasp of the design situation, the perspective for viewing, the language for
conceptualizing—is made explicit, reflected upon, and further articulated in new
design decisions. (2) This leads to the discovery of unanticipated consequences or
contingencies and a new understanding that requires revisions to the understanding
of the design problem, its viewpoint, or terminology. (1´) The new understanding
then becomes re-submerged into a modified tacit understanding that forms the
starting-point for the next iteration of interpretation and design.

The analysis of interpretation in design motivates a theory of computer support.
According to this theory, computer support for interpretation in innovative design
differs from autonomous software systems for routine design by focusing on
supporting or augmenting human activities rather than automating them, because
only people have the understanding and creativity required for interpretation. This

 (a) situated (b) perspectival (c) linguistic

(1)pre-
understanding

expectations focus conceptualization

(2) discovery surprises deliberations refinements

 Tacit and Explicit Understanding in Computer Support 24

computer support takes two general forms in order to support the two phases of
interpretation:

1. It provides access to a wealth of information that might be useful as a basis for
interpreting new design tasks. This information for reuse is culled primarily
from previous design experience, and includes (a) partial representations2 of
design situations, (b) alternative ways of considering tasks, and (c)
terminology helpful for conceptualizing problems.

2. It facilitates the revision of stored information so designers can tailor existing
representations to novel problems and can capture innovative designs to extend
the computerized knowledge-base and to communicate ideas to collaborators.
This plasticity of representation—the ability to mold, form, adapt, alter, or
modify the representations—applies to all design knowledge, including (a),
(b), and (c) of point (1).

The proposed theory of computer support suggests an approach to building
software systems that has been prototyped in a system named HERMES. HERMES
is a substrate for building design environments to support interpretation in
innovative design. Motivated by the analysis of interpretation, HERMES provides
the following features to support reuse and plasticity of representations of each of
the three characteristics of interpretation, being situated, having perspectives, and
using language (see Table 1-2):

a-1. A persistent hypermedia network for storing partial representations of design
situations and for browsing among them.

a-2. Efficient mechanisms for revising the representations (multimedia nodes) and
modifying their associations (links).

b-1. A perspectives mechanism that organizes specialized or personal ways of
filtering out information of interest

b-2. Procedures for switching perspectives or for creating new ones by merging
existing perspectives and modifying their inherited contents in the new one.

2 Note that the computer manipulates symbolic representations of things in the

situation, whereas the designer has a situated understanding of the things.
According to Heidegger’s philosophy, representations are explicit forms of
information that only arise under certain conditions and on the basis of people’s
normally tacit understanding of things within the context of meaningful
involvements. In Chapter 4, the situation is defined as this context of meaningful
involvements, which provides a precondition for meaningful representations.

 Tacit and Explicit Understanding in Computer Support 25

c-1. An end-user language that provides useful domain terms, rules for critiquing
designs, and queries for displaying stored information.

c-2. The ability to modify or generate new terms, critic rules, and queries or to use
the language for defining computations.

Table 1-2. Computer-based mechanisms to support interpretation in design.

 (a) situated (b) perspectival (c) linguistic

(1) reuse hypermedia
network

perspectives
mechanism

end-user language

(2) plasticity revising
representations

merging multiple
perspectives

defining new expressions

Although computers cannot understand things the way people do, they can serve
as a computational medium to support people’s interpretive processes. The
computer support mechanisms listed in Table 1-2 can augment cooperative design
in a number of ways, including:

a-1 As a long-term memory or repository for information that was created in past
designing and is now available to be shared by designers using the repository.

a-2 As an external memory for representing and revising designs to see how
alternative variations appear.

b-1 As a retrieval mechanism for organizing and managing design knowledge and
filtering through just what is relevant.

b-2 As a display mechanism to define new personal and shared views of designs.

c-1 As a linguistic medium for expressing knowledge in a canonical form that can
be used for computations by the software.

c-2 As a communication medium to generate new knowledge to be shared with
others.

A comparison of Table 1-1 and Table 1-2 shows that the mechanisms of computer
support are based on the structure of unaided human interpretation. The computer
support is intended to extend the power of designers to operate under conditions
of “information overload,” in which it is becoming increasingly difficult to work
effectively without the use of computers.

Computer support will inevitably change the practices of collaborative design. This
need not be considered harmful—particularly in cases where traditional
procedures have become inadequate—if important factors like the characteristics

 Tacit and Explicit Understanding in Computer Support 26

of interpretation are preserved and adequately supported. Computational media
have the potential for changing the activities of professionals even more than the
media of written language did in the past, because of significant opportunities for
the computer to play a computationally active role in organizing, analyzing,
displaying, and communicating the information. The ways in which design tasks
are accomplished will change dramatically as the computer augments and supports
designers to do many of the same tasks they have done unaided in the past, like
designing and modifying artifacts.

The proposed theory of computer support for interpretation in design goes to the
root of the problem of tacit and explicit understanding. Designers approach their
task with a background of skills, know-how, and experience that they are generally
not aware of as they design but that is a necessary precondition of their work as
trained professionals. For instance, architects have the ability to understand the
situations people might face in the buildings they design, they know how to sketch
and visualize relationships from the perspectives of different concerns, and they
move freely between various frameworks or traditions that provide meaningful
languages or metaphors for expressing their insights. Computers have no such tacit
preunderstanding; they can only retrieve and manipulate what people have already
formulated in explicit propositions or drawings. People and computers are not
analogous processors of information. If computers are to support human cognition
effectively, then these differences must be understood and taken into account.

By describing the transformation of tacit to explicit human understanding, the
analysis of interpretation not only clarifies how human cognition differs from
computer information processing, but also suggests how computers can support
the way people think. Philosophically, the analysis of interpretation provides the
key to a theory of people-centered computer support. Technically, the analysis
enumerates the functionality needed for computer support of interpretation in
design. Practically, it points out that the process of innovative design and the
requirements of collaboration generate both the need for computer support and the
sources of explicit knowledge that make it possible. For instance, large, multi-
person design projects often confront the problem of information overload, where
computers are required to manage volumes of technical knowledge. At the same
time, these cooperative design processes naturally articulate much explicit
knowledge that could prove useful in subsequent computer-supported design work.

The theory of computer support for interpretation in design is presented in three
Parts: in Part I, Chapters 2, 3, and 4 develop the analysis of interpretation in design.
In Part II, Chapters 5, 6, and 7 draw the consequences of the problem of tacit and
explicit understanding for computer support. In Part III, Chapters 8, 9, and 10
describe how the technical features of the HERMES substrate support interpretation
in collaborative design.

 Tacit and Explicit Understanding in Computer Support 27

The analysis of interpretation is developed by reviewing insightful descriptions of
design by design methodologists Alexander, Rittel, and Schön (Chapter 2).
Characteristics of design enumerated in that review are then used to guide a study
of transcripts of a design session involving a task of lunar habitat design (Chapter
3). The design process—as characterized by design methodology and as illustrated
with lunar habitat design—is then conceptualized as a process of interpretation by
using Heidegger’s philosophy of interpretation (Chapter 4).

The consequences for computer-based design systems are drawn by further
developing the analysis of tacit and explicit understanding in design (Chapter 5),
and extending it to include a theory of the computer support of interpretation
(Chapter 6). This theory is applied to evaluate traditions of software design
environments and design rationale systems; useful techniques in these previous
systems are explored and their limitations noted (Chapter 7).

The technical description of computer support for cooperative design describes the
central functionality of HERMES. It has a hypermedia knowledge-base to support
(a) the representation of design situations (Chapter 8). A virtual copying
mechanism provides (b) perspectives on design knowledge (Chapter 9). An end-
user language is used for (c) articulating formerly tacit understandings in explicit
language (Chapter 10)

The order of presentation in the dissertation corresponds to the process of
interpretation. First, in the Introduction and Part I a preunderstanding is sketched
to provide a starting point for interpreting the problem of computer support for
innovative design. A review of design methodology provides a perspective from
which to understand design, formed by merging the perspectives of the three
design methodologists. A lunar habitat design project provides a concrete design
situation for grounding the developing understanding of design. Heidegger’s
philosophy provides a language and conceptual framework for talking about
interpretation in design. Second, in Part II this preunderstanding is used to explore
possibilities for computer support that are opened up by the preunderstanding. This
is accomplished partially by drawing out the theoretical consequences in order to
extend the analysis of interpretation in design to include a theory of its computer
support. It is further accomplished by discovering the achievements and the
limitations of previous software systems in providing the kind of support for design
that is called for. Third, in Part III the arrived at understanding allows for a
discussion of the HERMES system as an explicit illustration of possible responses
to the problem of supporting interpretation in design .

Predecessor systems to HERMES (principally JANUS and PHIDIAS) were already
headed in the direction that HERMES adopts. Discussions of these earlier design
environments made frequent reference to Alexander, Rittel, and Schön, for
instance, and insisted on supporting rather than automating design. The theory of

 Tacit and Explicit Understanding in Computer Support 28

computer support for interpretation in design presented in this dissertation extends
this approach theoretically and practically. Its focus on interpretation situates its
people-centered approach unambiguously in an analysis of human understanding.
By providing a coherent perspective for viewing systems to support design, the
theory suggests principled extensions to the functionality of design environments,
such as those incorporated in the HERMES substrate. It provides an explicit
language as a basis for a coherent conceptual framework.

Table 1-3. Correspondences among the chapters.
Note that the three mechanisms of HERMES in Chapters 8, 9, and 10 correspond
to the three characteristics of interpretation that permeate and structure the
dissertation.

Each section in the remainder of Chapter 1 provides an overview of a chapter of
the dissertation. The first three sections each provide an argument for interpreting
design as a process of interpretation. The other sections draw the implications of
this argument for the computer support of design. The three characteristics of
interpretation run through all the chapters. Table 1-3 shows the correspondences
between the central themes in the different chapters. These correspondences link
the theoretical analysis of interpretation to the operational mechanisms that
provide computer support for these characteristics. For the sake of simplicity, the
table does not indicate that each of the entries involves both reuse of past
information and creative modification, however this is true both for the three

Chapter Theme (a) (b) (c)

1 interpretation situated perspectival linguistic

2 methodology Alexander Rittel Schön

3 lunar habitat privacy conflict privacy
concern

privacy gradient

4 preunderstand
ing

prepossession preview preconception

5, 6 computer
support

represent
situation

have
perspectives

make use of
language

7 previous
systems

JANUS PIE PHIDIAS

8, 9, 10 HERMES
software
substrate

hypermedia
network

perspectives
mechanism

end-user language

 Tacit and Explicit Understanding in Computer Support 29

characteristics of interpretation and for their corresponding software mechanisms,
as already shown in Tables 1-1 and 1-2.

1.2. The Methodology of Design
A central claim of this dissertation is that design can be viewed as fundamentally
a process of interpretation. In this interpretive process, elements of the designer’s
tacit background preunderstanding are made explicit. The first evidence in support
of this claim is a review of the writings of three influential design methodologists.
It is argued that their diverse but complementary descriptions of the design process
highlight characteristics of what is here called interpretation. They recognize the
importance of both tacit understanding and explicit representations, as well as the
iterative movement between them. Among the three writers, the dimensions of (a)
the situation, (b) perspectives, and (c) language are all stressed. Furthermore, each
of these dimensions is recognized to entail both (1) traditions of past knowledge to
start from and (2) an ability to revise that knowledge to promote and grasp
innovation.

Alexander (1964) pioneered the use of computers for designing. He used them to
compute diagrams or patterns that decomposed the structural dependencies of a
given problem into relatively independent substructures. In this way, he developed
understandings of the design situation for solving a task based on an analysis of
the unique design situation.

Later, Alexander (1977) assembled 253 patterns that he considered useful for
architectural design, based on an extensive study of successful past designs. These
patterns were to be reused and modified to form personal pattern languages for
expressing the individual perspectives of different designers. They were schematic
enough to be adapted to a broad range of specific design situations.

Alexander felt that the design profession necessarily made explicit the
understanding that was “unselfconscious” in traditional cultures in which everyone
designed their own artifacts. His structures and patterns were meant to be tools for
explicitly representing design situations for “self-conscious” design. However, he
always also recognized the need for tacit or intuitive understanding as a basis for
good design.

For Rittel (1973), the heart of design was the deliberation of issues from multiple
perspectives. In a collaborative effort, each participant may bring different
personal interests, value systems, and political commitments to the task. Also,
people with different technical specialties or professional skills may contribute to

 Tacit and Explicit Understanding in Computer Support 30

a design. These are actually different kinds of “perspectives.” The theory of
computer support in Chapter 6 distinguishes three classes of perspectives that need
to be supported:

* personal or group perspectives

* technical specialties (e.g., plumbing)

* domain traditions (e.g., residential kitchens)

However, they all provide the same function of determining what issues will be
addressed, what alternatives will be considered, and what criteria will be applied.
Because they all determine the organization or relevance of information in a
similar way, they can be discussed as one kind of determinant of interpretation and
can be operationalized and supported with one software mechanism (a perspectives
mechanism).

The important thing for Rittel was not the subjective character of interpretation
deriving from its basis in personal perspectives, but the way in which deliberation
among perspectives can lead to innovative solutions that would not have arisen
without such interaction. Deliberation is an interpretive process in which
understanding of the problem situation and of the design solution emerges
gradually as a product of iterative revisions subject to critical argument from the
various perspectives. This can take place for an individual designer as well if the
designer consecutively adopts different perspectives on the issues. Rittel foresaw
computer support for this. His idea of using computers to keep track of the various
issues at stake and alternative positions on those issues led to the creation of issue-
based information systems.

Schön (1983) argued that designers constantly shift perspectives on a problem by
bringing various professionally trained tacit skills to bear, such as visual
perception, graphical sketching, and vicarious simulation. The designer’s intuitive
appreciations shape the problem by forming a subsidiary background awareness of
the design task’s patterns, materials, and relationships. By then experimenting with
tentative design moves within this tacitly understood situation, the designer
discovers consequences and makes aspects of the problem explicit. As this is done,
certain features of the situation come into focus and can be named or characterized
in a language. When focus subsequently shifts, what has been made explicit may
slip back into an understanding that is again tacit, but is now more developed.

Schön (1992) provided empirical evidence for the roles of the situation,
perspectives for viewing, and conceptual frameworks in the iterative process of
interpretation in design. His experiments showed how the designer uses tacit skills
and preunderstandings to uncover unanticipated discoveries, to reflect upon them,

 Tacit and Explicit Understanding in Computer Support 31

and to develop new understandings, new perspectives, and new articulations of the
evolving design situation.

1.3. The Example of Lunar Habitat Design
A second argument for understanding design as a process of interpretation is
presented in Chapter 3. Here, a protocol analysis of designers collaborating shows
that most of what went on was interpretation.

As part of the research for this dissertation, a study was undertaken of lunar habitat
design. Lunar habitat design is a task that is not well understood compared to many
other, more mundane design tasks. It is not a routine matter that can be done
according to well-formulated rules or by applying available template solutions.
Furthermore, it is representative of a broad range of high-tech design tasks. Such
tasks typically involve extensive technical knowledge. They seem to call for
computer support.

The volume of information available to people is increasing rapidly. For many
professionals this “information overload” means that the execution of their jobs
requires taking into account far more information than they can possibly keep in
mind. The lunar habitat designers here provide a prime illustration of such
professionals. In working on their high-tech design tasks, they must take into
account architectural knowledge, ergonomics, space science, NASA regulations,
and lessons learned in past lunar missions. These designers turn to computers for
help with their complex, technical problems. That is why a group of lunar habitat
designers initiated the software development effort that led to this dissertation.

Providing the computer support needed by lunar habitat designers is not straight-
forward. Designers need to be able to consider wide varieties of experience,
professional know-how, technical concerns, and previous solutions that are
relevant to their current tasks. However, the problem is not so much one of storing
large amounts of information as one of deciding what information to retain that
might be relevant to novel future tasks and how to present it to designers in formats
that support their mode of work. It is a problem of how to manage the information
and present it so that it can usefully serve the design process. The necessary
decisions must be made by the designers who are involved with these tasks.
Computer techniques for capture and display of information must be under the
control of people engaged in the interpretation of the information.

As part of the effort at developing computer support for lunar habitat designers,
thirty hours of design sessions were videotaped and analyzed. The designers were

 Tacit and Explicit Understanding in Computer Support 32

asked to design a 23 foot long by 14 foot wide cylindrical habitat to accommodate
four astronauts for 45 days on the moon. A protocol analysis of segments of the
video recording was conducted.

The analysis of the videotape of the designers’ activities shows that design time is
dominated by processes of interpretation, i.e., the explication of previously tacit
knowledge in response to discoveries of surprises. As part of the interpreting by
the designers, graphical representations were developed for describing pivotal
features of the design situation that had not been included in the original
specification; perspectives were created for looking at the task in different ways;
and language terminology was defined for explicitly naming, describing, and
communicating formerly tacit understandings. The definitions of the situated
understanding, perspectives, and language continually evolved as part of the
design process in an effort to achieve an adequate understanding of the design task
and the evolving artifact.

The nature of interpretation and the three dimensions of preunderstanding are
illustrated in Chapter 3 with an example from the lunar habitat design sessions.
This designing primarily consisted of sketching and discussion that explicated
visual and conceptual expressions used for understanding, explaining, and guiding
the emerging design. The example analyzed has to do with the tacit notion of
privacy and a default perspective on bathroom design related to this notion. The
following paragraph briefly summarizes the example.

The designers felt that a careful balance of public and private space would be
essential given the long-term isolation in the habitat. This is an important concern
that receives limited treatment in official NASA design guidelines. An early design
decision proposed that there be private crew compartments for each astronaut. An
initial sketch revealed problems with adjacencies of public and private areas,
leading to an interpretation of privacy as determining a “gradient” along the habitat
from quiet sleep quarters to a public activity area. In the process, the conventional
American idea of a bathroom was subjected to critical reflection when it was
realized that the placement of the toilet and that of the shower were subject to
different sets of constraints based on life in the habitat. The tacit American
assumption of the location of the toilet and shower together was made explicit by
comparing it to alternative European perspectives. The revised conception
permitting a separation of the toilet from the shower facilitated a major design
reorganization.

In this way, a traditional conception of “private space” as a place for one person to
get away was made explicit and explored within graphical representations of the
design situation. As part of the designing process, this concept was revised into a
notion of “degrees of privacy,” which facilitated the design process. The failure of
the NASA guidelines to provide significant guidance despite a clear recognition

 Tacit and Explicit Understanding in Computer Support 33

by NASA of the importance of habitability and privacy considerations raises the
problem of how to effectively represent notions like privacy that are ordinarily
tacit. This problem provides the central test case for this dissertation. In Chapter 9,
a scenario shows how designers using HERMES can define interpretive critics to
evaluate the distribution of public and private spaces in a lunar habitat. A detailed
analysis of how these critics are defined in the HERMES language is then presented
in Chapter 10.

In this and other examples, the designers needed to revise their representations to
enhance their understanding of the problem situation. They went from looking at
privacy as a matter of individual space to reconceptualizing the whole interior
space as a continuum of private to public areas. The conventional American notion
of a bathroom was compared with other cultural models and broken down into
separable functions that related differently to habitat usage patterns. The new
views resulted from argumentative discussions motivated by design constraints—
primarily spatial limitations and psychological factors of confinement. In these
discussions, various perspectives were applied to the problem, suggesting new
possibilities and considerations. Through discussion, the individual perspectives
merged and novel solutions emerged. In the process, previously tacit features of
the design became explicit by being named and described in the language that
developed. For instance, the fact that quiet activities were being grouped toward
one end of the habitat design and interactive ones at the other became a topic of
conversation at one point and the terminology of a “privacy gradient” was
proposed to clarify this emergent pattern.

1.4. The Analysis of Situated Interpretation
Chapter 4 presents a third argument for focusing on interpretation in design:
computer support of innovative design should be based primarily on an analysis of
human understanding. As Norman (1993) puts it, “Without someone to interpret
them, cognitive artifacts [like computer support systems] have no function. That
means that if they are to work properly, they must be designed with consideration
of the workings of human cognition.” The philosophy of interpretation provides
just such a consideration.

This contrasts with many previous approaches to computerization of design and to
artificial intelligence, which lean toward theories on the natural science model
(e.g., mathematical physics), like information theory and predicate logic
formalisms. Human sciences (e.g., cultural anthropology or non-behaviorist
psychology), however, necessarily center on human interpretation because their

 Tacit and Explicit Understanding in Computer Support 34

subject matter is defined by what people consider to be important and by how
people construe things. As one moves from routine design to highly innovative
tasks, the distribution of roles in the human-computer relationship shifts more onto
the people involved, and it becomes increasingly important to take into account
their cognitive functioning.

An initial framework for clarifying the respective roles for computers and people
in tasks like lunar habitat design is suggested by theories of situated cognition.
Several influential recent books3 argue that human cognition is very different from
computer manipulations of formal symbol systems. The differences imply that
people need to retain control of the processes of non-routine design because these
processes rely heavily upon what might be called situated interpretation.
Computers can provide valuable computational, visualization, and external
memory aids for the designers by supporting such interpretation in design.

Situated interpretation, as used here, refers to a view of human understanding as
taking place within tacit contexts of background skills, human concerns, and
linguistic traditions that provide its grounding. Interpretation is not just a function
of a disinterested rational mind, but relies on the interpreting person or people
being actively involved with the situation, which includes the artifact being
interpreted and supplies the basis for that artifact’s significance. (See Heidegger’s
fuller definition of situation below and in Chapter 4.)

Situated cognition theory disputes the prevalent view based on the natural sciences
model that all human cognition is based on explicit mental representations such as
goals and plans. Winograd and Flores (1986) hold that “experts do not need to have
formalized representations in order to act” (p.99). Although manipulation of such
representations is often useful, there is a background of preunderstanding that
cannot be fully formalized as explicit symbolic representations subject to rule-
governed manipulation. This tacit preunderstanding even underlies people’s ability
to understand representations when they do make use of them. Suchman (1987)
concurs that goals and plans are secondary phenomena in human behavior, usually
arising only after action has been initiated: “When situated action becomes in some
way problematic, rules and procedures are explicated for purposes of deliberation
and the action, which is otherwise neither rule-based nor procedural, is then made
accountable to them” (p.54).

3 A series of publications in the last decade has, in effect, defined an approach to

cognitive science and to the theory of computer support for design that goes by
the name “situated cognition.” These include Schön (1983), Winograd & Flores
(1986), Suchman (1987), Ehn (1988), and Dreyfus (1991).

 Tacit and Explicit Understanding in Computer Support 35

This is not to denigrate conceptual reasoning and rational planning. Rather, it is to
point out that the manipulation of formal representations alone cannot provide a
complete model of human understanding. Rational thought is an advanced form of
cognition that distinguishes humans from other life forms. Accordingly, an
evolutionary theorist of consciousness like Donald (1991) traces the development
of symbolic thought from earlier developmental stages of tacit knowing (e.g.,
episodic and mimetic memory-based cognition). He shows how these earlier levels
persist in rational human thought as the necessary foundation for advanced
developments, including language, writing, and computer usage.

Philosophers like Wittgenstein (1953), Polanyi (1962), Searle (1980), and Dreyfus
(1991) suggest a variety of reasons why tacit preunderstanding cannot be fully
formalized as data for computation. It is too vast: background knowledge includes
bodily skills and social practices that result from immense histories of life
experience. We are unaware of much of it: these skills and practices are generally
transparent to us. It must be tacit to function: the examples of biking, swimming or
playing a musical instrument suggest that procedural knowledge at least gets in the
way of skilled action if it is explicit. More generally, tacit knowledge is a
precondition for explicit knowing: we cannot formulate, understand, or use explicit
knowledge except on the basis of necessarily tacit preunderstandings.

The philosophical foundations of situated cognition theory were laid out by
Heidegger (1927), the first to point out the role of tacit preunderstanding and to
elaborate its implications. For Heidegger, we are always knowledgeably embedded
in our world; things of concern in our situations are already meaningful before we
engage in explicit cognitive activity. We know how to behave without having to
think about it. For instance, an architect designing a lunar habitat knows how to
lift a pencil and sketch a line or how to look at a drawing and see the rough
relationships of various spaces pictured there. The architect understands what it is
to be a designer, to critique a drawing, to imagine being a person walking through
the spaces of a floor plan. Such tacit, background skills or preunderstandings of
the design situation are necessary prerequisites for being able to design an artifact.

Heidegger defines the situation as a person’s interpretive context—including the
physical surroundings, the available tools, the circumstances surrounding the task
at hand, the person’s own personal or professional aims, and social or cultural
relations. The situation constitutes a network of significance in terms of which
each part of the situation is already meaningful. That is, the person has tacit
knowledge of the situation as a whole; if something becomes a focus, it is
perceived as already understood and its meaning is defined by its relations within
the situation. Everything is tacitly understood in its relations to other things and to
the whole.

 Tacit and Explicit Understanding in Computer Support 36

According to situated cognition in contrast to rationalist views, to an architect a
rectangular arrangement of lines on a piece of paper is not first perceived as
meaningless lines that need defining attributes (to be determined by subsequent
rational thought). Rather, given the design situation, it is already understood as
(say) a sleep compartment for astronauts. The sleep compartment is implicitly
defined as such by the design task, the shared intentions of the design team, the
other elements of the design, the availability of tools for revising the drawing, the
sense of space conveyed by the design, the prevailing NASA terminology. This
network of significance is background knowledge that allows the architect to think
about features of the design, to make plans for changes, and to discover problems
or opportunities in the evolving design. At any given moment, the background is
already tacitly understood and does not need to be an object of rational thought
manipulating symbolic representations.

At some point the architect might realize that the sleep compartment is too close
to some source of potential noise, like the flushing of the toilet. This physical
adjacency would come into focus as an explicit concern against the background of
relationships of the preunderstood situation. Whereas a common sense view might
claim that the sleep compartment and toilet were already immediately and
objectively present, and that therefore their adjacency was always there by logical
implication, Heidegger proposes a more complex reality in which things are
ordinarily hidden from explicit concern. In various ways, they can become
uncovered and discovered, only to re-submerge soon into the background as our
focus moves on.

In this way, our knowledge of the world primarily consists neither in mental
models that represent reality nor in an unmediated and objective access to objects.
Rather, our understanding of things presupposes a tacit preunderstanding of our
situation. This is analogous to the view of Kuhn (1962), who argues that scientists’
experimental observations presuppose their tacit ability to use their experimental
equipment and to apply their frameworks of hypotheses and theory. Only by being
already situated in our world can we discover things and construct meaningful
representations of them by building upon, explicating, and exploring our tacit
preunderstanding. Situated cognition is not a simplistic theory that claims our
knowledge lies in our physical environment like words on a sign post: it is a
sophisticated philosophy of interpretation.

According to the philosophy of situated interpretation, human understanding
develops through interpretive explication involving both (1) preunderstanding and
(2) explorative discovery of the situation. In Heidegger’s analysis, interpretation
provides the path from tacit, uncritical preunderstandings to reflection, refinement,
and creativity. The structure of this process of interpretation reflects the
inextricable coupling of the interpreter with the situation, i.e., of people with their

 Tacit and Explicit Understanding in Computer Support 37

worlds. One’s situation is not reducible to one’s preunderstanding of it; it offers
untold surprises, which may call for reflection, but which can only be discovered
and comprehended thanks to one’s preunderstanding. Often, these surprise
occasions signal breakdowns in a person’s skillful, transparent behavior, although
one can also make unexpected discoveries in the situation through conversation,
exploration, or external events.

A discovery breaks out of the preunderstood situation because it violates or goes
beyond the network of tacit meanings that make up the preunderstanding of the
situation. To understand what one has discovered, one must explicitly interpret it
as something, as having a certain significance, as somehow fitting into an
understood background. Then it can merge into one’s comprehension of the
meaningful situation and become part of the new background. Interpretation of
“something as something” requires a reinterpretation of the situated context if the
discovery does not fit into the previously understood situation.

For instance, the lunar habitat designers discovered problems in their early
sketches (their representations of the design situation) that they interpreted as
issues of privacy. Although they had created the sketches themselves, they were
completely surprised to discover certain conflicts among the functions of adjacent
components, like the sleep compartments and the toilet. The discoveries could only
occur because of their situated understanding represented in the drawings. The
designers paused in their sketching to discuss the new issues. First they debated
the matter from various perspectives: experiences of previous space missions,
cultural variations in bathroom designs, technical acoustical considerations. Then
they considered alternative conceptions of privacy, gradually developing a shared
vocabulary that guided their revisions and became part of their interpretation of
their task. They reinterpreted their understanding of privacy and articulated their
new view using the terminology of a privacy gradient.

These themes of being situated, having perspectives, and using explicit language
correspond to the three-fold structure of preunderstanding in Heidegger’s
philosophy. He articulates the pre-conditions of interpretation as: (a) pre-
possession of the situation as a network of preunderstood significance; (b) pre-
view or expectations that things in the world are structured in certain ways; and (c)
pre-conception, a preliminary language for expressing and communicating. In
other words, interpretation never starts from scratch or from an arbitrary
assignment of representations, but is an evolving of tentative prejudices and
anticipations. (1) One necessarily starts with a preunderstanding that has been
handed down from one’s past experiences and inherited traditions. (2) The
interpretive process allows one to reflect upon this preunderstanding methodically
and to refine new meanings, viewpoints, and terminologies for understanding
things more appropriately.

 Tacit and Explicit Understanding in Computer Support 38

The analysis of interpretation based on Heidegger’s philosophy stresses the role of
tacit preunderstanding as the basis for all understanding. Preunderstanding consists
primarily of the characteristics of prepossession, preview, and preconception. It
also implicitly incorporates the structure of “something as something.” Through
interpretation, this preunderstanding is articulated. The resultant explicit
understanding can be externalized in discourse. This can be taken further through
the methodologies of science to codify knowledge. Each stage in this process
preserves the original structure of the preunderstanding. It is because of this
structure that metaphors, speech acts, and scientific propositions have the structure
they do of something as something, something is some predicate, or something has
some attribute.

The process of explication through interpretation forms the basis for computer
support by transforming tacit understanding into increasingly explicit forms that
can eventually be captured in computer-based systems.

1.5. Tacit and Explicit Knowledge in Design
Heidegger’s analysis of interpretation must be applied to the realm of design
before it can be used as the basis for a theory of computer support of design. Three
general problems must be considered:

* First, although his philosophy is presented in a very general way, Heidegger’s
examples come primarily from people’s relations to physical things in the
world, rather than to imagined artifacts that they are designing.

* Second, he stresses that things are always understood on the basis of
preunderstandings we already have, which makes it hard to say how innovative
design ideas are understood.

* Third, of course, Heidegger (writing in the mid-1920’s) did not address the
issue of computer representations as a form of explicit knowledge.

Chapter 5 accomplishes the application of Heidegger’s analysis to design in three
steps.

* First, it shows that Heidegger’s philosophy can be extended naturally to
design.

* Second, it discusses the problem of application, which addresses the issue of
how previously captured knowledge can be adapted to innovative new designs.

 Tacit and Explicit Understanding in Computer Support 39

* Third, it spells out a taxonomy of transformations of tacit understanding to
explicit knowledge adequate for providing a basis for computer
representations of normally tacit design knowledge.

Heidegger’s concept of the situation transfers well to design. As the network of
relationships in the understood world, the situation corresponds closely to the set
of constraints and adjacencies that are of concern in design and that are sometimes
even represented explicitly in design documents. Heidegger’s definition of
interpretation as the explication of tacit understanding, involving discoveries, is
also applicable to the process of design, in which relationships are explored and
discoveries made. Consideration of interpretation in the design context clarifies
how breakdowns in action require repair to the tacit underlying understanding of
the situation. Although Heidegger’s examples focus on the individual, his
recognition of the social dimension and the importance of shared understanding
allows his analysis to be extended to design, which is largely collaborative.

Heidegger’s philosophy occupies an important position in the twentieth century
recognition that reality is socially constructed. People have access to their world
(intentionality) because the world is in many ways a human, social creation. Of
course, reality also has an immanence which can contradict our expectations and
present surprises, just as we can make discoveries in designs of our own creating.
The point is that an understanding of the world or of innovative designs requires
the situated interpretation of a person: it cannot be reduced to a set of rules or a
computer algorithm. The same goes for knowledge, which encapsulates
understanding. To apply knowledge from past cases to a new design, one must
apply it within a situated, perspectival, linguistic understanding. That means that
computer software for designing should be people-centered and should support the
situated, perspectival, linguistic character of human understanding.

Chapter 5 defines tacit as being expressed without words or speech, and explicit as
being fully revealed or verbally expressed. It defines a taxonomy of forms of
information along the continuum between these extremes and describes the
transformations from one form to the next based on Heidegger’s analysis. These
transformations are summarized in Figure 1-1. Each transformation involves a
reinterpretation of the informational content in a new medium. With that comes a
gain in precision balanced by a loss of grounding. As a result of the increased
clarity and the change of form, new discoveries are made about the content of the
information.

 Tacit and Explicit Understanding in Computer Support 40

Figure 1-1. Transformations of tacit to explicit information.

The left-hand column lists consecutive forms of information. The right-hand
column names the transformation processes from one form to another.

Heidegger uses the term discourse for the fundamental shift to putting one’s
understanding into words, even if the words are not yet asserted in speech to be
shared with someone. After tacit preunderstanding is articulated in discourse as
explicit understanding, this understanding can then be asserted and externalized in
spoken or written language (such as documented design rationale). Such
knowledge can be further codified in accordance with formal procedures (e.g.,
scientific methods). These are important transformations for creating widely
shared knowledge. The movement from externalized to codified information can
go from informal to formal (i.e., capable of being processed by computer).
Shipman (1993) discusses this stage of formalization and methods for supporting
it within computer-based design environments. This is relevant to the further stages
of articulation, which involve computers: capture of the information in computer
representations and modification of these representations to adapt them to new
requirements. The theory of computer support for design proposed in Chapter 6
suggests that all stages of information articulation can take advantage of computer
support. If designing takes place within a computer-based design environment,
then designers can use and modify computer representations to support the design
process from the start. As Reeves (1993) recommends, the design environment can
serve as a medium of communication to support collaboration. In the process,
design information can be captured automatically without becoming a burdensome
task to be done in retrospect.

 Tacit and Explicit Understanding in Computer Support 41

1.6. Consequences for a Theory of Computer
Support
The ideas of situated cognition and Heidegger’s philosophy of interpretation stress
how different human understanding is from computer manipulations of symbols.
These analyses suggest a people-centered approach of augmenting, rather than
automating, human intelligence. According to this view, software can at best
provide computer representations for people to interpret based on their tacit
understanding of what is being represented. Representations used in computer
programs must be carefully structured by people who understand the task being
handled thoroughly, because the computer itself simply follows the rules it has
been given for manipulating symbols, with no notion of what they represent.
People (e.g., software designers or software users) who understand the domain
must codify their knowledge into software rules sufficiently to make the computer
algorithms generate results that, when interpreted by people, will be the desired
results. Only if a domain can be strictly delimited and its associated knowledge
exhaustively reduced to rules, can it be completely represented in advance (by the
software designers) so that tasks in the domain can be automated.

Many tasks like lunar habitat design that call for computer support do not belong
to well-defined domains with fully catalogued and formalized knowledge bases.
These tasks may require (a) exploration of possibilities never before considered,
(b) assumption of creative viewpoints, or (c) formulation of innovative concepts.
Software to support designers in such tasks should provide facilities for the
designers themselves (as the software users) to create new representations and to
flexibly modify old representations. As the discussion of Alexander emphasizes,
the ability to develop appropriate understandings of the situation dynamically is
critical to innovative design. Because they capture understandings that evolve
through processes of interpretation, representations need to be modifiable during
the design process itself and cannot adequately be anticipated in advance or
provided once and for all. Lunar habitat design is an example of an exploratory
domain in two senses: (1) it is a new domain with relatively little in the way of
accepted conventional knowledge, and (2) it involves continual innovation to meet
novel, over-constrained, politically sensitive mission specifications.

The assumption of the existence (even in principle) of an objective, coherent body
of domain knowledge that can be used without being reinterpreted in new
situations and from different perspectives is misleading. As Rittel says, non-
routine design is an argumentative process involving the interplay of unlimited
perspectives, reflecting differing and potentially conflicting technical concerns,
personal idiosyncrasies, and political interests. Rather than trying to supply all
knowledge in advance, software to support this type of design should capture

 Tacit and Explicit Understanding in Computer Support 42

alternative deliberations on important issues as they arise and document specific
solutions. Then, these can be available to support interpretive deliberations.
Furthermore, because all design knowledge is relative to perspectives, the
computer should be used to define a network of over-lapping perspectives with
which to organize issues, rationale, sketches, component parts, and terminology to
reflect the different viewpoints designers adopt. That will facilitate the retrieval of
information relevant to a particular interpretive stance.

As Schön emphasizes, design relies on moving from tacit skills to explicit
conceptualizations, and on the ability to reformulate the implications in linguistic
expressions. Additionally, design work is inherently communicative and
increasingly collaborative, with high-tech designs requiring successive teams of
designers, implementors, and maintainers. Software to support collaborative
design should provide a language facility for designers to develop a sharable
vocabulary for expressing their ideas, for communicating them to future
collaborators, and for formally representing them within computer-executable
software. An end-user language that provides an extensible domain vocabulary, is
usable by non-programmers, and encourages reuse and modification could help
provide support for designers trying to express their interpretations..

Heidegger’s analysis of interpretation says that new interpretations are based on
preunderstandings developed in the past or handed down by tradition. In this sense,
it is likely that the information designers need most when they reflect on problems
may have previously been made explicit at some moment of interpretation during
past designing. Accordingly, one promising strategy for accumulating a useful
knowledge base is to have the software capture knowledge that becomes explicit
while the software is being used. As successive lunar habitats are designed on a
system, issues and alternative deliberations can accumulate in its repository of
design rationale; new perspectives can be defined with their own modified
representations, terminology, and critic rules; and the language can be expanded
to include more domain vocabulary, conditional expressions, and query
formulations.

This is an evolutionary, bootstrap approach, where the software can not only
support individual design projects, but simultaneously facilitate the accumulation
of expertise and viewpoints in open-ended, exploratory domains. This means that
the software should support designers in formalizing their knowledge when it
becomes explicit. The software should reward its users for increasing the computer
knowledge base by performing useful tasks with the new information, like
providing documentation, communicating rationale, and facilitating reuse and
modification of relevant knowledge.

The theory suggested by the analysis of interpretation in design is diagrammed in
Figure 1-2. As the cycle of interpretation proceeds, driven by the needs of

 Tacit and Explicit Understanding in Computer Support 43

designing and collaboration, explicit knowledge that is generated can be captured
by the computer support system. The computer system relies on a combination of
stored representations (for representing situations, defining perspectives, and
articulating language expressions) and plasticity (for tailoring the existing
representations to the requirements of the specific design process). This
combination makes support of interpretation in design possible and simultaneously
drives an evolution of the stored knowledge base.

Figure 1-2. The theory of computer support for interpretation in design.

The cycle of human interpretation (illustrated on the top) is mirrored by a cycle
of evolution of the computer knowledge base (below), that uses captured explicit
knowledge to support future interpretation.

The theory proposed in Chapter 6 views the computer as a design medium. It is a
multimedia device capable of representing the diverse forms of information used
in design: text, graphics, pictures, pen sketches, numbers, voice, animation, and
even video. It can use all these media to externalize design concepts and to store
them for future use, serving as a medium of externalization and long-term memory.
This means it can be used as a medium of communication among team members
and a medium for embedding an artifact’s design history within the design of the
artifact itself—Reeves (1993) argues for the role of such a medium in supporting
collaborative work.

The uses of the computer as designing medium mentioned in the preceding
paragraph are primarily passive uses. The impact of written language on
civilization shows that even passive media can be powerful. However, the
computational power of the computer suggests using it as an active medium as

 Tacit and Explicit Understanding in Computer Support 44

well. Certainly, numerical computations can be left to the computer: calculate
square footage of designs or total their costs. But information can also be made
dynamic, with representations modified on the basis of the state of other parts of a
design. Furthermore, the information stored in the computer can be managed by it,
perhaps organizing and displaying information based on a structure of defined
perspectives. A language can make the system programmable by designers, so they
can adjust displays to their changing needs. Part III will show how HERMES
accomplishes this by means of a computationally active form of hypermedia, that
integrates a perspectives mechanism and an end-user programming language.

One of the most powerful consequences of designing in a computational medium
is the possibility of integrating all the relevant information. An example of this is
the mechanism of interpretive critics (see Fischer, et al., 1993a). It is an extension
of specific critics (Nakakoji, 1993). Specific critics are critiquing rules that analyze
the representation of a design situation and optionally display a message depending
on the results of the analysis. For instance, if two appliances are closer than they
should be in the design of a habitat, a critic might display a warning, suggest
looking at related design rationale issues, and show similar stored designs that
avoid the problem. The specific critics are dynamically computed based on the
design specification that has been entered into the design rationale. The critic thus
integrates information about the graphical design, the textual rationale, the
computational critic rules, and other designs. It does this in a way that supports the
needs of the designer without providing overwhelming amounts of information.
Interpretive critics are even further embedded in the contexts of design because
they can be defined differently in different interpretive perspectives. Their active
behavior depends on the current perspective and the way in which terms in the
language are defined in that perspective. They use the language that is being used
for the particular design, they are tied to the currently active perspective, and they
analyze the represented situation.

The view of computer support systems as computationally active communication
media is consonant with a liberatory view of the role of computers in society.
Feenberg (1991) argues that the expert system approach based on technical
rationality philosophy is profoundly anti-democratic and that an alternative
approach to computers as communicative media is needed to give people control
over their lives:

Systems designed for hierarchical control are congruent with rationalistic
assumptions that treat the computer as an automaton intended to command
or replace workers in decision-making roles. Democratically designed
systems must instead respond to the communicative dimension of the
computer through which it facilitates the self-organization of human

 Tacit and Explicit Understanding in Computer Support 45

communities, including those technical communities the control of which
founds modern hegemonies. (p.108)

The theory of computer support presented in this dissertation pursues the
democratic alternative, founding it on a respect for the irreducible nature of human
interpretation.

The key is control. Computer systems are sophisticated tools for exerting control
of information. As powerful as they are, computers have no understanding of the
information they manipulate. Even in autonomous AI systems, all the
interpretation is done by people—typically by the programmers who set up the
system and the users who view the output. Innovative design is an arena in which
the interpretation cannot be done in advance because this design requires
understanding and interpretation at every step. Therefore, the role of computers in
non-routine design must be to support designers. Human designers must retain
control over (a) how things are represented, (b) which things are stored together,
and (c) what terms are used to articulate ideas. Unless this control is vested in
people who can use their interpretive skills, questions concerning what information
might be relevant in a given context or in the future remain intractable for all but
carefully delimited, well-understood, completely codified domains. The only
heuristics proposed for the management of design knowledge are those tacitly
followed by traditional design practice: (1) that knowledge represented, organized,
and articulated in the past may be useful in the future, and (2) that designers will
need to use their powers of interpretation to modify and apply reused knowledge
in unique situations. (The problem of application addresses the fact that every
situated, perspectival, linguistic understanding is unique and yet must be
interpreted as similar to other cases; it is discussed in Chapter 5.)

The theory of computer support provides a principled basis for designing a
computer system to support innovative design in such tasks as lunar habitat design.
Before exploring the ideas suggested for such a system, the existing tradition of
design environments is considered. This is a tradition of computer systems
supporting the augmentation of human design efforts. It provides a basis upon
which new ideas can be developed through extensions that are guided by the
theory.

 Tacit and Explicit Understanding in Computer Support 46

1.7. Previous Software Systems for Design
For thirty years now, at least since Alexander (1964), efforts have been underway
to use computers to support design. Much work in the area of computer support
for design has concentrated on two approaches that will not be explored here:

* Providing stand-alone tools for drafting and modeling, where the computer
system has little or no representation of the semantics of what is being
designed—e.g., so-called “computer aided design” (CAD).

* Automating the design process, where the computer is given a specification of
a problem and is expected to produce a design with minimal interaction with
a human user—e.g., an expert system for design.

Although these approaches have proven useful for certain tasks or within restricted
domains, in general they have been shown to be quite limited. Winograd & Flores
(1986) and Dreyfus & Dreyfus (1986), for instance, have argued that expert
systems are in principle essentially limited when it comes to tasks like creative
design. They have based their arguments largely on Heidegger’s philosophy and
other ideas that are discussed in this dissertation. Rather than duplicating their line
of criticism, Chapter 7 will draw their positive implications for building software
systems that can support innovative design.

There have always been some researchers who sought ways to use technology to
augment human problem solving (e.g., Bush, 1945; Engelbart, 1963), rather than
to model, simulate, or replace it. More specifically, there is a tradition in design
methodology and design rationale capture efforts, going back to Rittel and his
associates (Rittel & Webber, 1973; Kunz & Rittel, 1984) that advocates the use of
computer-based design systems as cognitive aids for human designers.

Recent work in this tradition is reviewed in Chapter 7 and used as a starting point
for designing a system to support interpretation in design. In particular, the design
environments that will be reviewed (JANUS, MODIFIER, PHIDIAS) are domain-
oriented in the sense that they try to embody generally accepted knowledge of their
specialized design domains. In contrast, the domain-independent design rationale
capture systems (KRL, PIE, DRL) focus on capturing and displaying potentially
opposing perspectives on design issues. By synthesizing ideas from these different
systems, the new approach will extend the notion of domain-orientation to support
multiple interpretations of the domain as well.

The consequences of the theory of computer support for interpretation in design
developed in Chapter 6 motivate and guide the survey of previous software
systems. Established techniques implemented in the computer-based design
assistants are reviewed and their limitations are critiqued on the basis of the theory.

 Tacit and Explicit Understanding in Computer Support 47

While mechanisms for representing situations, defining perspectives, and using
language are found in some of these systems, the plasticity and integration of these
mechanisms are quite limited. In many ways, these systems retain principles from
expert system theory and are not oriented toward supporting interpretation in
design even when they happen to provide some mechanisms that could be used for
that.

JANUS (Fischer, et al., 1989) is a design environment combining graphical and
textual representations of the design situation. It introduces a multi-faceted
architecture that includes a palette of design components for building graphical
representations of kitchen layouts, a catalog of stored design cases, an issue-base
of design rationale, and a daemon mechanism for active critics. This system
provides an important model of a design environment. Its lack of support for users
to create new representations is recognized and addressed by a successor system
named MODIFIER.

MODIFIER (Girgensohn, 1992) defines all the knowledge representations with
parameterized property sheets. Then it provides a user interface to these system
internals. While it offers extensive support for the user to modify representations,
this still involves the user in modifying LISP expressions, altering hierarchical
inheritance trees, and generally having to be concerned with system internals.
Thus, it supports the user (with extensive help text, examples, checklists, and even
critic rules concerning modifications) to engage in tasks of maintaining a
sophisticated software system rather than supporting the user in interpretive tasks
of design. Another problem with MODIFIER is that it provides no mechanism for
organizing modifications into alternative versions to support personal and shared
versions.

Several systems for knowledge representation and design rationale capture
propose the use of multiple perspectives, a mechanism that this dissertation
recommends. KRL (Boborow & Winograd, 1977) presents a sophisticated formal
language for knowledge representation that incorporates a mechanism for
perspectives. PIE (Boborow & Goldstein, 1980; Goldstein & Boborow, 1980a,
1980b) develops the ideas of KRL further as the basis for a design environment for
software development. DRL (Lee, 1990; Lee & Lai, 1991) explores issues in design
rationale capture using languages based on Rittel’s IBIS as well as KRL and PIE.
These systems provide invaluable experience in designing languages for
knowledge representation and design rationale, and in using perspectives
mechanisms. However, their implementations lack the generality called for in
certain ways. Furthermore, they are not particularly appropriate to the kind of
hypermedia structure that seems useful for representing a broad diversity of design
information. They provide important examples and recommend useful principles
for the kinds of languages and perspectives mechanisms useful in supporting

 Tacit and Explicit Understanding in Computer Support 48

design. The lessons from these systems are combined in Chapter 8 with two design
criteria: (1) the implementations should be appropriate to a hypermedia structure
of knowledge representation and (2) end-users should be able to revise and extend
the vocabulary of the language and the structure of the system of perspectives.

PHIDIAS (McCall, et al., 1990) is another design environment like JANUS. It does
not include as many components or a critiquing mechanism, but it does
demonstrate the utility of a query language for users to define displays of design
rationale. The PHIDIAS language has a number of important features: it is designed
for navigation of hypertext and it is based on several syntactic characteristics of
English. Vocabulary in the language can all be defined by users, so it supports
adaptability. PHIDIAS uses a form of hypertext that has a fine granularity; thus
textual displays of design rationale, for instance, may be computed dynamically
through the use of queries defined in the language. The PHIDIAS language provides
a good starting point for the design of a computationally powerful language that is
appropriate to hypermedia and that can support interpretation.

In response to the shortcomings of previous systems, an integrated software
prototype named HERMES is proposed. HERMES is a persistent hypermedia
substrate for building design environments to support interpretation in design. Its
mechanisms operationalize the positive design principles of the analysis of
interpretation and the theory of computer support for interpretation in design.

1.8. Hypermedia in the HERMES System
In Greek mythology, Hermes supported human interpretation by providing the gift
of spoken and written language and by delivering the messages of the gods. As
part of the research for this dissertation, a prototype software system named
HERMES has been designed to support the preconditions of interpretation (a) by
representing the design construction situation to support prepossession, (b) by
providing alternative perspectives to support preview, and (c) by including a
language to support preconception.

HERMES supports tacit knowing by encapsulating mechanisms corresponding to
each of the preconditions:

* Interpretive critics (Fischer, et al., 1993b) are used for analyzing the design
situation, which is represented in arbitrarily complex hypermedia data
structures. These critics are expressions in the HERMES language that perform
an analysis of the current state of some representations and then optionally
display a message. The evaluation of the critic expressions or rules is

 Tacit and Explicit Understanding in Computer Support 49

dependent upon the currently active interpretive perspective, which determines
the versions of the expression, of its constituent terms, and of the
representations being analyzed.

* Named perspectives (Stahl, 1993b) organize and manage alternative sets of
information relevant to different purposes. By switching to a new perspective
by selecting its name from a list, a designer can change how the representation
of the situation appears, what interpretive critics are active, and in general what
contents of the hypermedia network are “visible” from the viewpoint.

* Language terms (Stahl, et al., 1992) define computations across the knowledge
base. While these expressions can be arbitrarily complex if viewed in complete
detail, they are typically constructed in a series of stages. At every stage, the
components of the term’s definition can themselves be given names.

With each of these mechanisms, complexities are hidden from the user by being
encapsulated in named objects. These complexities can gradually be made explicit
upon demand so the designer can reflect upon the information and modify it.
Together, these and other mechanisms make HERMES a computationally active
medium in which designers can do their work.

HERMES is a knowledge-representation substrate for building computer-based
design assistants like the Lunar Habitat Design Environment (LHDE) shown in
Figure 1-3. It provides a hypermedia structure for designers to build
representations of design knowledge.

The network of knowledge corresponds to the design situation. Multi-media nodes
of the knowledge representation can, for instance, be textual statements for the
issue-base, CAD graphics for sketches, bitmap images to illustrate ideas, or
language expressions for critics and queries. The inter-linked hypermedia structure
facilitates browsing by designers. It can also be used to support associative
memory (Hinton & Anderson, 1989) or case-based dynamic memory (Schank,
1982; Kolodner, 1984). All displays are defined by queries that dynamically
assemble arbitrary collections of multimedia items. For instance, the Design
Rationale window in Figure 1-3 shows the textual issues, answers, and arguments
that resulted from a query that was executed by a user’s request to see the
“discussion” of a previously viewed issue.

 Tacit and Explicit Understanding in Computer Support 50

Figure 1-3. Arranging sleep compartment bunks using HERMES.

Windows shown (left to right) include a dialogue box for browsing the hypermedia
content, a selection from the design rationale issue-base, a critic rule’s message,
a graphical sketching area, and a button for changing interpretive perspectives.

The hypermedia knowledge representation structure of HERMES is designed to
facilitate the representation of design situations and to encourage their tailorability.
Its generalized node and link structure models the network character of the
situation as a network of inter-related, pre-understood significances and their
associations. Its object-oriented implementation allows for the integration of
information in different media—reflecting the need to bring together many forms
of information in design. It provides graphics for sketching, text for issue-bases or
design rationale, and other media for annotations to support the exploration of
represented situations. All the media and mechanisms are designed to maximize
plasticity of representation. The HERMES hypermedia structure incorporates a
perspectives mechanism for managing and viewing all information and an end-
user language for defining queries for displays, as discussed below.

Special emphasis is placed on the synergistic integration of the hypermedia,
perspectives, and language mechanisms in the HERMES substrate. Definitions of
perspective hierarchies and language expressions are stored in the hypermedia
network so they can be browsed and modified like all other information. By using
nodes of the hypermedia network to define the names of perspectives and links to
determine the inheritance relationships among perspectives, the HERMES system
can support annotation of these nodes to store information related to the purpose

!?#$%##?&'(&)(?##%*+
,-./(.0*(/-*(!*#?1'($&'#?!*0./?&'#()&0(2%'3#4

)&0(2%'3#4

 Tacit and Explicit Understanding in Computer Support 51

or origination of the perspectives. Similarly, the nodes that define terminology and
expressions in the HERMES language can be linked like a semantic network
(Quillian, 1967).

In turn, the definition of the hypermedia structure itself incorporates both
perspectives and language expressions. Instead of having a fixed content in some
medium, nodes can have their content defined by the evaluation of an expression
in the language. Nodes and links can be conditional upon some computation
defined in the language and involving other nodes and links. Furthermore,
hypermedia information to be displayed is always dynamically computed in the
currently active perspective—even language expressions can have different effects
in different perspectives. In these ways, node contents can be dependent upon the
state of other data in the hypermedia network. The interactions of the integrated
hypermedia, perspectives, and language provide significant control and
malleability for the designer. Design environments built on this substrate can have
many features that support interpretation in design with consistent abilities to
represent knowledge and to tailor the representations.

1.9. Perspectives in Hermes
HERMES includes a perspectives mechanism for organizing all knowledge
represented in the system. This mechanism is general and can be used to define a
variety of different kinds of “perspectives” for categorizing information and for
organizing inheritance of information among perspectives. For instance,
hierarchies of perspectives can be defined for technical specialties (e.g., plumbing,
ergonomics), knowledge domains (kitchen design, partial gravity design),
worldviews (Bauhaus, austere missions), specific designs (i.e., cases), individual
preferences, shared team decisions, and experimental “what-if” versions. New
perspectives can merge information from multiple existing perspectives and then
modify the information as seen through the new perspective without affecting it in
the original perspectives. This can facilitate periodic, non-disruptive
reorganizations of the knowledge base as it evolves.

The perspectives mechanism of HERMES helps to support the collaborative nature
of design by multiple teams. Drawings, definitions of domain terms in the
language, computations for critic rules, and annotations in the issue-base can be
grouped together in a perspective for a project, a technical specialty, an individual,
or a team. A new perspective can be defined to archive a version of a design for
historical purposes so it will not change as team members continue to work on new
versions. Every action in HERMES takes place within some defined perspective,

 Tacit and Explicit Understanding in Computer Support 52

which determines what versions of information are currently being accessed.
Perspectives can collect knowledge according to various categories. For example,
there can be perspectives for individual designers or design teams; for technical or
professional specialties; for traditional or cultural domains; for specific projects;
or for historical versions of projects.

Since information in HERMES is always viewed through a perspective, switching
perspectives can support the deliberation of alternative approaches. By redefining
in different perspectives the same graphic objects or linguistic terms used in
conditionals, queries, and critics, one determines how things will be displayed
(interpreted) differently in different perspectives. Thus, as shown by a scenario in
Chapter 9, critics in a “privacy perspective” might analyze habitat layouts using a
concept of privacy gradient defined in that perspective, whereas the same critics
would in effect have different definitions in other perspectives and would therefore
produce different results. The interpretive critics for privacy that are used in the
scenario are analyzed and explained in detail in Chapter 10 as a case study in use
of the language.

The approach of HERMES supports communication among designers. The
representations of the design situation may include documentation of design
rationale by specifying resolutions of issues in an issue-base. For lunar habitat
design, such documentation is contractually required by NASA. Requirements
traceability and clear communication of rationale are necessary for a design to
move from the original design team to subsequent groups for approval, technical
elaboration, mock-up, and eventual construction. Documentation is notoriously
difficult to produce. Design rationale is most effectively captured when it is an
explicit concern. Formulations developed in the HERMES language by designers in
the midst of designing can supplement the situation representations, stating for the
benefit of future designers looking at their work what aspects were originally
considered important and what rules of thumb were developed then. Viewing the
design from the original team’s perspective preserves their interpretation, while
subsequent groups can define their own modified perspectives. Individuals in work
teams can share ideas, viewpoints, and definitions by using group perspectives that
inherit from and modify the contents of their different personal perspectives.

1.10. The HERMES Language
HERMES features a language for designers to use. The language is defined as a
series of subset languages to facilitate learning by new users. First it should be
noted that previously defined terms and expressions are used most of the time.

 Tacit and Explicit Understanding in Computer Support 53

These are simply selected from lists of relevant terms. Then there is a beginner’s
version of the language that is very similar to the PHIDIAS language, which proved
easy to use for non-programmer novice users. This level of the language suffices
for defining or modifying most common terms and queries. An intermediate level
provides access to virtually all features of the language except those related to
graphics. Finally, an advanced level can be used for graphics-related tasks, like
defining interpretive critics. Most system displays and component interfaces are
defined in the language, so they can be modified through use of the language.

The HERMES language defines domain vocabulary for referring to represented
objects and their associations (the nodes and links of the hypermedia). It also
provides expressions for stating queries to define displays and for stating rules to
critique designs. The expressions fall into three major syntax categories: (a)
definitions of lists of nodes, (b) expressions for filtering out nodes not meeting
stated criteria, and (c) operations to traverse various kinds of associations. These
support the situated, perspectival, and linguistic character of interpretation by
naming representations of things in the design situation, filtering out objects for
display based on viewing criteria, and providing expressions for exploring
associations. Objects in each of these categories can be either (1) reused or (2)
refined by combining expressions in useful ways. This defines the six primary
syntactic classes in the language; four other classes provide auxiliary terms and
features. The syntactic classes are listed with brief descriptions in Table 1-4.

 Tacit and Explicit Understanding in Computer Support 54

Table 1-4. Syntactic classes of the HERMES language.

 syntactic class description

a-1 Datalists options for identifying hypermedia nodes.

a-2 Computed Datalists permitted combinations of language elements

that determine sets of nodes

b-1 Filters predicates characterizing nodes for selection

b-2 Computed Filters permitted combinations of language elements

that define filter conditions

c-1 Associations links and other associations of nodes

c-2 Computed
Associations

permitted combinations of language elements

that determine sets of Associations

d-1 Media Elements nodes of various media: text, numbers, booleans,

graphics, sound, video, etc.

d-2 Computed Media
Elements

permitted combinations of media elements,

e.g., arithmetic and boolean computations

e-1 Pre-defined
Terminology

connective terms, measurement primitives,

fixed values for attributes and types

e-2 Computed
Terminology

namable quantifiers and numerical comparisons

The language provides a tacit form of language usage for non-programmers. Most
of the sequential processing is kept implicit, due partially to the declarative form
of the language structure. Also, expressions that were originally figured out
explicitly are given names in domain terminology. In Figure 1-3, for example, the
user clicked on an issue about sleep compartment bunks and then chose the
“Predicate” (Computed Association), discussion. This predicate was already
defined to produce a hierarchy of issues with their answers and arguments. The
user did not have to be concerned with the recursive structure of this hierarchy or
its iterations through multiple links. All of those computational matters were
implicit in the definition of the predicate. The user could simply select the
predicate by name. This example of choosing “discussion” from a list of predicate
names in Figure 1-3 is typical of how the language is used in HERMES. Even when
one is creating a new expression, one selects syntax options in dialogue boxes and

 Tacit and Explicit Understanding in Computer Support 55

selects predefined terms from lists. This minimizes the need to remember syntax
and terms, prevents many kinds of errors, and avoids the impression that one can
simply use free-form English to define expressions.

The HERMES language pervades the system, defining mechanisms for browsing,
displaying, and critiquing all information. This means that designers can use the
language to modify and refine the representations, views, and evaluations of all
forms of domain knowledge in the system. All vocabulary in the language is
modifiable by the designers. Every language expression (and every component of
a larger expression) can be encapsulated by a name, so that many statements in the
language can be defined with common terms from particular design domains.
Considerable effort was put into the design of the language to make the appearance
of expressions as easily interpretable as possible. Chapter 10 presents many
examples and discusses the techniques used to achieve a readily interpretable
appearance. This is just one way in which the language is designed to support tacit
usage. Much of the knowledge that people must explicitly use in writing programs
in conventional programming languages (assignment, variables, functions,
quantification, etc.) has been hidden from the user in the HERMES language (see
Chapter 10 for a detailed description of this). The power of these mechanisms is
available through the language, but designers need not think in terms of the
computational mechanisms. However, when it is necessary for a designer to
explore the definition of a user-defined expression in the language in order to
understand it more explicitly, this can be done.

Combined with the perspectives mechanism, the language permits designers to
define and refine their own interpretations. This allows the HERMES substrate to
extend systems beyond the domain-oriented approach of the knowledge-based
design environments that HERMES grew out of, by supporting multiple situated
interpretations of the domain. That is, the previous systems pre-defined most
domain knowledge in a single, generic knowledge base. However, all
representations are relative to human interpretation and interpretation is
perspectival. HERMES lets designers reinterpret linguistic expressions of
knowledge already in the system and store them in appropriate perspectives. This
retains the relationship of design knowledge to interpretive perspectives. It also
replaces the notion of a single body of domain knowledge (whether fixed or
evolving) with a system of multiple perspectives on the domain. Furthermore, this
extension encourages inter-related or relevant knowledge from diverse domains to
be brought together in specific perspectives.

 Tacit and Explicit Understanding in Computer Support 56

1.11. Conclusion
The analysis of situated interpretation argues that only people’s tacit
preunderstanding can make information meaningful in context. Neither people nor
computers alone can take advantage of the huge stores of data required for many
design tasks; such information is valueless unless designers can use it in their
interpretations of design situations. The data handling capabilities of computers
should be used to support the uniquely human ability to understand. The theory of
computer support for interpretation in design suggests that several characteristics
of human understanding and collaboration can be supported with mechanisms like
those in HERMES for refining representations of the design situation, alternative
perspectives, and linguistic expressions. The theory provides a coherent
framework for a principled approach to computer support for designers’ situated
interpretation in the age of information overload.

In elaborating the argument of the previous paragraph, this dissertation seeks to
make three kinds of contributions: to a philosophy of interpretation, to a theory of
computer support, and to a system for innovative design.

* It makes a philosophic contribution by clarifying the foundations of situated
cognition theory in Heidegger’s philosophy of interpretation and extending
that philosophy through an analysis of interpretation in design and through a
theory of computer support for interpretation in design.

* It makes a contribution to computer science by arguing that systems to
augment human skills in innovative design should be oriented toward
providing support for the processes of interpretation.

* It makes a practical contribution by prototyping three crucial mechanisms for
design environments: a hypermedia substrate that integrates a perspectives
mechanism and an end-user language.

These contributions reflect a belief that our age calls for alternatives to a technical
rationality philosophy, an expert system approach to computerization, and a view
of the designer as an isolated and unaided subject.

Part I. Interpretation in Design

 “And to imagine a language

 means to imagine a form of life.”

 Ludwig Wittgenstein

 Philosophical Investigations

 (1953, §19)

 Tacit and Explicit Understanding in Computer Support 58

Interpretation is the process of understanding something in a specific way. That
is, it is a matter of explicating a non-articulated (i.e., tacit) grasp of something.
This may involve the phenomenon of seeing as: a closed line in a drawing is
spontaneously perceived as (representing) a certain type of object. It may involve
re-interpretation, in which a passage in a novel is seen in a new light on the basis
of literary criticism. A psychoanalyst might interpret a patient's dream or behavior
as an expression of deep-seated fears. A designer could construe an assigned
project as a problem of creating a certain kind of space, light, or form.

An attempt will be made in the following pages to interpret interpretation: to
articulate an increasingly more explicit understanding of what is involved in the
process of interpretation and what role this process plays in design. What factors
influence how things are interpreted? What prompts designers to reinterpret, and
what cognitive function does this play? The purpose of this exploration is to
determine how interpretation in design can be supported by computer-based
systems, and why it might be useful to do this.

The next three chapters all argue that an essential feature of the designer's work
involves processes of interpretation. Chapter 2 shows that three of the foremost
analysts of design stress the role of interpretation (although they may not agree on
much else). Chapter 3 presents original empirical evidence from a study of
designers at work designing a lunar habitat. Chapter 4 offers a philosophical
framework for conceptualizing interpretation as a fundamental aspect of human
understanding.

CHAPTER 2. THREE
METHODOLOGIES OF DESIGN

In each section of this chapter evidence will be presented in support of the claim
that the process of understanding in design has the following three features:

(a) understandings of a design arise from interactions with the situation of the task
in the world;

(b) the designer's unique interpretive perspectives grow out of traditions which
pass on viewpoints for relating to the world, skills for behaving in the world
and languages for talking about the world; and

(c) explicit articulations of interpretations in language emerge from situated, tacit
understanding and then re-submerge (although they may be captured first).

This chapter will discuss the insights of three people who have provided insightful
and influential interpretations of the design process: Christopher Alexander, Horst
Rittel, and Donald Schön. Significantly, each has been concerned at some point
with the issue of providing computer support for design. Also, they emphasize the
themes of this dissertation: Alexander focuses particularly on the problem of
representation; Rittel emphasizes the consequences of people's differing
perspectives; and Schön is concerned above all with how explicit reflection arises
from tacit understanding.

Alexander recognizes the need to combine mathematical methods and analysis of
patterns with intuitive sense grounded in architectural practice. In pushing the
paradigm of objective analysis as far as he can, he is nevertheless frank about the
limits of empirical research and the importance of prioritizing human needs that
are less susceptible to empirical evaluation. Finally, the pattern language he
proposes is meant as a basis for every culture and every person to build their own
unique and appropriate representations of design situations.

Rittel's analysis of the “wicked” problems of design does not suggest the
elimination of method in favor of arbitrary personal whim. Rather, it stresses the
complexity of continually framing the problem and solving it in parallel. One's

 Tacit and Explicit Understanding in Computer Support 60

interpretation of the problem must not only be based in the specifics of the
situation, but must also grow out of the exploration of potential solutions. The
argumentative process of design is not simply one in which everyone is entitled to
their own opinion. Rather, it is a process in which initial prejudices are supposed
to be subjected to critique from other viewpoints so that they will be refined. At
the same time, Rittel recognizes that people have differing perspectives for various
legitimate reasons, and that agreement will not always be possible even with the
best processes of deliberation.

Schön can be seen as a resolution of the objective and subjective approaches, for
he stresses the interplay or dialogue between the designer (who brings tacit skills
and personal perspectives) and the materials of a design situation (which provides
surprises for the moves of the designer that could not have been anticipated but
that constrain the design). Schön's theories about the roles of tacit knowing and
explicit reflecting, drawing upon important philosophical sources, flesh out both
Alexander's notion of intuition and Rittel's sense of how judgments can be
deliberated. Schön's theory of design focuses on the movement between the
designer’s skillful preunderstanding (“knowing-in-action”) and explicit
articulation (“reflection-in-action”). This is precisely the movement that is called
interpretation in this dissertation.

2.1. Alexander: the Structure of a Design
Situation

Deliberation on the question of whether and how computers should be used to
support the work of designers has raged for several decades. In the beginning of
the 1960's Alexander (1964) pioneered exploration of this possibility by running a
series of computer programs for the hierarchical decomposition of systems into
subsystems, diagrams, or patterns. This kind of decomposition was central to the
methods he proposed for design, and it seemed logical and necessary to use
computationally powerful equipment to implement such analysis. However, within
several years, Alexander was discouraged about the use of computers to support
design. He complained that, “the people who are messing around with computers
have obviously become interested in some kind of a toy. They have definitely lost
the motivation for making better buildings” (Alexander, 1971, p.309). In his 1971
Preface to the paperback edition of his original work, he characterized the problem
with attempts at computer support in terms of a broader problem of separating the
study of design methodology from the practice of designing (Alexander, 1964).

 Tacit and Explicit Understanding in Computer Support 61

The issues surrounding the appropriate use of computers go to the heart of what
design is and should be. In his now classic Notes on the Synthesis of Form—which
presents his dissertation work incorporating the early computer programs—
Alexander reviews the history and even the prehistory of design in order to argue
that the field reached a second watershed in the mid-twentieth century. The
profession of design had originally emerged when society started to produce new
needs and innovative perspectives too rapidly to allow forms to be developed
through “unselfconscious” activities of slowly evolving traditions. Now, the
momentum of change has reached a second qualitatively new stage:

Today more and more design problems are reaching insoluble levels of
complexity. This is true not only of moon bases, factories, and radio
receivers, whose complexity is internal, but even of villages and teakettles.
In spite of their superficial simplicity, even these problems have a
background of needs and activities which is becoming too complex to
grasp intuitively. (Alexander, 1964, p.3)

Design problems are situated in “a background of needs and activities.” These
design situations are becoming so complex that the management of complexity
must become a primary concern of the field of design. The level of complexity that
Alexander had in mind is characterized by the fact that it exceeds the ability of the
unaided individual human mind to handle it effectively. Various methodologies
can help to decompose complexity, and this is where the mathematical structures,
diagrams, or patterns that Alexander proposed come in. They provide the
representational or computational basis today for computerization. In an obvious
sense, computers are a natural tool for storing large amounts of information. But
at a deeper level, computer languages and applications are designed to manage
complexity. It is no coincidence that the movement toward structured
programming was contemporaneous with Alexander's emphasis on functional
decomposition.

Alexander saw a major advantage of the systematic use of structures or patterns in
what he referred to as a “loss of innocence.” When design first became a profession
with rules that could be stated in language and taught, there was, according to
Alexander's account, a first such loss of innocence. More recently, when Bauhaus
designers recognized that one could design for mechanized production, another
accommodation was made with changing times. The use of systematic
methodologies to help manage complexity would, Alexander claimed, entail an
analogous acceptance of the limitations of the individual designer's intuitive
powers. This would bring with it a significant opportunity for progress of the
profession. When the design process is formulated in terms of abstract structures
it becomes much more readily subject to public criticism than when it is concealed
in the mysteries of the lonesome genius’ artistry, just as the earlier formulation of

 Tacit and Explicit Understanding in Computer Support 62

previously unselfconscious design into explicit plans, articulated processes, and
stated justifications laid the basis for a science of design that could be refined
through on-going debate. Loss of innocence entails the removal of an outmoded
barrier to the kind of public critical reflection required for a profession.

But Alexander did not see the issue one-sidedly. Recognizing the power of both
formal representations and non-formalizable tacit knowledge, he did not propose
that design methods substitute for the practice of design or for the designer's
practical intuitions. Rather, he recognized that intuition and rationalism were
equally necessary, and argued for a proper balance: “Enormous resistance to the
idea of systematic processes of design is coming from people who recognize
correctly the importance of intuition, but then make a fetish of it which excludes
the possibility of asking reasonable questions” (ibid., p.9). Alexander felt that the
fetishism of intuition as some kind of inalienable artistic freedom of the designer
functioned as a flimsy screen to hide the individual designer's incapacity to deal
with the complexity of contemporary design problems. As a consequence of the
designer ignoring these limitations, the unresolved issues of complexity get passed
down to engineers who have been trained to work out details rather than to grasp
complex organization synthetically; the product that results tends to be a
monument to the personal idiom of the creator rather than an artifact with a good
fit to its function.

The themes raised by Alexander three decades ago for design methodology
generally still confront the particular task of figuring out how best to use computers
to support designing. Consider his first example above, that of designing a moon
base. This is a task requiring a significant amount of knowledge. One needs to take
into account technical considerations about supporting humans in a vacuum,
including issues that may not have previously been thought of and investigated
(such as the practicality of using lunar rocks as building materials). One must also
consider the mission goals of the base, both stated and implicit. Then there are
social and psychological issues concerning the interactions among groups of
people who are confined in an alien environment for a prolonged period of time.
All of these factors interact with the more common issues of designing a habitat
for working, eating, socializing, and sleeping—resulting in a design problem of
considerable complexity. While computers may be necessary to manage this
complexity, the tacit knowledge of human designers must also be brought to bear
with their intuitions about what it would be like to live together in a lunar habitat.

Three themes can be mentioned from Alexander's discussion in Notes: (a) The
point of his method of decomposition is to derive substructures through an analysis
of the design problem so that the design process can be approached (understood)
in terms that grow out of the problem situation and provide a basis for the solution.
One problem of people who follow a methodology divorced from practice is that

 Tacit and Explicit Understanding in Computer Support 63

their representations are not based in attempts to solve concrete tasks. (b) The
design profession has emerged from unselfconscious traditions. Rapid
technological change has necessitated a multiplication of individual perspectives
(and group movements) on design, but these perspectives need to retain ties to
traditions in order to maintain goodness of fit and avoid academic or idiosyncratic
arbitrariness. (c) Professional designing has evolved out of tacit knowledge of
form. While we need to make things self-conscious or explicit now, we should
remember the basis of such knowledge in tacit understanding: the kind of
understanding that the traditional Slovakian shawl makers (see Alexander, 1964,
p.53) had so they could distinguish good from bad designs without having any
theory or rules to go by. Such tacit knowledge provides a basis for what Alexander
calls intuition. These three themes reappear in Alexander's other writings.

It may sometimes seem that Alexander eschews personal interpretations and
instead tries to compute mathematically determined structures, objective relations,
and universal patterns. One can certainly view his work that way, in which case
the problems he inevitably acknowledges represent a reductio ad absurdum of the
attempt to define a theoretical basis for the automation of design. But it is also
possible to see in his work the recognition that practice, perspectives, and intuition
are as necessary as theory, objectivity, and rules. Certainly in Notes and in
Alexander’s reaction against the reception of Notes it was already clear that
computerizable, mathematical methods of analyzing structural decomposition
must be integrated with human design practice and intuition based on traditions
and tacit knowledge.

In The Atoms of Environmental Structure (Alexander & Poyner, 1966), for
instance, Alexander starts out by arguing for an objective approach to design,
based on computations of relations that meet stated requirements. His first example
of a requirement is to provide people working in an office with a view. How, he
asks, does one know that people need or want a view? Alexander is frank about
the complications involved here. He tries to operationalize the hypothesized need
in terms of an underlying tendency. It is not sufficient to ask people, because their
knowledge of their own needs is largely tacit. So experiments are needed to see if
people choose desks with views, and under what conditions they do so. Further
experiments are needed to rule out other factors, such as seeking better light or
ventilation. Then “in order to make the hypothesis more accurate, we must try to
specify just exactly what kind of people seek a view from their offices, during what
parts of their work they seek it most, just what aspects of view they are looking
for” (p.126). In the end, Alexander admits that “The ideal of perfect objectivity is
an illusion—and there is, therefore no justification for accepting only those
tendencies whose existence has been ‘objectively demonstrated.’ Other tendencies,
though they may be speculative, are often more significant from the human point
of view” (ibid.).

 Tacit and Explicit Understanding in Computer Support 64

Another example where Alexander seems to be arguing for an objective approach,
but in fact presents a case for supporting subjectivity is A Pattern Language
(Alexander, et al., 1977). Here Alexander and his colleagues present 253 patterns
for architectural designing and planning. Superficially, it may seem that these
patterns are the kind of objective structures that might have been produced by
computer analyses (as in Notes), that represent the resolution of fields of
relationships (as discussed in The Atoms of Environmental Structure), or that
describe eternal, de-contextualized solutions (as implied by the title of the
companion volume to A Pattern Language, A Timeless Way of Building). For
instance, Alexander claims, “Many of the patterns here are archetypal—so deep,
so deeply rooted in the nature of things, that it seems likely that they will be part
of human nature, and human action, as much in five hundred years, as they are
today” (p. xvii). However, a closer look shows that these patterns are intended as
a basis (distilled from the traditions of world architecture) for people to create their
own, situated perspectives on design: “Each solution is stated in such a way that it
gives the essential field of relationships needed to solve the problem, but in a very
general and abstract way—so that you can solve the problem for yourself, in your
own way, by adapting it to your preferences, and the local conditions at the place
where you are making it” (p. xiii).

In fact, the philosophy behind A Pattern Language is that every healthy society
and every one of its members has their own perspective on design. These
perspectives are shared and evolving; based on the constraints of the problems to
be solved; and contributory to what it means to feel human and social.

A Timeless Way of Building says that every society which is alive and
whole, will have its own unique and distinct pattern language; and further,
that every individual in such a society will have a unique language, shared
in part, but which as a totality is unique to the mind of the person who has
it. In this sense, in a healthy society there will be as many pattern languages
as there are people—even though these languages are shared and similar.
(p. xvi)

The 253 patterns given in the book are meant as templates to start building new
languages. First one chooses the templates most central to one's project. Then one
selects related patterns to the extent that they are appropriate or desired for the
particular project. Extensions must be made to the list of patterns to cover missing
topics, and one is always free to modify patterns and even rename them to make
them more relevant. Finally, one's personal language can gain richness, subtlety,
and “poetry” by compressing multiple pattern templates for a specific problem.

In the works just reviewed, Alexander is concerned with how to support
interpretation in design. He successively suggests interpreting a design problem in

 Tacit and Explicit Understanding in Computer Support 65

terms of structures (of functional decomposition), relations (based on tendencies),
and patterns (articulated in a language of design). In each case, he tries to push the
notion of objectivity to its limits in terms of mathematical algorithms,
operationalism and empiricism, or eternal paradigms. This would make computer
support relatively straight-forward—that is, it would make sense to pursue the
automation of design via expert system approaches embodying algorithms for
decomposition, rules for relations, and templates of fixed patterns. However, in
each case Alexander notes the limits to objectivity and the over-riding importance
of tacit intuition, the human point of view, and contextual factors. Thereby, he has
raised the issue of how to support interpretation in design, and even debated the
use of computers in doing this. Whether one construes Alexander as ultimately
arguing for or against objective methods, he has in the process provided arguments
against both purely objective and purely subjective approaches.

2.2. Rittel: Deliberating from Perspectives
When Rittel declared in his Dilemmas in a General Theory of Planning that
“planning problems are inherently wicked” (Rittel & Webber, 1973, p.160), he
thereby spelled out that characteristic of planning and design tasks that has
subsequently become the central source of perplexity in trying to imagine a
computer system that can effectively support the challenging aspects of design.
Computer programs have traditionally been devised in accordance with the
classical example of tame science and engineering problems—precisely the
paradigm that Rittel argued is not applicable to the problems of open societal
systems with which planners and designers are generally concerned. This
inadequate approach assumes that a problem can first of all be formulated as an
exhaustive set of specifications. Then, based on such a problem statement, possible
solutions can be evaluated to see which are optimal solutions to the problem.
Computer programs based on this paradigm must represent in advance the space
of problems and solutions for a well-defined type of design problem in an explicit,
comprehensive, and non-controversial (objective) manner. However, as Rittel
points out, in order to program such a computer system,

you would have to anticipate all potential deontic judgments ahead of time
before the machine could run. But if you did that you wouldn't need the
computer because you would have had to have thought up all the solutions
ahead of time. Therefore it is almost ridiculous to claim that there will be
a designing machine if design is thought of in this sense. (Rittel, 1972,
p.323)

 Tacit and Explicit Understanding in Computer Support 66

Rittel claimed that the wicked problems of planning could not begin to be
understood in the first place until one had already started to explore directions for
solutions. He described what Heidegger calls the hermeneutic circle of
understanding (see Section 4.3) when he argued, “that you cannot understand the
problem without having a concept of the solution in mind; and that you cannot
gather information meaningfully unless you have understood the problem, but that
you cannot understand the problem without information about it” (Rittel, 1972,
p.321).

Suppose, for instance, that you are asked to plan a mission to the moon for four
astronauts for a period of 45 days. According to NASA, the purpose has been
specified as: to explore long-term stays for crews of international backgrounds and
mixed gender and to conduct some scientific research and some site work to
prepare for future moon bases. In thinking about the design of the lunar habitat for
this mission, you might begin to discuss the importance of privacy issues with
other people on your design team. You might feel that not only was some physical
privacy needed for cultural reasons, but psychologically there would be a need to
structure a careful mix of public and private spaces and opportunities. These
privacy issues might become paramount to your design even though they had not
been included in the original problem statement. In this way, the set of issues to be
investigated and concerns to be balanced would emerge and evolve as the planning
process took place. Your ability to interpret the problem as one of privacy would
have been based on your tacit preunderstanding of privacy as part of human life.
On this basis you could then explicitly explore lunar privacy through discussion,
simulation, or research on analogous situations.

In opposition to the then dominant methods of operations research that tried to
compute optimal solutions from static and well-defined (“tame”) problem
statements, Rittel called for a model of planning as “an argumentative process in
the course of which an image of the problem and of the solution emerges gradually
among the participants, as a product of incessant judgment, subjected to critical
argument” (1973, p.162). The language used in actual, significant planning
processes is itself the result of discussion and debate among various parties, each
of whom uses subjective judgments to criticize hidden assumptions and to
reconstrue implicit meanings of terms. No one view of the problem or its solution
has a necessary priority. The framing of problems and the judging of solutions
arise through critique, deliberation, and reinterpretation, not by inference from an
objective viewpoint. For Rittel, people's perspectives on problems are necessarily
based on subjective conditions such as their individual value systems and political
commitments or their personal roles vis a vis the proposed solutions:

For wicked planning problems, there are no true or false answers.
Normally, many parties are equally equipped, interested, and/or entitled to

 Tacit and Explicit Understanding in Computer Support 67

judge the solutions, although none has the power to set formal decision
rules to determine correctness. Their judgments are likely to differ widely
to accord with their group or personal interests, their special value-sets,
and their ideological predilections. (p.163)

 Consider again the concept of privacy in the lunar habitat. A design team might
start from the idea of visual privacy. Through discussion of the implications of life
in this confined space, they might want to include protection from the noise of
flushing toilets and snoring neighbors. But then the design team member
concerned with medical contingencies might introduce a notion of privacy for an
injured astronaut who needs to recuperate. Psychologists, sociologists, engineers,
and other members of the design team would each come to the common task with
different perspectives. Given a methodology that builds on the strengths of design
as an argumentative group process, these differences can contribute to a robust
solution that takes into account a variety of competing and interacting insights, not
all of which could have been anticipated in advance. Also central to Rittel's notion
of argumentation or deliberation is the idea of critique as a driving force for
improving one's thinking and designs. Thus an information system should not only
confirm and add to one's knowledge, but also question and weaken elements of
that knowledge and even delete some of it (Kunz & Rittel, 1984).

Wicked problems are open-ended in that there is no fixed set of objective criteria
or procedures that can be applied to them. There is what Rittel termed the “essential
uniqueness” of these problems:

By “essentially unique” we mean that, despite long lists of similarities
between a current problem and a previous one, there might be an additional
distinguishing property that is of overriding importance. . . . There are no
classes of wicked problems in the sense that principles of solution can be
developed to fit all members of a class. . . . Despite seeming similarities
among wicked problems, one can never be certain that the particulars of a
problem do not override its commonalities with other problems already
dealt with. (Rittel, 1973, p.164)

This creates a serious difficulty for supposed systems of domain knowledge. Rules,
critiquing procedures, and design rationale cannot be applied to problems
automatically based on their similarities to past problems or to prototypical
problems of the domain. A given new problem may have some characteristic that
makes the chosen rule irrelevant or inappropriate. The rule may need to be
modified to fit the uniqueness of the problem. The problem with rules is that they
always need meta-rules for applying them to cases. Algorithmically, this leads to
an infinite regress which can only be circumvented by an act of human judgment
of appropriateness (see Wittgenstein, 1953). Automated systems always rely in the

 Tacit and Explicit Understanding in Computer Support 68

end on a judgment by their designer that a certain measure of similarity will suffice;
for the wicked problems of innovative design this is inadequate. Judgments of, for
instance, the nature and priority of privacy under different conditions is a matter
of interpretation. The situated, perspectival, and linguistic nature of interpretation
means that each act of interpretation is essentially unique and its uniqueness must
be taken into account. (See Chapter 5 for a discussion of the problem of application
of rules and its implications for the computer support of interpretation in design.)

Somehow, the dimensions of the design problem must be allowed to emerge and
change as different perspectives are brought to bear, as initial approaches are
subjected to questioning, and as solutions gradually emerge. Rittel proposed
systematic issue-based information systems (IBIS) to keep track of the issues that
were being deliberated from various positions (Kunz & Rittel, 1970). Paper
systems for organizing all the issues in complex planning activities soon proved
unwieldy, so Rittel proposed computer support for them: “If, for example, you
clearly organize a planning process according to such an argumentative model as
an IBIS (issue-based information system), you will find that the bureaucratic effort
of administering the process is abominable, and therefore one might look for
administrative and monitoring computer aids to ease the process” (Rittel, 1972,
p.324).

Rittel himself made some initial attempts to define issue-based information
systems, leading to more recent computerized systems like MIKROPLIS (McCall,
1985), GIBIS (Conklin, et al., 1988), and other programs that will be reviewed later
in Chapter 7. (Figure 2-1 shows a view of an IBIS display in HERMES.)

 Tacit and Explicit Understanding in Computer Support 69

Figure 2-1. A view of an issue-based information system in HERMES.

Computer systems may be useful for storing, organizing, and communicating
complex networks of argumentation—as long as they do not stifle innovation by
imposing fixed representations of the ideas they capture or limiting diversity of
interpretive viewpoints. Computer support for planning and design processes as
Rittel conceived of them must allow team members to articulate their individual
views and judgments, to communicate these to each other, and to forge shared
perspectives. It must support deliberation or argumentation.

Rittel concluded that the proper role for computers and information systems
generally is that of an enhancer of natural (human) intelligence, not an artificial
substitute for it. In Designing Crutches for Communication (Kunz & Rittel, 1984),
he uses the image of prosthetic devices like crutches or eye glasses: “The glasses
do not see instead of you, or on your behalf. Neither does the automobile relieve
you from traveling. They are prosthetic devises which support, reinforce, enhance
some capacity or activity” (p.54). Because the role of information science is not to
automate problem-solving but to augment human problem-solving, it must be
based on an analysis of how people use information and solve their problems:
“Here lies the central task of information science: to develop methods for exploring
its users' knowledge and their modes of reasoning, i.e., the systems analysis of

 Tacit and Explicit Understanding in Computer Support 70

problem solving and information” (p.60). Given Rittel’s view of design as
argumentation from perspectives, this means computers should support people’s
perspectival interpretation processes.

2.3. Schön: Tacit Knowing and Explicit Language
Schön argues in his seminal work, The Reflective Practitioner (1983), that much
design knowledge is tacit, rather than being rule-based. He views the design
process as a dialogue-like interaction between the designer and the design
situation, in which the designer makes moves and then perceives the consequences
of these design decisions in the design situation (e.g., in a sketch). The designer
manages the complexity that would be overwhelming if all the constraints and
possibilities were formulated as explicit symbolic rules by using professionally-
trained skills of visual perception, graphical sketching, and vicarious simulation.
Note that these skills by-pass the process of analyzing everything into primitive
elements and laying it out in words and propositions.

Schön recently addressed the question of computer support for design in an article
descriptively entitled Designing as Reflective Conversation with the Materials of
a Design Situation (Schön, 1992). He argued for a necessarily limited role for
computers in design because one of the most important things that designers do is
to construct the design situation itself. Not only is this something that computers
cannot do by themselves, but it also precludes programmers of computer systems
from pre-defining a generic design situation for the computer, prior to the
involvement of the designer with the task.

To illustrate his claim that designers “construct” the design situation, Schön
reviews an experiment in which several experienced architects are shown a 14-
sided, dimensioned polygon with door locations indicated, and asked to design a
library with that shape as its footprint. One architect saw the figure as two Ls back
to back; another saw it as three pods surrounding a middle; a third saw it in terms
of simple end entrances and complex middle entrances. Clara, another subject,
discovered a five foot displacement in the layout which complicated the spatial
relationships considerably for her. (See Figure 2-2.)

 Tacit and Explicit Understanding in Computer Support 71

Figure 2-2. Four interpretations of the library.

Here the library is displayed in HERMES in four interpretive contexts,
corresponding to the views of the four architects in Schön's study.

Schön concludes from these and other studies that designers construct the problem
by seeing the situation as defined in a certain way:

In one sense, the 5 ft displacement that Clara noticed is there to be
discovered. However, not everyone who tried the library exercise
discovered it. Clara did. She noticed it, named it, and made a thing that
became critically important for her further designing. In this sense, her
treatment of the library exercise shows her not only discovering but
constructing the reality of a design situation. For designers share with all
human beings an ability to construct, via perception, appreciation,
language, and active manipulation, the worlds in which they function. . . .
Every procedure, and every problem formulation, depends on such an
ontology: a construction of the totality of things and relationships that the
designer takes as the reality of the world in which he or she designs.
(Schön, 1992, p.9)

!"#A#%C'A(F*A+C',-+,

.'A/,F*A+C',-+,

!"#A#!"#A#

0-+12(F*A+C',-+,

 Tacit and Explicit Understanding in Computer Support 72

What is Clara constructing here? She is not constructing the physical artifact (the
actual library or even the drawing of it), but an interpretation of the problem
situation as having certain crucial features, certain semantics, for her. Her
awareness of the five foot displacement becomes increasingly explicit. She names
it as a feature of the task and thinks about its relationship to possible solutions. Of
course, the displacement was always physically present in the drawing, and the
other architects may have had a subsidiary awareness of it. Maybe if they were
questioned they would retroactively even be able to focus on it. However, it was
not a focus for their designing the way it was for Clara's; they focused on other
structures. Clara focused on the displacement. It became a problem for her. She
reflected upon it as a central constraint of the design situation: she construed the
situation in terms of this particular problem. Perhaps it presented an opportunity
for her to do something with the library that she wanted to do; or perhaps it was a
characteristic kind of feature she often exploited; or perhaps it stood in the way of
her taking an accustomed approach. Whatever the details, she came to the task in
her own characteristic way and constructed a design situation that differed
essentially from what each of the other architects constructed. Each architect
interpreted the given problem as a different task.

According to Schön, it is essential to recognize that the designer brings a creative
constructive vision to the task. The problem of the library—the structure of the
layout—is not explicitly given in the sense that an exhaustive specification of it
could be given even in principle, but is experienced primarily in the mode of tacit
subsidiary awareness (Polanyi, 1962). Nor does the designer impose a standard
structure for interpreting the task. Rather, the designer approaches it with certain
anticipations, conceptualizations, and background knowledge. Then the designer
interacts with it to discover the basis for an understanding in terms of which the
situation is framed or constructed. By attending to the displacement that others had
ignored and naming it explicitly, Clara made it a crucial component of her design
situation.

Schön's description of “construction” is very similar to Merleau-Ponty's concept
of creative discovery, which is dependent on both the concrete individual and the
specific task in their dialogical relation. Schön was undoubtedly influenced during
his post-doctoral philosophy studies in Paris by Merleau-Ponty, the leading French
philosopher teaching there at the time. Merleau-Ponty's Phenomenology of
Perception (Merleau-Ponty, 1945) is perhaps the best analysis of Heidegger's
philosophy (see Chapter 4 below) in terms of how we perceive our world. For
Merleau-Ponty, the interpretive situation is neither simply objectively given nor
subjectively represented, but creatively discovered. The dialectic of anticipatory
framing and tentative setting of the object of perception as such and such a thing
is elevated to an ontological principle by him at the same time as it is grounded in
our corporeality as embodied perceivers. Perhaps more explicitly than any one

 Tacit and Explicit Understanding in Computer Support 73

else, Merleau-Ponty formulated a philosophy that explored the interplay of
subjectivity and objectivity. By recognizing in detail how our body spans the
subject-object dichotomy, he resolved at an abstract level the conflict that pervades
late twentieth-century thought, including the design theory of Alexander, Rittel,
and Schön. (The relevance of this conflict between the objectivity of artifacts in
the world and the subjectivity of our interpretive perspectives for the question of
computer support for design will be discussed at the conclusion of this chapter.)

Schön reviews other experiments that show that designers also construct the
materials, site, and relationships in a similar way to how Clara constructed the
crucial patterns of the project. In this sense, then, there is no given design problem
that is explicitly and exhaustively defined before the designer comes to it.
Correspondingly, there can be no well-defined problem space for the designer (or
for some automated version of the designer) to search through methodically.
Rather, the designer's subjective, personal or intuitive appreciations shape the
problem by constructing its patterns, materials, and relationships. The design
project is solved by the designer experimenting with tentative moves within the
constructed design situation and discovering the consequences of those moves.

Clara made explicit the presence of the five foot displacement in the library
footprint. As she works further on the library design, her awareness of the
displacement may fade away, although it will have left its mark in the way she sees
the structure of the building. This is one example of tacit knowledge becoming
explicit for awhile during the design process, and then re-submerging into tacit,
subsidiary awareness.

The movement from tacit to explicit understanding is an important and ubiquitous
phenomenon, which Schön analyzes in more general terms in The Design Studio
(Schön, 1985). Here he talks about the movement from knowing-in-action to
reflection-in-action. For him, human action embodies tacit forms of knowledge:
knowing how to physically do something without thinking about it or necessarily
knowing that it may correspond to certain rules:

To begin with, the starting condition of reflection-in-action is the
repertoire of routinized responses that skillful practitioners bring to their
practice. This is what I call the practitioner's knowing-in-action. It can be
seen as consisting of strategies of action, understanding of phenomena,
ways of framing the problematic situations encountered in day-to-day
experience. It is acquired through training, or through on-the-job
experience. It is usually tacit, and it is delivered spontaneously, without
conscious deliberation. (p.24)

Schön's concept of knowing-in-action should be contrasted with the rationalist
view of human action, which persists strongly into recent cognitive science.

 Tacit and Explicit Understanding in Computer Support 74

Rationalism (e.g., the tradition of Plato and Descartes) assumes that the basis of
action is rational thought, that our behavior is caused by symbolic representations
in our minds that could be articulated in propositions in language. Even in cases
where we are not consciously aware of rational thought, it is argued, knowledge is
at work unconsciously or in a “compiled” form and it could (at least in principle)
be made explicit either by introspection of one's own motivations or by observation
of rule-like regularities. Cognitive science makes the analogy between minds and
software: our behavior, like that of a computer, is a matter of following
computational rules that could be spelled out as an algorithm.

Polanyi, from whom Schön borrows an analysis of tacit knowledge, turns the
traditional relationship between tacit knowing and rational thought around: “Tacit
knowledge is more fundamental than explicit knowledge: we can know more than
we can tell and we can tell nothing without relying on our awareness of things we
may not be able to tell” (Polanyi, 1958, p. x). Our ability to use language and
rational thought depends on more primordial skills and practices that cannot be
clearly and exhaustively explicated: “We may say in general that by acquiring a
skill, whether muscular or intellectual, we achieve an understanding that we cannot
put into words and which is continuous with the inarticulate faculties of animals”
(p.90). The priority of the tacit over the explicit does not mean that tacit knowledge
is somehow better or more valuable, just that it is the precondition in terms of both
ontogeny and phylogeny. That is, for an individual person to articulate an idea,
he or she must previously have possessed a tacit background understanding that
led to the idea and grounded its meaning. Similarly, for the human species to have
developed sophisticated language and rational thought, it must have already
evolved tacit forms of understanding such as those based on episodic (case-based)
and mimetic (imitative) memory. Rational thought is still what distinguishes
people from other animals, but that does not mean that rationality can exist without
a foundation in tacit knowing-in-action.4

Polanyi provides the most concrete and detailed examination of tacit knowledge
available. His analysis is strikingly close to that of Heidegger (see Chapter 4), as
Polanyi acknowledges in his 1964 Preface: “All understanding is based in our
dwelling in the particulars of that which we comprehend. Such indwelling is a
participation of ours in the existence of that which we comprehend; it is
Heidegger's being-in-the-world” (p. x). Unfortunately, Polanyi tends toward
relativism, ending with a concept of “personal knowledge” that is too little
grounded in the objectivity of a shared world. He emphasizes that everyone can
have their own personal interpretations (assuming certain constraints of

4 For a thorough discussion of the evolutionary basis for higher cognition, taking

into account the latest findings of the cognitive sciences, see Donald (1992).

 Tacit and Explicit Understanding in Computer Support 75

consistency, etc.), but lacks the sense of our embodiment (Merleau-Ponty) or
situatedness (Heidegger) in a shared world, common traditions, social practices,
and public language. (Compare Heidegger’s views on a shared world in Section
4.2.)

Polanyi distinguishes focal and subsidiary awareness. His view of this is derived
from the distinction between foreground and background in classical Gestalt
psychology. Applying these terms, one could say that when Clara had a focal
awareness of the five foot displacement, she also had a subsidiary awareness of the
floor plan as a whole. It was only on the basis (background) of her tacit
understanding of the problem as a whole (the floor plan) that the displacement
could be taken as important and be understood as having certain implications—
causing certain problems for the design. But, given this tacit knowledge of the
whole, the focal part became the meaning of the whole: the design problem became
a problem of resolving the issue of the displacement.

One can, according to Polanyi, only be focally aware of one thing at a time. When
we switch our attention to something of which we have hitherto been subsidiarily
aware, it loses its previous meaning. Consider the following three phases of Clara's
attention:

Phase 1. She focuses on the plan as a whole, being only subsidiarily aware of the
displacement (the way the other architects remained at best subsidiarily aware
of it).

Phase 2. She focuses on the displacement. Now the displacement becomes the
meaning of the whole floor plan. She becomes more explicitly aware of the
displacement and starts to explore its details and implications. However, she
can never achieve absolute explicit knowledge of the displacement issue
because it involves and relies upon her tacit understanding of the general
background problem.

Phase 1'. She returns her attention to the floor plan in general. Now her knowledge
of the displacement becomes tacit once more. Of course, this tacit knowledge
is much richer then it was originally, when she barely noticed it like the other
architects. Now it can play an important role in her thinking about the floor
plan.

How does Clara make these transitions? Why does the focus of her attention shift
during the design process? Schön proposes an interesting theory of breakdowns to
account for the shift from tacit knowing-in-action to an explicit focus and
reflection. He argues that we can go along just doing what we are skilled at doing
without much need for conscious thought. We are pretty much immersed in the
doing, and any use of explicit language is more in the way of commentary than
figuring things out. This can continue comfortably until we hit a problem that our

 Tacit and Explicit Understanding in Computer Support 76

skill cannot automatically resolve. Then, tacit doing suddenly breaks down and we
have to think through the problem, explicitly focusing on the problem area:

Sometimes, however, there are surprises. These take the form of
unanticipated events which do not fit existing understandings, fall outside
the categories of knowing-in-action. . . .

There is a demand for reflection, through turning to the surprising
phenomena and, at the same time, back on itself to the spontaneous
knowing-in-action that triggered surprise. It is as though the practitioner
asked himself, “What is this?” and at the same time, “How have I been
thinking about this?”

Such reflection must be at least in some degree conscious. It converts tacit
knowing-in-action to explicit knowledge for action. (Schön, 1985, p.24)

We become aware of the problem and of what we have been doing that led us to
the problem.

For instance, Clara was sketching in phase 1 above. She was exploring the
approaches to the different entrances in the floor plan by drawing paths that users
of the library would need to take. She was using her tacit architectural skills of
sketching and vicariously moving through the spaces of the drawing. As she
approached one of the interior doors, Clara suddenly remarked, “It's interesting
that there's a five foot displacement here. I'm beginning to get more of a sense of
those dimensions” (Schön, 1992, p.8). In the time it took her to say this, Clara
passed through phase 2 and into phase 1'.

As Schön's commentary to this typical moment analyzes it, this was an instance of
surprise or breakdown, which stimulated successful reflection-in-action. Clara had
been pursuing a problem about the approach to the library. As she traversed one
wall in her imagination she was surprised to find that it was longer than all the
other (equal length) walls. Glancing across the interior, she saw the five foot jog
in the opposite wall. These newly observed facts presented a problem for her
attempt to find a comfortable approach to the building because they changed her
understanding of the overall configuration. They showed that certain walls of
interest were actually longer than other walls. Focusing on the five foot segments
that made this difference gave new meaning to the whole building. As a trained
architect, Clara could reflect on her discovery quickly, understand its significance
and incorporate it in what she had been doing before.

Schön stresses that he is concerned with the form of reflection that actually takes
place in the phase 2 moment of problem-solving—not what takes place
retroactively long after the problem has been solved and the engagement with the
process is broken. For Schön, reflection-in-action “must take place in the action-

 Tacit and Explicit Understanding in Computer Support 77

present—the period of time in which thinking can still make a difference to the
outcomes of action. It has a critical function, questioning and challenging the
assumptional basis of action, and a restructuring function, reshaping strategies,
understanding of phenomena, and ways of framing problems” (Schön, 1985, p.25).

As a result of this moment of breakdown-reflection-repair, Clara's understanding
of the overall problem has changed, as she immediately remarks. This does not
mean she has an absolute and fully explicit understanding of the problem, but
rather, as she puts it, she is “beginning to get more of a sense of those dimensions.”
The fact that she goes on to explore other issues and transfers her attention away
from the displacement does not mean that the knowledge she gained from her
momentary reflection-in-action is gone. It has just become subsidiary and tacit.
According to Schön's description, later on in her designing, when she considered
the entrance on the other side next to the five foot jog, “her discovery of the five
foot displacement reemerges, and becomes central to her rethinking of spaces for
circulation and use” (Schön, 1992, p.8).

Schön argues that a computer program cannot on its own construct a design
situation the way an architect does, picking out, naming, and focusing upon critical
patterns, materials, and relationships. The “construction” of a situation requires
evolving a representation for it through the dialectic of creative-discovery or
reflective conversation. It requires a subtle interplay between tacit knowing-in-
action and more explicit reflection-in-action. To the extent that the role of a
designer includes applying intuitive, perceptual, and linguistic skills to view the
situation creatively and to converse with it reflectively, a computer cannot do what
a human designer does. Assuming that Schön is correct that these skills are
necessary for real design, a computer can also not accomplish the design task using
alternative methods to those used by humans, because computer programs as we
know them are ultimately based on predefined representations of fixed and strictly
delimited ontologies. Computer programs for design are therefore limited to
solving problems in well-defined “microworlds” (Papert, 1980) in which the
framing of new problems is trivial, or else to working with human designers to
augment their tacit skills and to allow them to define the perspectives and concepts
in terms of which tasks are to be undertaken. Artificial intelligence (AI) projects
have usually followed the microworlds option, trying to capture knowledge of a
delimited domain in a symbolic representation that facilitates algorithmic
computations. Schön calls for the alternative option of providing tools for people
to define for themselves (within a computer system) representations of their own
constructions or personal interpretations.

Ways must be found to support the interplay of tacit knowledge-in-action with
more explicit reflection-in-action, which re-submerges into tacit awareness when
the action-present passes. For a computer to process data, all information must be

 Tacit and Explicit Understanding in Computer Support 78

explicitly stated for it. A computer cannot slip facilely between the tacit and the
explicit, the way people move from knowing-in-action to reflection-in-action. A
person must translate the tacitly perceived world into a representation that makes
explicit for the computer the person's partially implicit interpretation. Schön’s
theory of how designers are constantly making aspects of their implicit
understanding explicit suggests that the computer should capture these explicit
representations during the “action present” in which they can be most easily
articulated. The implications of this for a theory of computer support are taken up
in Chapter 6.

Three Perspectives on Design. The three writers just considered all present views
of design as a process of interpretation. Alexander's tack of structural
decomposition is one approach to interpreting a problem. For instance, the four
architects in Schön's experiment interpreted their design situation differently by
decomposing the library floor plan in four different ways: into a pair of “L” shapes,
three pods around a middle space, a combination of simple and complex entrances,
or a set of equal length walls complicated by a five foot displacement. Alexander
recognizes how subtle even an objective seeming interpretation of a design can be,
such as supporting people's tendency to want a view from their office desk. Finally,
Alexander tries to provide a pattern language that people can use to articulate
personal or group interpretations of buildings.

Rittel views the problems of planning and design as wicked problems largely
because the participants in these processes bring conflicting interpretations to bear:
they have different motivations, theoretical frameworks, and commitments. The
notion of design as deliberation is an attempt to bring these differing interpretations
into contact with each other in fruitful ways. Computer systems can serve as
supportive crutches for such processes.

Schön emphasizes the variety of interpretations that an individual designer can
pass through during a design session, as well as the differences in interpretation
that different people are likely to come up with. One always sees something as
something. This involves seeing a whole that one is subsidiarily aware of as
meaningful in terms of a detailed aspect that is the momentary focus of awareness.
When the evolving design artifact surprises the designer with something that
stumps the interpretation projected by the designer's skilled, tacit knowing, then
the designer is forced into a mode of reflection that transforms the interpretation.
Interpretations are neither fixed nor arbitrary. They grow out of the traditions in
people's backgrounds and they adapt to the constraints of the world to which they
are applied.

These three writers provide important arguments about the three features of the
process of design proposed in Chapter 1. They stress the roles of the situation,
alternative perspectives, and explicit articulations. Furthermore, each of these is

 Tacit and Explicit Understanding in Computer Support 79

seen as essentially evolving, so that past understandings are built upon and
modified. Despite their strong differences, each of these design methodologists
describes design as a process of situated, perspectival, linguistic interpretation.
Their emphases are different.

a. Situation. Alexander presents a strong case for deriving the interpretations in
terms of which a design situation is to be construed from an analysis of the
specifics of the problem. He claims that one must analyze the structure of the
problem into patterns of components that are relatively independent. In a sense,
this decomposition of the problem is a step towards solving it. In that sense, it is
similar to Rittel's claim that the problem framing is inseparable from the problem
solving. Schön echoes that sentiment by showing how the designer's understanding
of the problem emerges from the dialogue with the design situation, which explores
potential solutions.

b. Perspective. Rittel is the one who most emphasizes the uniqueness of the
perspectives that designers bring to their work. Designers are as different as are
problem situations; they have individual motivations, backgrounds, and
commitments. At the same time, the factors that make people different each have
a shared basis in their cultures, schools of thought, languages, and so on. While
their perspectives may be irreconcilable in some ways, collaboration can critique
and synthesize individual opinions to establish areas of consensus and to move
beyond unreflective idiosyncrasies. Alexander recognizes the importance of
different cultural traditions and tries to compile and organize patterns from diverse
architectural traditions in order to provide a clearer basis for personal languages of
designing. For Schön, individual interpretations can arise in the design process
itself, regardless of personal differences among designers. In fact, a given designer
will constantly be changing perspectives on the problem during the countless
phases of the design process.

c. Language. Schön talks the most about how explicit interpretations emerge
through articulating tacit knowing in language, and then re-submerge into the tacit.
Alexander talks in much this way about the need for both intuition and analysis.
For him, intuition is also associated with design practice. Practice is the necessary
tacit element that is likely to be missing from considerations of explicit
methodology. Rittel's emphasis on the role of personal prejudice recognizes the
tacit basis of argumentation; yet his proposal of IBIS is very much a move toward
making deliberation even more explicit than it is in less structured formats.

Computer support. Alexander, Rittel, and Schön have all taken seriously the
question of computer support for design. They each wanted to use computers for
their favorite part of the design process. Alexander used computers to analyze the
decomposition of structures. Rittel used them to support the IBIS system of
argumentation. Schön recommended using computer-based design assistants to

 Tacit and Explicit Understanding in Computer Support 80

create an environment in which a designer could explore design microworlds,
reflect on knowledge, and enhance skills. None of them advocated an automated
expert system approach. Alexander felt that such an approach led to people playing
with computers like toys, divorced from the concerns of practicing designers. Rittel
thought such systems would incorporate “freeze-dried prejudice” rather than
stimulating the deliberative process of design. Schön argued that design requires
human skills that computers could not duplicate, imitate, or replace by themselves.

Where Alexander was still struggling to maintain a sense of the possibility of
objective methods in the face of problems that were becoming apparent in the
1960's, Rittel was formulating a clear call in the 1970's for an alternative use of
computers to support human designing. In particular, he proposed supporting
deliberation among opposed interpretive perspectives. Then in the 1980's Schön
was able to describe the interplay between the human designer and the materials
of the design situation as an interpretive dialogue. It remains for the 1990's to
implement adequate computer support for this process of interpretation in design.

Objectivity and subjectivity. One could interpret Alexander and Rittel as
occupying opposite ends of the spectrum. Alexander seems to long for the
objectivity of mathematical decomposition analysis, empirical hypothesis
verification, and a distillation of eternal patterns for building. Rittel, in contrast,
stresses that similarities of pattern are a matter of interpretation and that all
judgments are ultimately grounded in subjective prejudice. But first of all, there
are historical differences. The late sixties, which separated most of the writings of
Alexander and Rittel reviewed here, saw the widespread crumbling of faith in
unified, objective science and in the mathematical methods of operations research.5
And secondly, neither Alexander nor Rittel hold to simple, easily characterized
views.

The question of how knowledge is objective and how it is subjective is closely
related to whether design can be computerized or not. Certainly the expert system
approach is one that assumes that design knowledge can be formulated in an
objective way. The paradigm here is that one finds an expert who has somehow
learned the knowledge of the relevant design domain: applicable regulations, rules
of thumb, accepted wisdom, tricks of the trade, prototypical solutions, standard

5 It would be simplistic to distinguish cause from effect by saying that, for instance,

Rittel's writings either hastened or merely reflected the growing disillusionment
with objectivist thinking. Alexander, Rittel, and Schön are important participants
in this general movement. Within AI there have long been critics of the
objectivist approach typified by expert systems, including Engelbart (1963),
Dreyfus (1965), Weizenbaum (1976), and Winograd & Flores (1986). The
systems discussed in Chapter 7 are also participants in this movement.

 Tacit and Explicit Understanding in Computer Support 81

approaches. Through interview techniques, the expert's knowledge is made explicit
and captured in a large set of rules, which are entered into the computer. Then, the
specification for a problem in the domain is entered with sufficient detail and with
all the relevant information so the computer can compute a solution that satisfies
the specification by applying the set of rules to the specified starting conditions
and goals. This approach should be contrasted with the view of design as
interpretation. While it may work in certain narrowly-defined and well-understood
domains, the expert system approach ignores the features of design that Alexander,
Rittel, and Schön have argued are decisive for most innovative design work.
Design knowledge cannot be formulated in abstract rules because it is dependent
upon the situation, perspective, and language which are brought to bear in
essentially unique concrete instances of interpretation. The rules of autonomous
software systems can only work in narrowly defined realms in which a standard
interpretation is accepted.

The design methodologists just reviewed present a strong case that computer
systems should enable designers to define their own understanding of the structure
of the design problem, to formulate their own perspectives based on traditional
views, and to articulate their tacit knowledge in increasingly explicit forms. In this
way, personal or group interpretations can build upon shared domain knowledge
but also go beyond it. While a computer-based system can support such activities,
it cannot do them without human participation. This is where the subjective aspect
enters. As long as design is conceived as involving subjective aspects, it cannot be
automated. Computers may be able to keep track of interpretive perspectives and
even help to elicit tacit knowledge or subjective views, but computers cannot
interpret. Nor can knowledge corresponding to interpretations be entered into
computer systems in advance, the way that standard domain knowledge can (under
the most favorable of conditions). By definition, domain knowledge is general and
can be catalogued (although never exhaustively since it includes tacit background
knowledge that cannot all be made entirely explicit). In contrast, interpretations
are by nature innovative and go essentially beyond the standard domain traditions
upon which they build—hence their characterization as “subjective.” They can
only be added to the computer knowledge base post hoc, in order continuously to
expand the base upon which future interpretations can grow.

CHAPTER 3. INTERPRETATION IN
LUNAR HABITAT DESIGN

Simon (1981) says, “Everyone designs who devises courses of action aimed at
changing existing situations into preferred ones” (p.129). Design is a broad and
diverse business. For the sake of concreteness, this chapter focuses on lunar habitat
design and the problem of providing computer support for this task.

A number of characteristics of lunar habitat design make it an interesting candidate
for studying the process of interpretation in design and the possibilities of
providing computer support for interpretation. It is a high-tech undertaking
requiring too much detailed information for an individual to keep track of without
computer support. Significantly, although the field of lunar habitat design is so
new that it must be considered an example of exploratory design, it also avails
itself of extensive systematically codified domain knowledge. That is, lunar habitat
design efforts necessarily innovate and explore new possibilities. Every effort at
design is likely to make new discoveries that could not have been foreseen but that
should be captured for future design work. At the same time, these efforts are
obliged to take seriously design guidelines and technical studies compiled by
NASA. There are so many social, technical, and bureaucratic constraints on the
task of laying out a habitat for astronauts on the moon that it is a non-trivial—
particularly wicked—problem. Yet it is specific enough that it makes for a realistic,
but manageable case study. Its wicked nature is clear in the way the designers who
were studied had to frame the problem of privacy in order to work out a layout
solution.

A tool such as the proposed HERMES system is attractive enough to NASA
contractors that cooperation was forthcoming for conducting a study of the work
process involved in lunar habitat design. Specifically, approximately thirty hours
of videotapes were recorded of an extended lunar habitat design effort. The
sessions were structured as a conversation between pairs of designers in order to
elicit verbally the knowledge-in-action that was at work tacitly as well as the more
explicit reflection-in-action that emerged when problems were encountered. The

 Tacit and Explicit Understanding in Computer Support 83

following sections take a close look at two segments of the video recordings in
order to observe the processes of interpretation at work in design..

Section 3.1 reviews a brief design episode that introduces the issue of privacy and
proposes individual crew compartments to provide private spaces for the
astronauts. The concept of privacy is a difficult one to represent objectively. It
provides a challenging example for a theory of computer support. At first, the
concept of privacy seems subjective, having a different meaning for every situation
and every designer. Yet, it names a general issue that NASA recognized must be
addressed.

Section 3.2 presents a longer transcript that reflects a series of design moves
motivated by discoveries about the concept of privacy that resulted from
deliberation of different perspectives on bathroom design. This process led to a
concept of privacy gradient, that was recognized as an organizing principle for the
evolving habitat design. Here the process of design can be seen to involve (a) a
creative discovery of the situation, (b) views from different perspectives, and (c)
the articulation of tacit understanding in language—both in traditional and in
refined terminology.

Section 3.3 takes a look at NASA efforts to capture privacy considerations in their
guidelines for manned-systems design. This suggests the difficulty of formulating
important design concerns like privacy as generic domain knowledge. However, it
also suggests the potential for capturing design ideas as they actually emerge
during engaged design activities.

3.1. Situations of Privacy and the Problem of
Representation

In the first design session the participants—a designer, who will here be called
Desi, and an architect, Archie—sat down to design a habitat for four astronauts to
stay in during a first “overnighter” on the moon. Two “days” and a “night” on the
moon is about 42 Earth days. It was assumed that the crew might be of mixed
gender and culture or nationality. The mission would include some scientific
investigation and some preparation for future lunar stays. The habitat structure
would, necessarily, remain on the moon and need to be adaptable to future
missions. The habitat was to be designed to fit within a standard cylindrical module
that is being used for Space Station and that can fit in the cargo hold of the Space
Shuttle. This module is 25 feet long and 14 feet in diameter. Air locks can be
attached to hatches at either end.

 Tacit and Explicit Understanding in Computer Support 84

Desi is an industrial designer who has been involved with designing lunar habitats
for NASA for a number of years. Archie is educated in architecture but has no
experience in this specialized domain. Particularly in the beginning, the sessions
provide an opportunity for Desi to teach Archie about the domain. The
instructional nature of the sessions and the style of interaction between the
participants serves well to elicit the design rationale that experienced designers
might take for granted. In this way, the design of the study extended the basic
technique of “constructive interaction” (Miyake, 1986), in which subjects are
paired so that their processes of understanding will be verbalized.

The following excerpt is from the initial session. It is transcribed verbatim, except
for the removal of an occasional “um” or “you know.” Of course, it looks more
formal and less spontaneous on paper with clear punctuation then when it was
haltingly pronounced within the context of gestures, mutual interruptions, and
sketching.

Figure 3-1. Initial design of a lunar habitat layout.

This is a complete graphics representation such as could be constructed in
Hermes. It is meant as a guide to the reader. Desi’s actual pen sketches evolved
as he talked and are less useful as static representations.

This passage formed a critical turning-point in the whole design process. It is worth
a close look even though it may not on the face of it appear that “real” designing
is going on at the moment. Desi has just sketched his first sample lunar habitat
layout, which is represented in Figure 3-1. He is emphasizing the large empty space

 Tacit and Explicit Understanding in Computer Support 85

in the center (shaded in the figure) that is available for a variety of uses, depending
on the needs of the moment. For instance, beds can fold down into it from the small
area marked Sleep at night. Exercise equipment can be set up at other times, or a
table for meals and meetings.

Transcript of Lunar Habitat Design Session (Tape B, 33:00):

Desi: You have a big “family room” or “den.” And what they [the astronauts]
do is either fold down the Murphy bed or set up cots. But for sleeping you
don't dedicate space—since that's only used 8 hours a day and, face it,
people's eyes are closed anyway. What you do is provide a place for sleep,
an accommodation for sleep. All they need is a horizontal surface. They
don't need a private room to sleep, if that's all you're providing.

Archie: On the other hand, there are times when you're waking up or going to
sleep and getting your clothes on or whatever, when a modicum of privacy
can actually be treasured, and when some people read a book.

Desi: That's another option that we can look at. When you talk about sleep
compartments where you can read and work, change your clothes, and do
all that, they [NASA] just call them “crew compartments” rather than
“sleep compartments” because you're doing more than sleeping. It's just
semantics.

Archie: The idea is that it's intrinsically multi-functional?

Desi: Yes. It's multi-functional. It's a crew compartment.

Archie: Is that an accepted idea now? That they should be multi-functional.

Desi: Well, it is an alternative. I'm not saying it's accepted or not. It is what
they [NASA] originally pursued or conceived of for Space Station. Each
astronaut had an individual crew compartment that had their audio, stereo,
video. It had a computer. It had their personal storage, their sleep [area]. It
basically was their room where they could go in and work. And they could
get away.

Archie: Have they [NASA] moved away from that now?

Desi: In the Space Station module they had about a third of the volume
dedicated for sleep compartments only. And in the current configuration—
with 25 foot long modules instead of 40 foot long—there is no provision
for sleep compartments in the habitat. So it suggests they [the astronauts]
are going to be stringing hammocks in the hallway or sleeping in the node.

 Tacit and Explicit Understanding in Computer Support 86

But there is no permanent, individual crew compartment. So they [NASA]
have gone from one extreme to the other.

Archie: It's an interesting question. If you cross this 30 day limit, then it seems
likely the sleep compartments suddenly become a dramatically higher
priority. People start freaking out that they can't get away from other
people.

Desi: I would think so. I would think that the idea of being able to get away
would be nice. Having that privacy, the control, even if they don't use it.

A mini-drama of argumentation unfolds here around the issue of sleep
accommodations in the habitat. Desi makes a first proposal in his initial concept
sketch (Figure 3-1). It is to create a general purpose space in the middle of the
habitat where beds of some kind could be set up during the sleep period and then
cleared away for other uses. This is a relatively austere approach based on the idea
that the astronauts will accept pretty much anything you give them. But Archie
comes to this with a different perspective. He is not used to the military influence
in NASA's attitudes and thinks it is nice to be able to get away by yourself and
snuggle up in bed with a good book. Desi immediately responds that private crew
compartments are definitely another alternative that they could look at. He points
out that the design for Space Station—which offers the closest analog for lunar
habitats—originally incorporated crew compartments, although the revised design
does not. Finally, Archie argues that being confined together for over a month is
qualitatively different from short term missions where lack of privacy can be
tolerated more easily. Desi agrees that privacy will be important in designing a
habitat for their mission.

Through this exchange, one of the crucial decisions of this design effort has been
made: the decision to focus on habitability issues like the need for privacy. The
next sections will explore in more detail how such decisions come about, and how
they turn out to be important. For now, it might simply be noted that Desi starts
the process by presenting an idea that was familiar to him from a tradition of past
designs (e.g., recent NASA thinking about Space Station). Archie immediately
brings his personal experience to bear, essentially asking, “What would it be like
to be an astronaut living in this place for over a month? How would I like that?”
Desi then switches to another experience case, the original Space Station module.
By now Archie is imagining the social interactions in the confined space, and his
notion of privacy grows from being one of life's little treasures to a dramatic
necessity for the maintenance of sanity. Desi lets himself be convinced, and spends
the next many hours trying to figure out how to carve some private sleeping

 Tacit and Explicit Understanding in Computer Support 87

quarters out of the tiny module (the size of a common living room) that had to
contain all the facilities for life and work of four astronauts.

In this way, the framing of the problem and focus for solving it emerge through
deliberation of different situations (related, historical, or imagined) from multiple
perspectives (Desi’s, Archie’s, an astronaut’s, NASA’s, an emerging shared one).
The interpretation of the design revolves around discoveries in the situation. The
major discovery made in the transcribed episode is the issue of privacy. The on-
going interpretation driven by the need to resolve this discovered issue will lead to
many further discoveries. This is the nature of innovative design.

The need for privacy proves to be a major constraint in the videotaped design
sessions. The primary problem for the design becomes the conflict between
wanting to create a mix of private and public spaces and the need to fit a lot of
equipment into a very small volume. Given the importance of privacy
considerations in these sessions, it is natural to inquire how NASA’s codified
design standards handle the issue of privacy. This is closely related to the question
of how an issue like privacy can be represented in a computer design environment.
The problem is one of articulating the notion of privacy that everyone understands
tacitly, but doing so in an explicit, objectified, and operationalized way.

NASA is a prime example of management by objectives, where issues are spelled
out as explicit specifications and regulations. This accounts for its success
according to Simon (1981), who contrasts the US's success in placing men on the
moon with its lack of success in creating a humane society or a peaceful world.
The social problems are truly wicked problems in Rittel's sense; they require
deliberation by the many participants in the problem, who have different concerns
and ideological commitments. Going to the moon had an unambiguous, highly
operational goal enunciated by the President of the United States. The space effort
was judged a success in terms of this goal (p.162).

NASA is a major user of computers; the space program actually drove
development of mainframe computer technology to a certain extent. One would
think that if privacy is the first major issue to come up in the initial videotaped
session of lunar habitat design then NASA must have long ago worked out ways
of operationalizing this design goal and representing it in computerized design
support systems. However, this does not seem to be the case. A first hint of this
failure might be inferred from the history of the privacy issue in Space Station. In
one design a major allocation of space was devoted to private crew compartments,
and in the next there was absolutely no private space. Apparently, the original
rationale for designing private spaces was completely ignored or forgotten.

NASA's major opportunity to explore what they call habitability issues was with
Skylab, manned orbital missions during the early 1970's lasting up to two months

 Tacit and Explicit Understanding in Computer Support 88

long. In addition to providing a laboratory for studies of outer space, this program
was meant to study problems of groups of people in space. Despite this explicit
goal, the attempt to design the astronaut's physical environment to be more
habitable was strongly resisted in NASA. As described in NASA's own history of
Skylab (Compton & Benson, 1983), it was only through the consistent efforts of
certain administrators over a period of years that any real design effort was put into
this:

Habitability, livability—or whatever name is given to the suitability of the
environment for daily living—is, as one NASA designer remarked, 'a
nebulous term at best,' one not usually found in the engineer's vocabulary.
Besides factors within the engineer's usual responsibilities, such as the
composition and temperature of the atmosphere and the levels of light and
noise, habitability also encompasses the ease of keeping house, the
convenience of attending to personal hygiene, and the provision for
exercise and off-duty relaxation. Experience and intuition both suggested
that these factors would become more important as missions grew longer.
Looking ahead to space station, NASA designers needed basic information
on these problems of living in space. (p.131)

During this process a designer brought in to study the Skylab layout from the
perspective of habitability proposed the idea of a wardroom, a common space for
eating, relaxing, meeting and socializing. The acceptance of this idea was an
exception. In general, designing was done by engineers, who focused on purely
technical issues. Along with the engineers on their staffs, many NASA
administrators saw issues of habitability as threats to their budgetary and schedule
goals. Skylab did not have a simple criterion such as the one attributed by Simon
to the moon landing, and its planning process was a complex one of negotiation
and political maneuvering, despite its confinement within the NASA bureaucracy.

Today, the planning process is even more complex. Architects, sociologists, and
anthropologists are being involved. A recent survey was conducted of architecture
professors to develop a set of criteria for planning a lunar base (Eichold, 1992). In
contrast to the old engineering mentality, the architects felt that the issue of private
space was very important. The highest statistic of the survey was that 85% of the
respondents listed “balance between community and privacy” as their first or
second design preference. The survey report concluded that this emphasis is
supported by experience found in the closest analogs for extreme environments
and isolation: submarines and Antarctic outposts (see Boeing, 1983; Bluth, 1984;
Bluth, 1986). The perspective that Archie brought in the session transcribed above
is clearly not idiosyncratic.

 Tacit and Explicit Understanding in Computer Support 89

Although it is clear that privacy is an issue for NASA missions, it is not so clear
that NASA has come to terms with the issue. The recent Endeavor flight launched
on September 12, 1992, provides an amusing case in point. The goal of the flight
could be characterized as “sex in space”: frogs, fish, wasps, flies, and chicken eggs
were taken up to be fertilized and reproduced in space. Yet there were no
provisions for privacy for the first married couple to fly together as astronauts.
Although NASA made an exception to its rule barring husbands and wives from
flying in space together, they went out of their way to assure the public that there
would be no human sex in space—a topic that has caused a certain amount of
speculation in popular science circles. Press releases stressed that the couple slept
on different shifts and were “too busy to even hold hands” on the flight.

NASA has published volumes of Man-Systems Integration Standards (MSIS),
systematic compilations of design considerations and requirements for the
development of manned space systems. The volume most applicable to lunar
habitat design is Volume IV, which defines the firm requirements that are pertinent
to Space Station. The most recent revision of this document (Revision A,
December 14, 1989) defines habitability as the quality of life in an environment.
The basic level of habitability stresses the traditional physical concerns for climate,
food, noise, light, etc. But for Space Station, an extended level of habitability is
introduced to “take care of the long-term condition of the on-orbit stay time and
[to] support not only the individual's physical health but also the
mental/psychological health because experience has shown that with the passage
of time deleterious effects of isolation and confinement gain prominence” (NASA,
1989b, p.1-4).

Despite this explicit recognition of the need to support mental health under
conditions of confinement, the standards provide little guidance for or guarantee
of provisions for privacy and sociability. The only mention of privacy is in
connection with crew compartments. The general requirement is “a dedicated,
private crew quarter shall be provided for each crewmember” (ibid., p.10-8). The
ten specific design requirements of the crew quarters are confined to physical,
safety, and security concerns, with one exception: “h. Privacy—The individual
crew quarters shall provide visual privacy to and from the occupant and acoustic
privacy as defined [by reference to quantitative noise levels]” (ibid., p.10-8f).
Spatial volumes are specified for allowing for sleep, stowage, dressing, working at
a desk, and off-duty activities.

There is even less reference to sociability. The galley and wardroom are discussed
solely in terms of food preparation and eating. It is stated that a table shall be
provided for eating, but there is no suggestion that it be large enough to
accommodate the whole crew at once. There is a separate requirement for a
meeting room, although it is clearly intended that the wardroom would be

 Tacit and Explicit Understanding in Computer Support 90

converted to this use as required. Here it is stated that, “The meeting facility shall
accommodate a meeting of the entire Space Station Freedom crew” (ibid. p.10-
12). This single sentence (with no supporting rationale, references to psychological
concerns, or further discussion) is all that exists to encourage designing for
sociability. In the new Space Station design the crew compartments have been
eliminated. The experience from Skylab shows that the crew often decides not to
eat together in order to concentrate on work tasks. Thus, despite a token
recognition of the importance of designing a balance of public and private spaces,
the NASA requirements are ineffective in capturing this goal.

The need to plan for privacy and sociability arises repeatedly from the task of
designing lunar or space habitats to be used for extended durations. It was a
controversial priority in Skylab; it was recognized in the early designing of Space
Station; it is emphasized by recent studies and surveys; and it came up right away
in the design session transcribed above. Yet it has been just as repeatedly resisted
by engineers, and is inadequately supported in NASA's requirements document.
Even Desi—who prides himself in his concern for habitability issues—tried to end-
run the topic in his opening presentation, until he was forced to admit that it was
an option, and in fact an important concern.

The question is how a design consideration like establishing a healthy balance of
privacy and sociability can be represented in a design support system, whether a
manual of requirements or a computer-based system. It is easy for NASA to
specify that 53 cubic feet (1.50 cubic meters) are required for sleeping or that noise
levels must be kept below 85 dB. Regular CAD drafting programs can check the
numeric dimensions of components of a design, and critic rules in a computer-
based design environment like JANUS (see Chapter 7) can ensure that distances
between components are within given quantitative limits. However, it is not so
easy to see how concerns for privacy can be operationalized or encoded into
requirements that can be supported by computer. It may have been relatively
straight-forward to say that we want a man to step on the moon. It is more of a
wicked problem to say that we want a diverse group of people to live on the moon
for an extended period of time as part of a politically controversial long-range plan
to land people on Mars. The problem of supporting privacy concerns in design
provides a paradigm example of an interpretive issue that has resisted solution by
traditional methods. It will serve as a key example throughout this dissertation.

 Tacit and Explicit Understanding in Computer Support 91

3.2. Perspectives on Privacy
The concern for privacy in the lunar habitat came up again and again in the taped
sessions. Several minutes after the discussion cited above, the following dialogue
took place. In it, one can see the designers struggling to construct a situation of
privacy by bringing different experiences and perspectives to bear and reframing
the meanings of terms to develop a shared language. The transcript in this section
is broken up for the sake of exposition, but it took place continuously except for
pauses to sketch. The sketching was largely gestural, to accompany the discussion
of specific features—the drawings below are more schematic and less dynamic,
but should help the reader to visualize the layouts being discussed.

As shown in Figure 3-2, at this point in the designing private crew compartments
have been added at the left end of the lunar habitat module. They are arranged like
two bunk beds along the walls, providing accommodations for the four astronauts
and leaving a corridor open through the center of the module for access to the
hatches at the two ends. All the areas requiring plumbing have been located
together along one wall, leaving a large area open for meeting, eating, exercise,
and work activities. A table and chairs have been sketched in as a multi-purpose
ward room, surrounded, perhaps, by work stations containing computer screens
and panels for communication and control, or for other sit-down work. Another
area has been left open for experiments, research, etc.

Figure 3-2. A layout for living and working.

 Tacit and Explicit Understanding in Computer Support 92

Desi has placed the toilet, shower, and galley together to conserve on plumbing
connections, which are more complicated in the moon’s low gravity than on Earth.
But he and Archie immediately discover some problems with this arrangement.
Namely, the toilet encroaches too prominently visually on the eating area and
acoustically on the sleeping area. They start moving things around in the layout.
Buffers are added to provide visual and acoustic privacy, often by strategically
locating storage closets. (Lots of storage will have to be designed in at some point
anyway in order to hold all the provisions for a month and a half.)

Transcript of Lunar Habitat Design Session (Tape B, 42:00):

Desi: Okay, this is the shower here. This is the galley. This is the toilet right
here. [See Figure 3-2.] Assuming that the entrance in and out might be
right here. One of the things about privacy...?

Archie: Yeah?

Desi: . . . One thing I hate about my office is that right out of the reception
area, the secretaries are sitting there facing the bathroom door. It's like
you're being watched.

Archie: Well I think this is problematic. Right here you've got the toilet right
open into the open area, where meals are probably consumed and all.

Desi: That's awful! The potential here is that you could actually put a work
station here. This might even be your galley here, with the plumbing back
to back, But you've got a little equipment to create an acoustical/physical
barrier and your open area is here.

Archie: Um hum. What about sound separation right here? When someone
gets up to go to the toilet in the middle of the night and, bang, everyone
else is woken up.

Desi: What's happening here is we're starting to see a separation of living and
working as distinct ends. Potentially, quiet and noisy [areas].

Archie: We start to see some of the influences of the design. For one thing,
separating those things allows you to get away from work. For, you know,
you have different moods and different modes in which you behave. When
you're in one side of the place your surroundings stimulate a certain kind
of response, a certain kind of psychological response, whereas when you're
on the other side, you're stimulated for another kind of response. . . . The
danger of mixing them is that there is no place to get away, and every
environment is stimulating multiple responses from you. So you don't have
any support from your environment for your mood. It would seem to me

 Tacit and Explicit Understanding in Computer Support 93

that things like mood become pretty damn crucial when you're 45 days in
a tin can with a bunch of people.

Experimenting with different arrangements—what Schön called making design
“moves”—leads to a gradual differentiation of areas of the module. The designers
make discoveries within the situation they have created. They discover that the
constraints of the design situation (constraints that they have in a sense created by
their concern with habitability and privacy issues) are leading to a “separation of
living and working as distinct ends.” This begins to solve the problem of being
cooped up together: there are qualitatively different kinds of areas where one can
go to relax, socialize or work. In this way, they “start to see some of the influences
of the design”: the constraints of the situation and the implications of their moves
and concerns are starting to cause consequences that they notice. They start to
discover in the sketch—as it evolves and as their interpretation or
conceptualization of it evolves—that there are, “potentially, quiet and noisy” areas
coming into definition. Now, a door can be closed to a crew compartment to
provide a quiet area where someone can go to listen to music, tape-record one’s
thoughts, or study a training manual.

They focus on the placement of the toilet, which had served to sharpen their
concern about privacy. Previously, Desi had argued for a design where the toilet,
the sink, and the shower were combined in one unit to save space. He had
supported his suggestion by talking about the bathroom (“the head”) on a yacht,
which squeezes all the functionality into a cramped space. He also recognized that
combining the two in one room would cause accessibility problems, particularly
first thing in the morning. Next, Archie brings in other concepts of bathroom
design in which the shower or bath is located in a separate location. These different
perspectives are introduced and kept in mind to determine alternative placements
for toilet, sink, shower, and dressing area in the habitat, and to provide rationale
for those alternatives. This allows the toilet and shower to be separated in Figure
3-3, removing the toilet from its acoustic and visual proximity to the sleeping and
eating areas, while keeping the shower convenient to the sleep area.

Desi: Living/working; quiet/noisy. Now let's throw in that implication of some
privacy when you go to the bathroom. If we're to say. . . .

Archie: Look, let's make the placement of the bathroom and shower a little
more important. Or is the shower the same as the toilet and the sink? Could
we separate them, have the shower a little more convenient to where you're
going to change, get dressed. You get up in the morning, get dressed,
change your clothes. Maybe that's a little more convenient.

 Tacit and Explicit Understanding in Computer Support 94

Desi: You're not going to get up in the middle of the night and take a shower.

Archie: Here's an interesting analogy. America is, I think, the only one of the
Western countries—I mean the countries of North America are the only
ones—that have the toilet and the shower in the same room. Most of the
European bathrooms have them in a separate room. Maybe that's changing
as they're adopting some American style things over there. Certainly, in
Germany it is no longer the case. But in England, I know, it's unusual to
have the toilet and the shower in the same place. Americans use the term
"bathroom" for the place where you go to the toilet. But the bathroom, if
I'm not mistaken, in England means a separate room, which is connected.
There is this separation. So maybe that becomes the model for what we
should do. What that shows is there is a grouping of these activities which
indicates sort of different levels of privacy.

Figure 3-3. A private dressing area.

Here, the designers have adopted a perspective on privacy. They are creating this
new shared perspective by not only incorporating their personal, tacit definitions
of privacy, but by merging in ideas from other perspectives. By deliberating issues
among themselves from different perspectives, they begin to build an agreed upon
framework for looking at their problem and proceeding with the design effort. The
privacy perspective guides their moves and makes possible new discoveries that
would not otherwise have occurred.

It is interesting to note that the design process at this point thrives on the
consideration of alternatives. First, at the level of rearranging the layout, the
alternatives are tried out in a rapid succession of sketches to get a feel for how they

 Tacit and Explicit Understanding in Computer Support 95

work. Secondly, though, the designing does not consist solely of sketching. Most
of the time, in fact, is spent in discussing the alternatives from various perspectives.
The issue of separation of toilet from shower, for instance, was considered from
the perspective of yacht and submarine examples as well as from the traditional
American and European house design perspectives. In trying to define the
European tradition that he was referring to, Archie even indicated that the
European perspective is multi-faceted and evolving, a mixture of, say, German,
French, and English traditions changing under American influence. It is not as
though there is one rule from some supposed “domain of bathroom design”—like:
the toilet should be near the shower—or even that one such rule applies in the
context of lunar habitat design. Rather, the designers deliberated a number of
possible (and mutually conflicting) rules and tried them out. They continually
switched perspectives to view their design differently and to discover new
understandings of it through interpretation from these different perspectives and
traditions of background knowledge.

The process can be put in Schön’s terms. Desi made a move (Figure 3-2). The
designers reacted to the situation that they had created, and they discovered a
serious problem (the adjacency of the toilet to the eating and sleeping areas), or
“breakdown situation.” They began to reflect-in-action on the issue of the location
of a toilet. As they came up with justifiable alternative responses to the issue, they
tried them out in little sketches (or gestures indicating rearrangements of the
sketched layout). They continued to come up with new conceptualizations until the
problem was satisfactorily resolved. What may look like a lot of obvious verbiage
in retrospect, was an engaged struggle with the problematic design situation during
the “action moment.”

In Alexander’s terms, the designers are continuously trying to represent the
structural patterns of the problem: should a decomposition of the habitat include
the shower and toilet in a unit, or should the shower be with the sleep area and the
toilet elsewhere? Archie’s last comment above suggests that the decomposition
might be based on the European model he has presented, so that “there is a
grouping of these activities [of daily life in the habitat] which indicates sort of
different levels of privacy.” This leads to the layout in Figure 3-3, in which the
activities of getting out of bed, showering, and dressing are grouped together, while
the toilet, which might interfere with sleep or the use of the shower, is grouped
elsewhere.

For Rittel, this is a good example of the need to deliberate issues from a variety of
perspectives; there is no single best rule, but an open-ended variety of approaches
that can be used to critique and refine each other. Archie’s lengthy discussions of
people having different moods and different countries having different conceptions
of bathrooms were not simply contributions of information, as though Desi did not

 Tacit and Explicit Understanding in Computer Support 96

already know these things. More importantly he was introducing new perspectives
into the life of the debate and elaborating their rationale in an informal and
abbreviated way. Deliberation is not simply a compiling of facts, but a subtle form
of argumentation and persuasion through which a consensus might be reached and
concepts of a shared language honed.

Schön, of course, adds the notion that the differing choices must then be tried out
so their implications can be creatively-discovered. This takes place in the next two
segments of the transcribed process, where the implications of Figure 3-3 are
actively explored, leading to the design in Figure 3-4.

Desi: Oh yeah. So, what about the sleep compartments? As I said, chances are
they are not going to get up in the middle of the night and take a shower.
So we could probably safely put a shower next to a sleep compartment and
create a zone where (this may be way out of scale) where you can have
this privacy. Over here is the storage of clothes and stuff.

Archie: So that provides a buffer.

Desi: If you look at this elevation sketch, they all have their drawers along here
for personal storage. You can get in to the drawers from this angle.

Archie: So you've actually got a sort of dressing, shower, change area as a
buffer between that and the rest of the house. [See Figure 3-3.]

Desi: Right. The problem is if you want to change your clothes and take a
shower, you're going to trap somebody back there and they can't get
through. . . . What if you were to flip those? Say shower, storage here, and
actually come in here and close this off. We've got this end-cone [of the
tapered cylindrical module shell] geometry down here on the end which is
a little awkward, where you could fit a lot of socks and underwear, as well
as some plumbing. [See Figure 3-4.]

 Tacit and Explicit Understanding in Computer Support 97

Figure 3-4. A privacy gradient.

Archie: So if you needed to take a shower or get to the storage you're going to
have to walk through this sleep thing. Is there any danger. . . .

Desi: Well , you probably just shower once a day.

Archie: All right, the shower is probably not going to be a problem. But
storage...

Desi: Storage? But this is clothes . . . personal effects. Stuff you need in the
morning and at the end of the day, before you go to sleep and when you
get up.

Archie: So if you forget something and you want to go back in you have to go
past the sleeping people?

Desi: Yes, If they're sleeping. So anyway, the idea is that you could actually
close this off and have a place to take a shower . . . come out here . . .
change your clothes . . . and have relative privacy without obstructing
circulation.

Archie: Then you do lose the buffer to the outside in the process. So there's a
trade off. Also this storage thing here could conceivably be accessed from
this direction, meaning that you wouldn't have to be in this area at all if
you wanted to access it. The advantage there would be if you have some
kind of tight corridor you wouldn't want to be pulling drawers out into it,
but I suppose you could go inside. But I don't know how tight that is; a
walk-in closet on the moon sounds like an extravagance.

 Tacit and Explicit Understanding in Computer Support 98

Here Desi has grouped the shower together with the crew compartments because
the preceding arguments suggested that the shower will not interfere with sleep the
way an adjacent toilet might (and in fact did in Skylab). The shower forms a buffer
between the sleep area and the rest of the module, which gives Desi the idea of
creating a similar buffer on the other side of the corridor. He decides that can be a
stowage (storage) compartment. To integrate it with the activities of getting up and
showering, he says the astronauts will keep their clothes in drawers in the
compartment. Archie sees that a buffer area has now been formed across the
module. Adding doors to both ends of the buffer provides a changing room with
access to the shower and the clothes storage. Desi likes the idea, but spots a traffic
flow problem: when one person is changing, others cannot get out for their
morning coffee. So he moves the changing area to the other end of the crew
compartments, where it will not block traffic. (See Figure 3-4.) This move
eliminates the buffer function, so Desi adds some small stowage areas to act as a
wall and absorb sounds. He re-designs the shower and stowage to take advantage
of odd-shaped spaces at the end, which had been wasted until now. Desi and
Archie’s understanding of the habitat design evolves as they create new features
(verbally or graphically), discover consequences, deliberate implications from
different perspectives, and develop terms for interpreting the design situation.

Archie repeatedly tries to test this new arrangement by imagining astronauts going
about various activities in the layout. This is an important process, that requires a
strong imaginative sense of what it would be like to live and move in the real
physical spaces that are represented in the sketches. This ability is founded on the
designer’s understanding of what it is to be a person, to move about, to accomplish
tasks, and to interact with objects, instruments, or other people. This ontological
understanding allows people to adopt the interpretive perspectives of other people
in other (even fictional) situations.

In addition, designers like Desi and Archie are constantly concerned with more
quantitative issues, like 3-D volumes, adjacencies of different areas, and angles of
access to spaces. To some extent these concerns relate to the human simulations:
checking if a volume is adequate for pulling on clothes, if lights from one area will
interfere with seeing things in another, or if opening doors will create safety
hazards. In addition to spatial issues, designers must be concerned with lighting,
noise, and dirt. In a lunar habitat, there will be no natural light and different areas
will have to be illuminated differently depending upon their function. With a large
number of mechanical and motorized systems at work in the metal module
(circulating air, pumping water, etc.), noise and vibration are a serious problem.
Lunar dust is very abrasive, so dust control systems are critical, especially when
astronauts come in from working on the moon’s surface.

 Tacit and Explicit Understanding in Computer Support 99

The more they think about the way the lunar habitat design is working out, the
more Desi and Archie discover that many of the issues of privacy, light, dirt, and
noise have worked themselves out to form a gradient in which these problems are
closely correlated.

Desi: But you know what? What we've created here is a changing area, without
affecting privacy. So just by shifting this you lose the buffer. Where this
was leading is, I think, that this is the quiet end. I'm also thinking this might
be the emergency exit, not the primary air lock. We still have quiet
activities here. Down here is the privacy. Here's your toilet. And if you
think about stuff that's noisy, the idea of being dirtier, dustier . . . [at the
other end].

Archie: Are you talking about a kind of noise gradient? Along this thing, in
other words, one end might be noisy and the other end might be quiet.

Desi: As far as the planning issues, if you want to create some rationale as to
why you plan or zone certain activities or adjacencies the way you do, you
look at noise levels; you look at . . .

Archie: . . . light . . .

Desi: . . . light level; you look at dirt; dirty versus clean and all those

Archie: Here's a basic point. One of the things you're short on in this place is
distance. Okay? The one way, the one direction in which you have distance
is along the axis

Desi: That's correct.

Archie: . . . of the things. Do you know Alexander's pattern of the long thin
house? The idea is that to create privacy what you want to do is that you
want to exploit distance, you want to make the house deliberately long and
thin so people [Italics added.]

At this point a design has coalesced that has some satisfying coherence. It responds
to the issues raised about privacy and arranges all the major necessary components
of the habitat in a way which seems to make some sense. Of course, the design is
far from final; in fact it will change considerably in future sessions, although some
of its features will remain in place. So far, little thought has been given to
determining sizes of things, and the drawings are not to scale. No storage space
has been assigned for 45 days worth of food or other supplies. Space will obviously
be extremely tight in the module—especially if so much room is permanently

 Tacit and Explicit Understanding in Computer Support 100

assigned to private sleep compartments—and too much space is wasted by the big
corridor down the middle. There is very little space dedicated to the work of the
mission, and not much thought given to room for exercise. But a start has been
made.

This was a juncture of the designing process where there was a palpable sense of
resolution for everyone. Major constraints imposed on the design—like the need
for some privacy—and the secondary issues that arose in trying to solve them
seemed fundamentally solved. The discovery of the privacy gradient concept (see
italicized comments in transcript) resolved the prior discovery of the problem of
privacy. It provided what designers call a parti, a guiding perspective for unifying
a design. Now the designers felt that at last one had a place to go and relax in the
habitat; this was finally becoming a home in which one could dwell, not merely
function.

In a formal sense, the most satisfying aspect of the design is its consistent gradient
character. This was an emergent property of the design process, with its concern
for the creation of distinctly private and public areas. Desi observes that there is
now a quiet end, which is also darker, cleaner, and quieter, in keeping with its
private (and sleep oriented) character. The opposite end is where astronauts enter,
bringing rock samples, equipment, and moon dust in with them. The noisy work
takes place down there, with bright illumination for observing experiments. In the
middle is a more moderate environment on each of the spectra, where the crew
meets, prepares meals, eats, and socializes. This structure of the design gradually
became explicit knowledge that could be shared in the transcribed dialog.

The privacy gradient that Desi and Archie came upon corresponds nicely with a
chart in Volume I of NASA’s MSIS, the volume of general design considerations
and requirements for all manned space missions. This chart of adjacency design
considerations contains the only specific guidelines related to privacy in the
volume. Privacy is defined in terms of audio and visual privacy: that someone is
not seen or heard by others. In NASA’s terminology, “it has been found that a
general sense of privacy increases when visual exposure of the individual is
decreased and the individual has controllable visual access to the outside world”
(NASA, 1989a, p.8-16).

 Tacit and Explicit Understanding in Computer Support 101

Figure 3-5. Relative adjacencies based on functional relationships.

The chart (reproduced as Figure 3-5) was constructed by analyzing the
relationships among 27 typical functions of a space module crew according to 5
criteria and displaying something like a statistical cluster analysis. The criteria are:
frequency of switching from one function to another; extent to which one function
leads to performing another; percentage of support equipment shared by the
functions; potential for noise of one function to interfere with another; similarity
of audio and visual privacy requirements. The functions are then plotted on two
scales: public/private functions and group/individual functions. The
recommendation to designers is to group functions in the module similarly to how
they are grouped on the chart. Note that in the chart sleep, showering, and dressing
are grouped in one quadrant (private, individual); meeting, eating, and food
preparation are in another (public, group); while experimentation and payload
support are in a third (public, individual). This corresponds closely to the three

!"#AB

CDEC)CEAG+

BAI+C-B"C)G.L

0

0

0

0

0

0

0

0
0

0
0

0

0

000

0

0 0

0

0

0

00
0

0

0

!""#A%&'

"E#A%&

")"*+A'"

'!EII-&*./0-*"+*"E#A.%
!"EI-+I"E%-/0

!"EI-0*"0

&"%"*EI-1./'"O""0A%&

0*"30.'#-4R6

0*.)-.07'

UR6-'/00.*#-.V-4R6

+I.#1A%&-!EA%#:

V/II-;.<=-+I"E%'A%&
/*A%E#A.%3<"V"+E#A.%

0"*'.%EI-1=&A"%"
<*"''3/%<*"''

1E%<3VE+"-+I"E%'A%&

!"<A+EI-+E*"

IAV"-'+A"%+"'-")0"*A!"%#

!E#"*AEI'-0*.+"''A%&-")0"*.!"%#'

0E=I.E<-'/00.*#

#*EA%A%&

I.&A'#A+'3*"'/00I=

0IE%%A%&3'+1"</I"

>?@-!EA%#"%E%+" '/;'='#"!
!.%A#.*A%&

'I""0

0*AAE#"-*"+*"E#A.%

 Tacit and Explicit Understanding in Computer Support 102

areas of the lunar habitat design: sleep and dressing area, galley/ward
room/meeting area; and science/entry area.

Of course, the lunar habitat functional decomposition grew out of the designing
process, not from use of the NASA chart. Rather, the design discoveries remind
Archie of the discussion of techniques for achieving a privacy gradient in
Alexander’s A Pattern Language. The principle of Pattern 109: Long Thin House
there is, “The shape of a building has a great effect on the relative degrees of
privacy and overcrowding in it, and this in turn has a critical effect on people’s
comfort and well being” (Alexander, et al., 1977, p.535). Alexander recommends
creating a shape in which the mean point-to-point distance is high: “string out the
rooms one after another, so that distance between each room is as great as it can
be” (ibid., p.537). In the lunar habitat, this has been accomplished by massing
components along the walls to make the open space narrow and long.

Later, in Pattern 127: Intimacy Gradient, Alexander recommends, “Lay out the
spaces of a building so that they create a sequence that begins with the entrance
and the most public parts of the building, then leads into the slightly more private
areas, and finally to the most private domains” (ibid., p.613). The lunar habitat has
in effect adopted this pattern even though Alexander’s general pattern is primarily
justified in terms of a spectrum of interpersonal relationships not relevant on the
moon (strangers, friends, guests, clients, and family). The habitat grew into this
pattern; there was never a conscious decision to make it conform to the pattern.

Suppose that Desi and Archie had first looked up the pattern and tried to decide if
they should follow the rule of this pattern. How would they know if the rule was
applicable? In the habitat, every crewmember has the same social relationships, so
one might argue there should be no intimacy gradient. There is only a need for
differentiation if one argues—as Archie in fact did when he introduced the need
for privacy—that people have different moods and they want different
relationships with the rest of the crew: sometimes buddies, sometimes co-workers,
sometimes people to get away from. The question of applicability is a subtle one
requiring complex human judgment. (The problem of applicability and its relation
to interpretation will be discussed in Chapter 6.) How is a lunar habitat analogous
to a home or office on the Earth? A traditional NASA engineering mentality would
not make the analogy and would not see a problem with an undifferentiated,
austere, work-oriented environment, as can be seen in the many factory-like
designs for previous space missions.

The designs that Desi and Archie came up with at various stages contained striking
parallels to many of Alexander’s patterns. The multi-purpose galley and ward
room combination as social center corresponds closely to Pattern 129: Common
Areas at the Heart, Pattern 139: Farmhouse Kitchen, and Pattern 147: Communal
Eating. For a while, the habitat design gave each astronaut a combination of a sleep

 Tacit and Explicit Understanding in Computer Support 103

compartment connected to a desk/workstation and a stowage cabinet. This was
very much in the spirit of Pattern 141: A Room of One’s Own. Later it was decided
that this arrangement was too constraining on the arrangement of space, and the
conceptual connections among the components was sacrificed.

Which of the patterns that Alexander culled from experiences on the Earth would
make good rules of thumb for a domain of lunar habitat design? It seems
impossible to simply list the applicable patterns. Rather, one might want to bring
any of them into a particular deliberation when it seems appropriate, argue the pros
and cons of applying it in the given design situation, perhaps try out some moves
based on it, and see how things come out. Alexander’s patterns provide yet another
perspective for the argumentation, even if they are already the result of
deliberations over the years incorporating many other perspectives, and so are
relatively refined and general. This suggests a more eclectic approach than one that
assumes a set of rules representing some compilation of domain knowledge. Such
an approach does not avoid the problems of knowledge representation; on the
contrary, it makes it more important than ever to capture knowledge of multiple
perspectives, and to continue collecting new knowledge indefinitely.

3.3. Capturing the Language of Privacy
The analysis of the lunar habitat design process in this chapter confirms the
importance of the ideas emphasized by Alexander, Rittel and Schön in Chapter 2
and the view of design as interpretation proposed in Chapter 1. This section will
discuss some implications of the nature of lunar habitat design for computer
support.

Problems of collecting knowledge have plagued attempts to provide computer
support for design. Often it has been assumed that this is merely a practical
problem, with no interesting theoretical aspects compared to the development of
AI techniques for representing, accessing, manipulating, and displaying relevant
knowledge. The expert system approach, for instance, assumed that a human
domain expert, when interviewed, could spell out the important knowledge of the
domain in a series of formalizable rules. However, experience showed that
professionals had surprisingly partial knowledge of their fields and relied heavily
upon heuristics and access to other resources to work around or fill in gaps
(Suchman, 1987; Winograd & Flores, 1986). Even what people did have working
knowledge of they could not readily state explicitly or fully. Professional expertise
relies heavily upon tacit background knowledge of the field that one picks up
through apprenticeship-style training, not from the accumulation of rule-like

 Tacit and Explicit Understanding in Computer Support 104

information. This is emphasized by Kuhn (1962), Schön (1983), and Dreyfus
(1985) in discussing how people develop expertise.

It may well be that the AI computational tricks are the easy part, for which much
work has already been done and options are fairly well understood. The following
questions may be more difficult. They have to do with the fact that knowledge is
founded on interpretation and is not given independently of the knower’s
situations, perspectives, or language traditions:

1. What are the human cognitive processes involved in design?

2. What is the nature of the knowledge at work in these processes?

3. How can that knowledge be captured during the action present when it is
available?

4. How can the often tacit knowledge be represented in ways which are explicit
enough for computer processing?

5. How can stored information be supplied to people to support their current
design efforts in a timely manner and a useful format?

These are the kinds of questions being pursued in this dissertation. The following
paragraphs start to suggest responses based on observed characteristics of lunar
habitat design. They will be returned to repeatedly, particularly in the discussion
of the theory of computer support for interpretation in design (Chapter 7).

1. What are the human cognitive processes involved in design? Alexander
argued that an important process in design was the decomposition of a problem
into functional components, each component having more interactions among the
items within it than with items outside the component. Rittel conceived of design
as a deliberative process, in which people raised issues, made proposals from
different perspectives, and critically debated each other's positions. Schön stressed
the importance of active, creative involvement with the design artifact (e.g.,
sketching) in order to discover constraints and consequences of design moves.
These different processes were apparent in the videotaped lunar habitat design
sessions. The habitat was decomposed into private, group, and public areas based
on functionalities of the items in the layout. Various perspectives on privacy were
discussed and debated in verbal exchanges. Successive sketches were made, which
formed the basis for discoveries and design decisions. Diverse cognitive processes
were at work: analysis (decomposing into functional areas), recall (analogous
situations: German bathrooms, Space Station crew compartments, submarines,
Antarctic), simulation (imagining life in the habitat), argumentation (discussing
the issues), gesture (pointing to drawn objects, indicating other arrangements,
sketching), perception (seeing sketched lines as representations of a habitat).

 Tacit and Explicit Understanding in Computer Support 105

2. What is the nature of the knowledge at work in these processes? Much of
the knowledge involved in these cognitive processes of designing is tacit—far
more than ever imagined in the heyday of expert systems. The notion of privacy is
a good example. A designer’s understanding of what situations are private and
which situations require privacy is based on tacit understandings of what it feels
like to be a human being in those situations. This understanding is used extensively
by Desi and Archie in decomposing the functional areas, in deliberating
adjacencies of items, and in seeing problems in layout sketches. What is interesting
is that much of this tacit knowledge becomes explicit during the designing. It gets
articulated in English statements in order to be introduced into the interpersonal
argumentative process. For this period during which it is debated, which Schön
calls the “action present,” the knowledge is explicitly available. After the
deliberation is resolved, the arguments and their basis in knowledge may sink back
into a tacit understanding once more. So the optimal time to capture design
knowledge is when it becomes explicit in the designers’ language, while they are
situated in the designing and have adopted the particular perspective.

3. How can that knowledge be captured during the action present when it is
available? Information may be stored in a computer system in many ways. Some
ways—such as textual formats in natural language—are more useful to human
users, while others—like encodings in semantic networks or other formalisms—
facilitate computer computation and manipulation of the information. However,
all these forms are explicit forms of knowledge. Tacit knowledge, by definition, is
not expressed in any way that could be stored on paper or in computer memories.
It must first be made explicit. Because much important design knowledge is tacit,
because it needs to be made explicit in order to be used in a computer-based
system, and because tacit knowledge often becomes explicit during the action
present of reflection during design, it can be helpful to capture the explicit
articulation when it is available.

In general, lunar habitat design is more complex in its use of technical information
than the episode transcribed in the preceding sections. Its high-tech nature means
that technical data must often be looked up in manuals or even explored
experimentally in subsidiary engineering studies. Contractual obligations to
NASA and its subcontractors require documented adherence to voluminous
specifications and requirements (including the volumes of the MSIS). The design
of something like a lunar habitat passes through many phases, carried out by
different teams. The capture and use of design rationale plays a variety of roles in
this process, and should probably play even stronger roles in the future. Computer
support systems could facilitate an increased role for stored design rationale if
mechanisms are developed to capture knowledge as it becomes explicit in the
design process.

 Tacit and Explicit Understanding in Computer Support 106

The scenario in Chapter 9 shows how lunar habitat designers could use a software
design environment as their design medium, rather than paper and pencil, even for
design tasks like those presented in the transcript. If the computer becomes a
medium for designing, then the knowledge that arises in the design process is
largely already represented in the computer. Such knowledge can be stored for
future use. Then the computer system functions as an external, shared memory.
Knowledge captured there is available for the original designer to come back to
later and for other designers to access as well. It becomes a medium of
communication and collaboration, through which designers can share their ideas,
approaches, rules, sketches, and interpretations. The computer can represent
explicitly the relations that are normally tacit in situated interpretation, organize
knowledge into different perspectives, and operationalize terminology of an
interpretive language.

4. How can the often tacit knowledge be represented in ways which are explicit
enough for computer processing? Lunar habitat design differs from design in
simpler domains in a number of ways. For one thing, it is not a well-understood,
mature field. One could not expect to interview an expert and come up with a set
of formal rules and elements to define a comprehensive system of knowledge here.
Workers in this field are attempting to explore a new domain and to begin to map
out the potential problem space. A goal of researchers is to sketch in parametric
curves that would indicate how designs have to change depending on such
parameters as number of astronauts, length of mission duration, or payload
delivery capacity (see, e.g., Design Edge, 1990; Moore, et al., 1991; Kazmierski,
et al. 1992). This is a very preliminary step toward developing knowledge
representations for this domain. Even the most important parameters remain
undefined and open to interpretation and debate. For instance, few NASA
guidelines cover privacy issues, even though this is an important concern of
thoughtful designers and a topic for vigorous political debate and even power
struggles within NASA (Compton, et al., 1983).

The MSIS was not able to define privacy well, except for some concern about
visual and audio privacy as expressed in the graph of recommended adjacencies
for different functions (reproduced as Figure 3-5 in the previous section). It does,
however, indirectly recognize its importance when considering habitable volume
requirements: “Sufficient habitable volume shall be provided and configured to
decrease the possibility of degradation of crew performance due to detrimental
psychological effects from feelings of confinement” (NASA, 1989a, p.8-17). Just
as Archie noted that the need for private space becomes critical as the length of
confinement exceeds a month, the MSIS states, “As the mission duration increases,
there is a greater tendency for the crew to feel confined and cramped. This can
affect psychological health and crewmember performance” (ibid., p.8-12). A graph

 Tacit and Explicit Understanding in Computer Support 107

of guidelines for determination of total habitable volume per person as a function
of mission duration accompanies this statement (reproduced here as Figure 3-6).

Figure 3-6. Required volume per crewmember as a function of mission duration.

It is an excellent example of a set of parametric curves to begin to define the
problem space. NASA was able to represent knowledge about privacy here by
reducing it to a matter of spatial volume. New methods are needed to allow
designers to define less reductionist concepts of privacy and to capture knowledge
related to such concepts.

In the lunar habitat design sessions, privacy issues due to prolonged confinement
were the first real concerns to surface. They structured how the designers
constructed their task. Related questions of social interaction dominated questions
of physical layout, indicating that social planning was necessarily a significant
aspect of the designing. When the geopolitics (or solar system politics) of NASA's
goals are reflected in the deliberations, the result is truly a wicked problem in
Rittel's full sense. It is not just that more study is needed to formulate objective
rules for the field, but that decisions necessarily involve tacit understanding of
inter-personal behavior and non-propositional recognition of political interests.

For relatively unexplored domains such as lunar habitat design, efforts at designing
do not seek optimal solutions within a known problem space, but begin to mark

 Tacit and Explicit Understanding in Computer Support 108

out a solution space in the first place—as Schön says, to construct the reality of the
design situation. The most important role of computer support for such domains is
to capture the ideas that are being generated. Terms (like privacy) and patterns
(like Figure 3-6) which are formulated on the spot during this design exploration
process are expressions of what designers may want to pay attention to in the future
as well. So, for instance, the important criterion for rules is not the rigor of their
computations in the sense of some rationalist engineering ideal but their ability to
convey the designer's interpretive intent. A computer system incorporating the
knowledge should not be conceived primarily as an autonomous equation solver
(or an expert system), but as a powerful medium of external memory to empower
people's creativity. A software environment for this domain should be designed to
capture new and evolving knowledge, rather than simply manipulate predefined
knowledge representations and systems of production rules. This has been a
primary concern in designing the HERMES software described in Part III.

5. How can stored information be supplied to people to support their current design
efforts in a timely manner and a useful format? A high-tech design goes through
many stages of development, involving different design teams. Architects,
designers, a variety of engineers, and administrators all work on the designs from
their own viewpoints. Successful designs are sent to other contractors around the
country for detailing, mock-up, testing, and construction. At each stage, the design
is modified, based on people's understanding of the design and its rationale. If a
creative design concept is to survive this argumentative process—with tight cost,
weight, and volume constraints at every stage—strong design rationale must be
communicated; a schematic diagram or a pretty picture will not suffice. In fact, a
typical product of lunar habitat design consists of a small booklet predominated by
textual explanations of rationale, not just detailed drawings. The important role
that rationale plays in this extended design process should motivate designers to
document their reasoning and interpretation more than they would in a domain like
kitchen design. A logical step beyond a written booklet would be a computer
system that integrates designs and rationale in useful, easily accessible ways.

Because designers lack personal experience living in lunar habitats, knowledge
embodied in related designs (including Skylab, the Shuttle, Space Station
Freedom, previous trips to the moon) is invaluable. Old designs are reused
extensively. To the degree that design rationale of the old designs has been
captured and augmented by subsequent experience, it can be vitally useful.
Consequently, it is likely that design rationale will increasingly become an integral
part of design. This should add tremendous power for practitioners who take it
seriously and those who use computer tools that support rationale capture. Such a
development represents a significant break with the tradition of CAD programs,
which are purely graphical and embody very little semantics. However, it has
impressive precedence in other fields like science, mathematics, and philosophy,

 Tacit and Explicit Understanding in Computer Support 109

where written theories, proofs, and arguments have been refined through processes
of public critique and have grown into extensive bases of shared knowledge and
accumulated commentary impossible in non-literate cultures.

The need for computer support of lunar habitat design was originally suggested by
the sheer volume (and complexity) of knowledge required—far more than people
could maintain in their heads or even locate easily in manuals. There are thick sets
of NASA regulations for all Man-In-Space designs, ergonomic standards, and
specific project contractual obligations that must be adhered to by designs. But the
complexity of lunar habitat design is not just a matter of the volume of information.
Requirements, components and rationale all have to be reinterpreted within the
context of the evolving design. This is an application realm in which, for instance,
most physical components require some degree of customization. Because of
gravitational or volumetric considerations, one cannot simply select a stock sink
or bed from a catalog. Even pumps and fans must be re-thought. Furthermore, there
are many design interactions among components that are placed close together—
partially because space is at a premium and also because things must work together
to form a coherent environment for habitation. This means that design of a given
part is very much situated in its context, in terms of neighboring components (e.g.,
sound buffers), design concerns (privacy), and projected usage issues (traffic
flow). The computer representation of the design must function as the unique world
in which representations of all the components and their relationships are
appropriately situated so that design can take place effectively. One wants to start
from existing components, but one then needs to be able to modify them freely to
account for differences in the lunar setting. So representing standard parts with
schematic icons or fixed items from a palette is inadequate. The idea that there is
a definable domain with its primitive elements is too narrow a conception. All
knowledge representations must be stored in plastic media, so they can be tailored
to different interpretations.

Elements of lunar habitats should be similar to familiar products to facilitate
manufacture and to give astronauts a sense of being at home, but they must also be
different to meet the severe constraints of their context. This means that models
and rules of thumb must be searched for in many other domains (houses,
submarines, Antarctic labs) and then applied to the lunar setting. Such application
must be done by the creative and synthetic minds of humans, with computer
systems merely presenting the relevant elements. Even the determination of what
might be relevant must involve the human designer, for this is also very much a
matter of interpretation based on a deep understanding of the semantics involved.
This means that computer-based systems for design should be people-centered, so
that all interpretive judgments are under human control.

 Tacit and Explicit Understanding in Computer Support 110

Desi and Archie communicate in English. They articulate and share their
interpretations of what is going on in the design through the medium of language.
To support the subtlety of communication between designers and a computer
system, the designers should be able to develop a language that operationalizes
their evolving interpretations in ways which can be used by the software. At the
same time, the development of a language for interpretation can provide a basis for
shared understanding among groups of designers, even if they are not working
together at the same time or place. For instance, a designer who is considering an
old design for adaptation into a new project can learn about the old design through
the language which was developed with it—including the formulations of
definitions and argumentation specific to that design. Providing some support for
collaborative work among groups is particularly important in this domain because
of the way each successful design must undergo the scrutiny of many teams.
Generally, the only communication between these teams is the design document
itself. To further mutual understanding, it is desirable that the design include
effective documentation of the interpretive stance behind the rationale.

The computational platform within which design work is carried out can serve as
a communication medium in which designs and related information can be viewed
and interpreted by different people working together or working sequentially.
Lunar habitat design is not a task for one person sitting at a computer. It is a
collaborative process. It proceeds through the work of teams of teams, each
viewing the common product through their own perspective. The essential
communication is not that between a human and a computer, but among the design
teams. What a computer system like HERMES can do is to provide an electronic
medium to support this communication. It can do that by facilitating the
development of a shared language of design interpretation and by providing a
mechanism for the creation and sharing of interpreted designs defined using that
language.

The example of lunar habitat design has illustrated the importance of interpretation
in design. Desi and Archie interpret their task as one of creating a balance of public
and private space. They spend much of their time developing an adequate
interpretation of what privacy means in the context they are dealing with. A variety
of interpretive perspectives are brought to bear and are deliberated. Finally, a
shared interpretation of privacy guides the designing and provides a sense of
resolution when the privacy constraints seem to be satisfied.

The interpretive processes draw heavily on tacit knowledge. During computations
for decomposition, deliberation of relevant issues, or reflection-in-action, some of
that knowledge becomes more explicit. The representations of the situation,
perspectives on design, and guiding concepts that become manifest may be
represented in calculations, arguments, or ideas—i.e., in formal or natural

 Tacit and Explicit Understanding in Computer Support 111

language. Unless these explicit forms of knowledge are made permanent in some
external medium like annotations on paper or statements of rationale in a computer
system, they may revert to tacit forms. Particularly in high-tech fields, it is
important to capture design rationale knowledge to help people understand and
reuse designs.

The following chapter explores the philosophy of interpretation in order to clarify
some of the issues related to tacit knowledge, interpretive perspectives, and the
explication of understanding raised by the study of lunar habitat design. The
problem of computer support for interpretation in design is then addressed in Part
II.

The discussion of lunar habitat design has highlighted a number of challenges for
a theory of computer support:

(a) The concept of privacy is typical of a broad range of themes that are essential
to habitat design but are hard to operationalize. Despite the fact that NASA
epitomizes the effort to codify design issues as objective rules, after twenty
years their success with the concept of privacy is definitely inadequate. It
remains unclear how to represent situations in which privacy plays a key role.
This poses a challenge for the design of computational support for
interpretation in design. It will provide the key example for the utility of
HERMES’ mechanisms in Part III.

(b) Part of the problem with privacy is that different people have different ideas
of what aspects are important in defining the concept. These differences may
be due to concerns with varying technical specialties or simply to personal
preferences. In any case, definitions of such concepts cannot be formulated as
statements of necessary and sufficient conditions, but must be allowed to
emerge in each situation through deliberation from multiple perspectives.

(c) Another part of the problem involves adapting the concept to the particular
design situation. Fixed definitions from a body of domain knowledge can
provide useful (even necessary) starting points for articulation of tacit
understandings, but they must be capable of flexible modification to be applied
appropriately in a concrete situation. This typically involves an iterative
process of situated discovery and perspectival deliberation, as seen in the
transcripts. Even where NASA has captured important information relevant to
privacy (as in Figures 3-5 and 3-6), or Alexander has abstracted useful
schemata in his pattern language, these representations must be applied to
individual situations through human processes of interpretation. The language
user must be capable of generating terminology and expressions whose
meaning can be interpreted appropriately to unique situations.

CHAPTER 4. HEIDEGGER’S
PHILOSOPHY OF
INTERPRETATION

Chapter 4 explicates Heidegger’s analysis of understanding and interpretation. It
traces his discussion through the relevant sections of Being and Time, his major
work that addresses these issues. Heidegger presents his analysis of interpretation
through a discussion of the human understanding of artifacts in the world. This
involves analyses of:

a. what it means for artifacts to be situated (Heidegger, 19276, §15 - §18; see
Section 4.1 below);

b. how the situation is understood through shared traditions and personal
perspectives (ibid., §26, §29 - §31; see Section 4.2); and

c. what the role of language is in communicating interpretations (ibid., §32 - §34;
see Section 4.3).

This chapter uses examples of design from Chapters 2 and 3 to illustrate
Heidegger’s points. It explores his philosophic analysis just far enough to shed
light on the role of interpretation in design. Then Chapter 5 will apply the analysis
developed here more explicitly to design. That will form the basis for a theory of
computer support for interpretation in design, presented in Chapter 6.

Three points of background information are presented prior to beginning the
Heidegger interpretation:

6 Due to the intricacies of Heidegger's language and the unreliability of English

translations, quotes from Heidegger's (and Gadamer’s) works will appear in
original translations, with references to the page (S.) or section (§) numbers of
the German originals. The published English version of Being and Time includes
the German page numbers in the margin.

 Tacit and Explicit Understanding in Computer Support 113

1. Heidegger’s “hermeneutic” philosophy (or analysis of interpretation) is of
central importance to people-centered sciences and other endeavors, including
innovative design.

2. His philosophy provides the foundation for the recent approach to cognitive
science known as “situated cognition.”

3. Heidegger does not develop a theory of design, let alone a theory of computer
support for design. Even his analysis of human understanding is developed to
serve a methodological role in an argument about ontology (the philosophy of
being) that is tangential to the interests of this chapter. His philosophy will
have to be adapted to the analysis of design and its computer support in Part
II.

1. Heidegger’s hermeneutic philosophy is important to a people-centered
science of design. Since Aristotle, the philosophy of interpretation has been known
as hermeneutics. The term hermeneutics suggests the process of arriving at
understanding, especially through language (Palmer, 1969). As such, it has long
been associated with textual interpretation, such as Biblical exegesis.
Etymologically, it derives from the Greek god Hermes, the wing-footed
messenger, who was associated with the function of transmuting what is beyond
human understanding into a form that human intelligence can grasp, and who was
credited with the discovery of language and writing—the pre-computer tools
humans have employed for grasping meaning and conveying it to one another.

In the nineteenth century, the hermeneutics of Dilthey and Schliermacher helped
differentiate the Geisteswissenschaften (human sciences) from the natural sciences
by contrasting the methods of (humanistic) interpretation and (scientific)
explanation. Heidegger and his student Gadamer revived that orientation to
expound a general theory of human understanding and interpretation. Today,
hermeneutics refers primarily to this philosophy of interpretation as fundamental
to human existence, which Heidegger (1927) formulated and Gadamer (1960)
further expounded.

This chapter culminates the argument that design is to be understood as
fundamentally a process of interpretation. That is, innovative design tasks such as
lunar habitat design cannot be reduced to sets of explicit rules that are taken to be
independent of the situations in which they are applied and the perspectives of the
people who interpret them. To understand design, one must take into account the
role of human interpretation. This means that a science of design—or, for instance,
a theory of computer support of design—should be conceived on the model of the
human sciences more than on that of the natural sciences (Figure 4-1). This is
contrary to the traditional approach of AI attempts to automate design with rule-
based expert systems, that look primarily to the mathematical sciences rather than

 Tacit and Explicit Understanding in Computer Support 114

the interpretive sciences for their model of scientific method. The subjective
human aspects they often dismiss as incidental to design or view as unfortunate
limitations are here taken as being of the essence.

Figure 4-1. Hermeneutic versus natural science approaches to design.

Heidegger’s philosophy of human interpretation occupies a pivotal role in this
dissertation because innovative design is here approached from the perspective of
the human sciences. This contrasts with, for instance, the influential approach of
Simon (1981), who starts from a computational natural sciences outlook and then
points out its bounds or limitations in design in order to arrive at a “science of the
artificial.”

2. Heidegger’s ideas are fundamental to situated cognition. The power of
Heidegger's writings to inspire critiques of rationalist outlooks can scarcely be
over-estimated. In particular, the approaches of design theory, AI, and cognitive
science that are important for this dissertation are philosophically close to
Heidegger. His influence is, for instance, traceable via Dreyfus to the major
spokespeople for situated cognition: Suchman, Ehn, Winograd, and Flores (Figure
4-2). Their relevance to the analysis of interpretation in design was discussed in
Section 1.4 above. The parallels of Heidegger’s thought to other important writers
like Rittel, Polanyi, Kuhn, and Schön are striking. Without understanding
Heidegger’s alternative to the rationalist tradition, it is easy to misunderstand and
trivialize the novelty and importance of situated cognition theory.

 Tacit and Explicit Understanding in Computer Support 115

Figure 4-2. The two mainstreams of contemporary philosophy.

Their influences on theories of design and computer support for design can be
traced back to Heidegger’s philosophy or to rationalism.

3. Heidegger’s analysis must be adapted to a theory of computer support.
Being and Time (Heidegger, 1927) presents an "existential analytic". By this
Heidegger means a hermeneutic interpretation of what it is to be human, to be
involved with one's world and concerned with one's self. Along the way to his
explication of people’s understanding of themselves, Heidegger analyzes the ways
that people can be involved with things other than themselves in the world—for
instance, by using tools like hammers. It is this secondary analysis of artifacts that
will be of primary concern for the following discussion of interpretation in design.
Heidegger's presentation will need to be reinterpreted along these lines and fleshed
out with observations about the involvement of designers with design artifacts. It
is entirely in keeping with the spirit of hermeneutics that Heidegger's writings be
construed in accordance with current concerns, because interpretation is always
necessarily from a perspective of specific human interests.

To understand Heidegger’s view, it is important to place his analyses of
understanding within his methodological context, even if these notions are
eventually to be applied in a quite different context here. The ideas presented in
this chapter form the analytic core of the first step in Heidegger’s project: to
explicate the meaning of being. Roughly, his general question is, what does it mean
to say that something is? —what is it to be a person, a hammer, a lunar habitat? It
is hard to say more precisely just what Heidegger means by the meaning of being,
even after he spent a lifetime struggling to articulate it. This difficulty is due to
peculiarities of the history of Western thought according to Heidegger. While the

 Tacit and Explicit Understanding in Computer Support 116

early Greeks had a tacit understanding of being, even that vague grasp became
increasingly obscured from the time of Plato to the present. So Heidegger’s task is
to regain the original tacit understanding and explicate it. This is a matter for
interpretation, and that is precisely how Heidegger treats it. He argues that it is
methodologically possible to pursue this question only because people do have a
vague, tacit sense of the meaning of being. The question can be pursued by
gradually explicating this sense. So the problem of tacit and explicit understanding
is central to Heidegger’s task, just as it is to the task of providing computer support
for design.

Heidegger’s argument is, in a way, circular. He first postulates that people have
this sense of the meaning of being and that they have the ability to explicate their
tacit senses through interpretation. They have a sense of the meaning of being
because they exist in a world where they are involved with and concerned about
beings: artifacts, other people, and themselves. Heidegger takes these postulates as
phenomenological givens of human experience. For him, understanding never
starts with a blank slate, but always with some meaningful content that can then be
explicated: what was tacit can be stated, discoveries can be made, and terminology
can be iteratively revised. From this starting point, he develops a coherent theory
of interpretation that justifies his approach, provides an original philosophic
outlook, and explains the ways in which traditional views obscured our relation to
being.

Heidegger's thought can be viewed as a philosophy of interpretation or
hermeneutics (although it is ultimately concerned with a very abstract form of
interpretation: the philosophic understanding of being). His analysis of what it
means to be human is inseparable from his analysis of what it means to interpret.
The "hermeneutic circle", according to which "any interpretation that is to
contribute understanding must already have understood what is to be interpreted"
(S.152), is symptomatic of our relation to our world: "In every understanding of
the world, [our] existence is understood with it and vice versa" (ibid.). Heidegger's
writings are notoriously abstract, abstruse, and difficult to interpret. In order to
concretize his ideas—including the analysis of the hermeneutic circle and of our
relation to our world—the following sections will focus their attention on
Heidegger's analysis of the three features of understanding that have already been
considered in the previous chapters: its situated, perspectival, and linguistic nature.

 Tacit and Explicit Understanding in Computer Support 117

4.1. Definition of the Situation as Basis for Tacit
Understanding

Heidegger wants to get at the being of beings. But his methodological access to
this (at least at this initial stage of his investigation) is via the human understanding
of artifacts. So the question, what is a hammer? becomes, for instance, the
question, what is a hammer for a person? —say for the person who is using it to
nail something together. Heidegger looks at the tacit sense that we have of a
hammer when we are using it. He points out that when we are hammering we are
focused on the nail or on the pieces of wood that we are joining or on the project
we are building, and not directly on the hammer itself. There is only what Polanyi
calls a subsidiary awareness of the hammer as part of the background of the activity
that we are focused on. In fact, for the act of hammering to take place effectively,
we must be unaware of the hammer; we must be primarily concerned with the task
we are pursuing, not with the tool we are using to pursue it. This is part of what is
meant by saying that our understanding of the hammer is necessarily tacit: that its
use requires that we not focus our attention on it.

When we are engaged in hammering, the hammer is not there in the sense of an
object that we relate to as a subject—a subject who might, for instance, formulate
propositions about the hammer, like: I am lifting the hammer; the hammer is
heavy; the hammer is made of metal and wood. The hammer is only there as part
of what Heidegger calls the “totality of equipment” that is available to us and that
we make use of in our work. When we are at work hammering, we are in a situation
where the hammer, nails, wood, and other tools are available for our use. The
hammer is available in order to drive nails, and the other tools are similarly related
to their uses. All these references (e.g., hammer to nails for driving them) form a
totality of significance, that is definitive of our situation. So the hammer is
accessible to us in terms of this system of references among the tools we use. The
references inter-relate the tools in terms of their possible utilities, and also refer to
people as those for whom the uses are ultimately intended.

Figure 4-3 is meant to illustrate that the hammer is tacitly understood in terms of
its relations to other artifacts, concerns, and people. The totality of these things as
understood in this interrelated way is the situation. To say that interpretation is
situated is to say that everything is interpreted as part of this understood totality,
as having these relations.7

7 Recently, in his book rejecting functionalism, Putnam (1988) expressed this idea

in the following way: “If I say, ‘Hawks fly,’ I do not intend my hearer to deduce

 Tacit and Explicit Understanding in Computer Support 118

Figure 4-3. The network of references for tacit understanding of hammering.

The entities presented in this figure are involved in many different kinds of
relations. For the sake of simplicity, the various kinds of relations have not been
identified here.

Heidegger stresses that our understanding of the situation, defined as the totality
of references, is necessarily prior to our understanding of the individual tools. We
are only aware of the hammer as part of the available situation that defines it via
the references to something for driving nails, etc. In this way, we can understand
the hammer tacitly only because we always already understand our situation as a
significant totality.

Our tacit situated understanding provides a space (a stage or “clearing”) within
which elements can be discovered and brought to a more explicit form of
knowledge. This process is a central concern because it involves the bridging of
tacit understanding (the normal mode for people) and explicit knowledge (required
for computer representations). Within the space of understanding given by our
being tacitly situated, we can discover new things and understand them in relation
to what we already understood. In some cases, this subsumption of new
understanding involves us in making our understanding explicit by formulating it
linguistically. In this way, explicit knowledge may emerge from tacit

that a hawk with a broken wing could fly. What we expect depends on the whole
network of beliefs” (p.9).

 Tacit and Explicit Understanding in Computer Support 119

understanding when we are situated. However, we can never make all our tacit
background understanding explicit.8

Heidegger’s difference from all objectivistic philosophies is already clear here.
The world does not consist of a fixed set of multiple objects that we can come to
know by staring at them and explicitly noting their attributes. Rather, to be human
means to have disclosed (opened up) a situation or world within which and in terms
of which things can be discovered as already significant. The issue of
intentionality, epistemology, or mind/body (that poses the question of how mental
activity can gain access to physical reality) is a non-problem for Heidegger because
we are already understandingly involved with things when we first discover them
(see Heidegger, 1975, and Dreyfus, 1991).

According to Heidegger (1927), our tacit understanding of things is founded upon
our situatedness. Understanding can then become more or less explicit on the basis
of this tacit understanding:

Involvement in the immediate work-world has a function of discovering
such that the beings brought along with the work (i.e., in the references
that are constitutive for it) remain discovered in various degrees of
explicitness and to various extents of insight, depending upon our mode of
involvement in the work. (S.71)

This explains why we understand best when we are properly situated in the context
of an issue we are trying to understand. That is when we have access to the
associations that are related to the topic of our concern and that define its
meaningfulness. It is our involvement with the topic that makes manifest the
things, issues, and concerns that are related to it and whose mutual associations
constitute our situation.

In Heidegger’s philosophy, to say that we are situated means that we are involved
with things in the world and can discover things based on our tacit understanding
of what we are involved with. The situation is neither a set of physical
circumstances in the objective world nor a model representing such objects in a
subjective mind. Heidegger overcomes the separation of world and mind by
focusing on the situation as the understood world itself in which we are involved,
not a re-presentation of it “in the head.” Of course, we can subsequently represent
the structure of the situation in explicit terms: words, graphics, computer symbols.
But in our tacit involvement things are there as meaningfully related to our

8 As Polanyi (1958) put it, “Tacit knowledge is more fundamental than explicit

knowledge: we can know more than we can tell and we can tell nothing without
relying on our awareness of things we may not be able to tell” (p. x).

 Tacit and Explicit Understanding in Computer Support 120

concerns; they are available to us in ways that are not mediated by symbols or re-
presentations.

The next question is, then, how our understanding can become more explicit. This
is important for Heidegger from a methodological perspective. In order to answer
the question of being, he needs to take our tacit understanding of being and make
it explicit. To show that it is possible to bring to light the structures that ordinarily
operate tacitly, Heidegger gives three examples of cases where an artifact like a
hammer stops functioning invisibly in the background and becomes explicitly
manifest. These cases are when a hammer is conspicuous, obtrusive, or obstinate.
For instance, (i) if a hammer that one wants to use to drive a nail is encountered as
unusable, damaged, or unsuitable (too large, broken, or the wrong style) then one
discovers its usability for hammering in a conspicuous way. Similarly, (ii) if a tool
that one reaches for turns out to be missing, then one becomes conspicuously aware
of it as necessary but unavailable. Finally, (iii) if something is in the way of what
one wants to do, then that thing is discovered as obstinate. When one discovers the
hammer under such circumstances, it is not discovered as a raw physical object,
but as an unsuitable driver of nails (or whatever) and the situation in which one is
desirous of driving the nail—the related and referenced other tools and human
purposes—also rises to a more explicit presence. The situation comes to light as a
network of artifacts; it is disclosed as a context of significance that is then seen as
having already been familiar as the basis of the tool and its references.

This is a very different view from the usual cognitive science approach in terms of
explicit goals, according to which a carpenter who has the goal of producing an
artifact formulates propositional sub-goals like joining two pieces of wood, and
sub-sub-goals such as lifting the (explicitly considered) hammer and swinging it
at the nail with adequate force. In the Heideggerian view, the tool and the goals are
only tacitly available by implication or reference as long as everything is going
smoothly. It is when the references are disturbed that they become visible. When
some tool is missing whose ordinary availability was so obvious that we never
even took any notice of it, then this absence creates a break in the totality of
references. Our awareness runs into unexpected emptiness, and discovers for the
first time the (now broken) references connecting the anticipated tool with the
other tools and goals of the situation. Whereas the rationalist tradition tends to
think of the being of things as a simple form of physical presence, Heidegger has
a more complex view of things being ordinarily hidden in various ways, having to
be uncovered and disclosed, only to then re-submerge into tacit, subsidiary
awareness. In the hammer example, the hammer itself is hidden when it is normally
available, useful, or in use; it becomes explicitly visible to us precisely when it is
physically absent or otherwise unavailable.

 Tacit and Explicit Understanding in Computer Support 121

It should be noted that Heidegger has not claimed that things only become
explicitly manifest when there is a breakdown of normal activities. This is a
suggestive claim offered by Dreyfus (1991), Schön (1983), and others influenced
by them—but it is a stronger claim or a narrower theory than Heidegger’s. Also, it
is open to misinterpretation of what the phenomenon of breakdown is all about.
One could, for instance think that a breakdown in design is when a designer gets
stuck in the flow of designing activity and has to stop to think of a solution. In fact,
Schön’s concept of reflection-in-action might suggest this idea, even though Schön
himself knows better. This is a point where it is important to understand what
Heidegger is up to methodologically in order to understand what his analysis is
about. The three examples he gave are just sample cases and by no means rule out
other paths to making things explicit. When Heidegger presents them, he is making
a methodological point presenting phenomenological evidence for the structure of
the situation as prior to the artifacts understood by it. Here he is not proposing a
general theory of explicit knowledge or reflection. Even later, when he does
discuss explication, he develops his analysis only to the extent needed to make his
points about the possibility of explicating the vague sense of the meaning of being.
The breakdown examples make manifest the structure of the situation—that is why
Heidegger refers to them. What is important is not that tacit involvement in the
world is broken, but that the structure of the situation is broken. That is, the
network of references is suddenly inadequate for making sense of the world
because the references anticipated one thing and something else was discovered in
the world: i.e., the hammer was unusable, missing, or in the way.9

9 Heidegger’s example of hammering is often cited. However, it is in some ways

too pat and raises a difficult question concerning its generalizability. For
instance, it conjures up visions of the craftsman’s workshop where, as in an
obsolete blacksmith’s shop, one automatically reaches out for hand tools that
extend the limbs of one's body. This is an enticing image, given Heidegger’s
argument. But one must ask—as do Adorno (1964), Stahl (1975b), Habermas
(1985), Lefebvre (1991), Bourdieu (1991) and others—if this is not a romantic
vision longing for a return to pre-industrial forms of labor. Is Heidegger
insightfully characterizing a primordial foundation of human existence
throughout history or is a different analysis of our being-in-the-world needed in
an industrial or computerized age? In particular, are Heidegger’s analyses
relevant to contemporary design of high-tech artifacts, with or without computer
support? Is the individual craftsman the appropriate paradigm for analyzing
collaborative design in the contemporary world?

Two general arguments in support of using Heidegger’s approach suggest
themselves. The first is the argument from evolution: that advanced forms are
built on earlier stages. Donald (1991) and Polanyi (1953) argue that primate-level

 Tacit and Explicit Understanding in Computer Support 122

The important phenomenon is not a matter of psychological consciousness: that
one suddenly has to become more conscious about what one is engaged in. Rather,
one has to reinterpret in the sense of reorganizing the network of references that
define the situation so that circumstances that have been discovered make sense in
the revised situation. Heidegger is interested in this phenomenon from an
ontological, rather than psychological perspective. The discovered artifact that
causes the breakdown loses its ontological status as available to the person’s tacit
understanding because that status was conditional upon the situation. Heidegger’s
ontological analysis need not be pursued here. The important point for computer
support is that a breakdown is a rupture of the situation as the network of references
for understanding, and not simply a difficulty in action involving some artifact.

In the cases of designing discussed in the previous chapters—the library footprint
and the lunar habitat layout, for instance—tacit situated understanding played a
crucial role. The situation for Clara, the architect in Schön’s study (Section 2.3
above), is the library as she understands it. This situation is disclosed to her through
her study of the line drawing, which she interprets as a library footprint. Within
this situated understanding, Clara can discover things: like the anomalous walls or
five foot displacement. Things discovered in the situation are discovered as already
having some meaning (a jog in the wall, a deviation from uniformity of lengths, a
long way for a library user to walk, a dimension with a certain architectural sense)
by virtue of their relations in the situation. When Clara notices the displacement,
she is already situated in a world that is meaningful for her. The displacement is
noteworthy in terms of its relations to the other walls, to the areas that are defined
within the library (especially those affected by the five foot irregularity), to the
surrounding lawns or streets, and to the approaches that a visitor could take to the
library. It is only within this network of significance that the displacement can be

episodic (tacit) understanding still provides the necessary basis for human
consciousness and theoretical knowledge. The second argument is that the
medieval workshop is not an anachronism, but still provides the preferable model
of organization of learning and work, at least for certain fields. Budde and
Züllighoven (1990), for instance, claim that the tool/workshop structure is
superior to the CASE/industrial model for software development, and they
therefore apply Heidegger’s categories in their hermeneutically-based concepts
of software tools for programming workshops. Similarly, Schön (1985) argues
that the apprenticeship model of the design studio is more important than the
engineering ideal of theory application for the teaching of architecture. Because
Heidegger’s examples are suspect, it is important to turn now to concrete
examples of interest. In Part II Heidegger’s analysis will be extended to
collaborative design to overcome the danger of an ahistorical, asocial
interpretation.

 Tacit and Explicit Understanding in Computer Support 123

discovered as an object of interest. Perhaps the other architects in the experiment
saw the library plan as a different complex of relationships in which the
displacement could not be discovered as a significant feature.

One can, of course, ask how Clara’s understanding of the drawing originally
gained the significance that it had for her. Heidegger’s point is that one does not
first “decide” to understand something—as though one had to label objects with
values through rational judgments—but always first discovers things within
contexts that are already meaningful (i.e., already related within the situation). In
some cases, the discovered meaning can be modified through reflection and
judgment, but this is not as common as rationalist theories assume and it is always
done on the basis of prior situated understanding. This takes place through the
explication process called interpretation (see Section 4.3, below). When, for
instance, Clara is first shown the line drawing and told that she is to design a library
using the drawing as a footprint, she discovers the drawing within the larger
context of her professional life. She already understands what it means to be an
architect, to design a building, to visit a library, to participate in an experiment, to
study a floor plan, to sketch alternative approaches (Figure 4-4). She dwells in a
world in which the drawing and its associated task are already meaningful, in
which significant relationships can be explored, and in which discoveries can be
made, understood, and further interpreted.

Figure 4-4. The network of references that define Clara’s situation.

Ultimately, the various kinds of spatial and functional relationships of the situation
point to people: the future library staff who manage the entrances and exits, the
stacks, and the offices; the potential library users who walk in from the street,
orient themselves after entering a door, search for books or magazines, and use the
other facilities. Clara understands these relationships because she has a tacit
understanding of the meaning of human being: of what it means to be a person

 Tacit and Explicit Understanding in Computer Support 124

working in the library, a person using the library, a person appreciating cultural
artifacts, a person negotiating pathways among physical walls.

The situation as meaningful network of physical, functional, and human
relationships plays a central role in Alexander and Rittel’s theories as well as in
Schön’s analysis of the library experiment. Alexander is particularly concerned
with finding the best decompositions of such relationships in a design, so that the
definition of components in terms of their most important or tightest network of
interconnections is not disturbed when design decisions are made that rearrange
less tightly bound components. Alexander’s analysis of unselfconscious design
reveals a strong sympathy for the rootedness of artifacts in the worlds of their
creators. Artifacts like native houses serve obvious needs in the physical
environments and daily lives of their inhabitants, and their designs function
centrally in the local cultures and traditions as well. All aspects of their design are
immediately meaningful in terms of the understood world. For Alexander, to
decompose a design problem in a way that ignores the ties of structural form to
social “fit” is to destroy the integrity and value of the artifact being designed.

Rittel also takes a relational view of design, but he focuses more on the level of
rationale for self-conscious design. To argue that design is a deliberative process
is to say that a given claim does not stand on its own self evidence, but that it is
tossed upon a sea of conflicting opinions. The value of an item of rationale results
from the way it swims among the other items and how it survives the buffeting by
criticism and argumentation. Ultimately, the significance of design justifications
are relative to other design decisions, individual modes of reasoning, and personal
or group interests or predilections That is, they are always already primarily
understood within a broader perspective of understanding, on the basis of which
opinions may occasionally be swayed subsequently. The Rittelian issue-base
representation captures the structure of the situation’s inter-relatedness as
explicitly as Alexander’s decomposition patterns or Schön’s library experiment.

The role of the situation is perhaps clearest of all in the example of lunar habitat
design. Here, two concerns dominate most of the discussion in the videotapes:
adjacencies and functional relationships. At the level of analysis reported in the
transcripts of Chapter 3, the designers are working with a set of components (sleep
compartments, galley, toilet, table, stowage, etc.) that are fairly well determined
by general mission requirements. Their efforts are aimed at arranging these
component volumes so that their mutual relationships define a meaningful
situation for life and work on the moon. So the designers—who understand things
from within their situation—are trying to design a different situation that will serve
as a world for the astronauts (Figure 4-5).

 Tacit and Explicit Understanding in Computer Support 125

Figure 4-5. The network of references in lunar habitat design.

It defines both the lunar habitat design situation that is being designed and the
situation of the designers designing it.

The designers’ world includes their sense of what it is to be human in a variety of
situations, as well as their knowledge of technical information and regulations.
They understand, for instance, what it is to get out of bed in the morning, to sit
down with other people at breakfast, to yearn for privacy. As designers, they are
experienced at using this tacit understanding to project themselves into the
situations they are designing and to understand what it would be like to understand
things from within that situation. They know (whether or not they articulate it) that
this kind of design hinges on the establishment of a coherent network of
significance that can support a meaningful life for people in the situation. They
structure and rearrange the physical, functional, and interpersonal relationships of
the habitat until they have established a nexus in which dimensions of life like
privacy and sociability are defined.

The designers project themselves into the world disclosed by these relationships in
order to discover the meaning of things for astronauts in that situation. If they
discover something that does not work properly, they try to redesign the
relationships. When they finally feel comfortable in their new world, then they
have reached a satisfactory resolution of the manifold design constraints and they
can move on to another level of design. At the conclusion of the design session
transcribed in Chapter 3, the designers felt a sense of resolution. They had reached

 Tacit and Explicit Understanding in Computer Support 126

a plateau in their interpretive process at which all the major things they discovered
fit comfortably into the network of relationships of the evolved state of their tacitly
understood situation.

The lunar habitat design session provides a particularly clear example of how the
situation, that is always already understood in a tacit way, provides the working
basis for discovering meaningful things within its context—whether one looks at
the situation of the designers or at the design of the situation. The lunar habitat
design is understood by the designers as a situation incorporating multiple
functional relationships. It is designed to be a situation that will be understood by
astronauts living in it. But as it exists on a piece of paper or represented in a
computer memory as data for a CAD program, it is not understood; it is not a
situation; it is not meaningful. Only people can understand.

When NASA compiled the chart of functional relationships and relative
adjacencies shown in Figure 3-5 (Section 3.2 above), it may have looked like they
recognized the role of architecture to structure human situations. But actually that
chart analyses the habitat components as physical objects with functional
characteristics that imply certain adjacency constraints. It analyses the habitat as a
physical environment that has to function efficiently, without ever explicitly taking
into account the fact that most of the functions have to do with people pursuing
human aims. The chart of functional relationships does not directly represent the
experiential relationships of a situation, but rather incorporates formal, explicit
relationships of adjacencies and functional inter-dependencies. However, the chart
is similar to an analysis of the designed lunar habitat situation because the formal
interpretation necessarily grows out of tacitly understood experiences.

The underlying situation is not to be taken as a physical environment of spatially
juxtaposed objects, but as a network of relationships that characterize how one
thing is understood as useful to another, ultimately in terms of human purposes.
As the basis for tacit understanding, the situation serves as a precondition for
understanding from various viewpoints (see Section 4.2) and for more explicit
understandings (see Section 4.3).

4.2. The Role of Shared Traditions and Personal
Perspectives

The situation is a complex network that can be understood (tacitly) from various
perspectives, that is, with various focuses. The meaningful situation is in the first
place a shared world. It can also be one with personal significance.

 Tacit and Explicit Understanding in Computer Support 127

Shared perspectives. For Heidegger, human being is fundamentally a being with
others, and this interpersonal existence takes place through the medium of a shared
world. The relationships of significance that constitute the situation of an artifact
point to other people and open up a realm in which they can be encountered as
fellow ends for whom the artifacts are useful. So, for instance, the chairs around
the habitat’s wardroom table are there not only for the individual astronaut who
discovers them, but for others as well and for the group of astronauts all together.
The one astronaut experiences the chairs as part of a public space and knows that
this understanding of its public character will be shared by others. The astronaut’s
own sleep compartment is understood as private in the privative sense that it is not
for others, and that the others will recognize and acknowledge its shared private
significance.

The relationship of interpersonal and personal understanding is important for
analyzing collaborative design; but it is also complex, as can be seen from
Heidegger’s treatment of the issue. Heidegger recognizes the fundamentally
interpersonal character of the situation, but he also presents a critique of the public
realm (shared “common sense”). He is interested in uncovering the meaning of
being that has been lost sight of in our culture. The common sense traditional views
that pervade a culture contribute to the cover-up, more than they contribute to the
ability to explicate the meaning of being. “Public opinion,” according to Heidegger
(1927), “regulates from the start all interpretation of the world and human
existence. . . [but it] obscures everything and presents what has been covered up
as familiar and universally accessible” (S. 127).10

The role of shared understanding is clear in the lunar habitat design sessions. The
discussion of bathrooms in the videotape illustrates the complexity of the shared
world. There is a publicly defined understanding of what constitutes a bathroom.
Yet, if one looks closely at the concept—particularly under pressure from design
constraints to rethink the concept creatively—it becomes clear that there are really
many variations on the notion. There is, for instance, the British WC. One can trace

10 The conservative culture critique of inauthenticity that Heidegger developed

from this was a questionable move (see Adorno, 1964, and Stahl, 1975b), that he
dropped in his subsequent writings. In fact, his later thought increasingly
emphasizes the historical character of the meaning of being, an emphasis that
calls for a deeper respect for the positive role of tradition. Gadamer (1964),
building on Heidegger’s later writings, tries to rehabilitate the role of historical
authority, tradition, and prejudice as the necessary foundation for
understanding—including for any critical reflections that go on to reject the
accepted views (see the debate on this point between Gadamer, 1967, and
Habermas, 1967).

 Tacit and Explicit Understanding in Computer Support 128

the history of the concept, relating it to the development of mechanical devices and
indoor plumbing, and noting its continuing evolution under international
influences (Americanization). Other notions of bathrooms can be considered, such
as the nautical “head,” designed under severe spatial constraints for use in a boat’s
unusually confined environment.

The discussion of bathrooms in the transcribed design session serves a double
purpose: (1) to problematize the inherited tacit understanding of bathrooms and (2)
to establish a new shared understanding. Because the tacitly assumed character of
the bathroom as a single room containing a toilet, a sink, and a shower was
obstructing the ability to design in response to certain constraints that were arising,
Archie started to reflect on the common conception. He discarded it in favor of a
multiplicity of notions of bathrooms, named several, and explicitly described some
of their characteristics. At the same time as this argued against the original public
conception, it served to establish a new definition of bathroom as a shared
understanding between Archie and Desi. Their new conceptualization was
promptly incorporated in designs that featured a separation of toilet from shower.
The new way of thinking about bathrooms corresponds closely to the NASA
terminology that discusses “personal hygiene” and “human waste management” as
separable functions. Desi was, in fact already familiar with this terminology as a
shared understanding among lunar habitat designers, so he could easily make the
transition from the public way of thinking in the civilian world to that of the NASA
establishment. Archie and Desi started out from different traditions. They
deliberated by switching to views from several other perspectives and eventually
merging a variety of considerations to define a new, shared perspective. We know
how to live in many worlds, to act in numerous situations, and to move freely
among them. We understand things from a variety of shifting perspectives that we
share with other people as a result of complex social histories and continuing
negotiations. 11

11 Because understanding is founded on social conventions, Dreyfus (1991) goes

so far as to identify Heidegger’s concept of being with social practice as defined
by Bourdieu (1974). He uses examples of body language, like our tacit
understanding of interpersonal distance, to illustrate how we know how to be in
the shared world in countless ways of which we have no explicit knowledge.
While these culturally transmitted understandings provide insightful illustrations,
Dreyfus’ interpretation of Heideggerian ontology threatens to collapse into
anthropology (albeit one with strong ontological roots). Even this paradigm of
tacit understanding has been subjected to explication and operationalizing as part
of the space effort. In particular, the weightlessness of outer space and the
confinement of lunar habitats transform the accustomed situations of social
interaction in ways that have been made explicit and studied. (See Raybeck,

 Tacit and Explicit Understanding in Computer Support 129

Personal perspectives. Understanding has its personal, as well as its interpersonal
aspects. Just as society projects the conventional understanding of the shared
world, so individuals project their own perspective on their situation. Heidegger
uses the German term Stimmung—that can be variously translated as mood or
tuning 12—to characterize the sense we have of being in our own particular world.
To say, as Heidegger does, that we are thrown into a world with a certain mood is
to state that we always already find a world disclosed for us and it has a particular
character that colors our perceptions of what we discover in the world. The mood
is not something we explicitly think about or choose. Rather, it determines in the
first place how we can direct ourselves toward things that we discover and interact
with tacitly or that we can then in exceptional cases think about or make decisions
about. The mood determines the way in which things are discovered as mattering
to us. It defines our personal perspective on the world. For instance, things might
seem threatening if we are in a state of fear or paranoia. It is neither a matter of
first ascertaining a possible evil nor of first observing a neutral object and then
judging it to be fearsome. Rather, if one is in a fearful mood then one may discover
fearsome things. Our mood is a way in which our understanding of our world is
filtered or colored for us.

1991, and Tafforin, 1990, for example.) However, the meaning of being is
arguably more pervasive and less obtrusive than even social practice. It includes,
for instance, the way nature has been encountered in different historical epochs
as, e.g., the creation of gods, or the way artifacts are encountered as market
commodities in industrial society.
Heidegger sees the epochs of being as historically given; however he does not
think they are reducible to culture, but rather that culture reflects changes in the
history of being. Although it is possible to propose a materialist critique of this
view (see Adorno, 1966, and Stahl, 1975a) one cannot simply reduce
Heidegger’s radical rethinking to commonsensical categories. Again, it is
necessary to distinguish Heidegger’s methodological (ontological) arguments
from the applications (e.g., a theory of human interpretation) that one would like
to garner from his discussion. Regardless of what one thinks of Heidegger’s
history of being, the point for now is that all understanding involves from the
start a sharing of interpersonal meaning and an initial acceptance of received
opinion. Some of the perspectives we bring to bear in trying to understand the
world are idiosyncratic interpretive “moves” with which we explore possible new
views; others are the results of thousands of years of cultural history.

12 See Stahl (1976) for a development of the metaphor of attunement to being.

 Tacit and Explicit Understanding in Computer Support 130

Mood is correlative with understanding. Understanding is the disclosure of the
network of relations of significance. This disclosure always has its specific mood.
The situation is always disclosed as a possibility of being. For instance, fear is a
possible way of being in which things can possibly be discovered as fearsome. The
mood of fear thereby opens up the possibility of understanding things as fearsome.
Heidegger (1927) emphasizes the way in which understanding is a matter of
opening up possibilities. Through one's understanding one discloses what one is
able (capable, possible) to be and what can possibly be discovered:

As disclosure, understanding always pertains to the entirety of being-in-
the-world. As a potentiality for being, one is always being-able-to-be-in-
the-world. Not only is this, qua world, disclosed as possible significance,
but when things within the world are themselves freed, they are freed for
their own possibilities. Things are discovered in their serviceability,
usability, and detrimentability. The network of references reveals itself as
the categorical totality of a possibility of interconnectedness of things.
(S.144)

People are constantly projecting these possibilities of understanding and then
seeing the world in terms of them. We always anticipate the next moment’s world,
and we can only discover it through this anticipation. For instance, if we project a
fearful mood then we can discover things that are fearsome, but we can also
discover that there is nothing fearsome there. This is not a matter of explicit
planning. We do not decide to anticipate the fearful. It is more like Schön’s
designers, who project a design decision not because they know what the
consequences will be but rather because they anticipate some general results and
want to see what really ensues in detail. In fact, Heidegger’s word for projecting,
Entwurf, in addition to meaning throwing something ahead of oneself can mean
designing or sketching a project. So it is appropriate to think of this in terms of
moves in design. In this kind of understanding as projecting, there is not an explicit,
thematic grasping of the possibilities upon which the understanding is projected.
That would destroy the very character of the projection as possibilities and reduce
it to specific given, intended contents. So projecting must remain tacit in order to
throw before itself possibilities as possibilities and thereby let them be possible.
To make an explicit choice is to limit oneself to a single, fully specified option,
whereas the tacit projecting that is characteristic of understanding is an opening up
of a (structured and delimited) range of possibilities for human being toward that
which is understood.

Perspectives for discovery. Heidegger differentiates (1) the disclosure of a world
from (2) the discovery of things in that world. Our shared perspective (traditions)
or personal perspectives (moods) open up ranges of possibility. They do this by
defining our understood situation as a network of significance. Within this

 Tacit and Explicit Understanding in Computer Support 131

situation, we can discover contingencies. The things we discover are always
discovered as meaningful in terms of the situational network of relationships that
associates the discovered thing to already tacitly understood other things. The
disclosure of the situation is the opening of a range of possibilities for discovering
things and understanding them.

Schön’s view of design provides a metaphor for Heidegger’s characterization of
life as interpretation. For Schön (1983), the reflective practitioner projects a
framing of the design problem by making design decisions or moves. This imposes
a structure on the situation and determines the kinds of things that can take place.
But it does not fully determine what does take place: that must be discovered by
paying attention to the reaction of the situation. “In the designer’s conversation
with the materials of his design, he can never make a move which has only the
effects intended for it. His materials are continually talking back to him, causing
him to apprehend unanticipated problems and potentials” (p.101). One can almost
understand this literally in terms of a question and answer conversation. The
designer poses the question, how would things work out if I make such and such a
design move? The designer can choose the question, based on personal interests,
intuitions, aesthetics, training, experience, anticipations. (This is the subjective or
creative aspect.) But the designer does not choose the answers. (This is the
objective aspect of creative discovery.) The answers are discovered, and may be
surprising—despite the fact that they could not have been discovered if the
question had not been posed. This is a subtle point: through the designer’s
transaction with the situation, “he shapes it and makes himself a part of it. Hence,
the sense he makes of the situation must include his own contribution to it. Yet he
recognizes that the situation, having a life of its own distinct from his intentions,
may foil his projects and reveal new meanings” (p.163).

For Heidegger, the situation is always disclosed from a certain perspective. The
perspective or mood is like a questioning: how does the situation look to a fearful
person? But, of course, we do not choose our moods, even if once in a mood we
can try to change it. So the metaphor of interpreter as designer is limited to the
extent that designers are thought to make volitional, explicit choices. But the
parallel holds in that once the situation is disclosed as a network of mood-
influenced meanings, the things that can be discovered within that situation have
not been determined. To some extent, their possible character to us might be
delimited by our anticipations, but things discovered can completely surprise us.
For instance, the lunar habitat designers may have projected a certain
understanding of what it is to live in the habitat while they arranged modules along
one wall to keep the other side of the habitat open for group activities like eating
around a table. Then they discovered that the bathroom opened onto the eating
area. This was a surprise that they had not anticipated as part of their design
decisions. However, the fact that they could then discover this as a new problem

 Tacit and Explicit Understanding in Computer Support 132

in their design was based not only on their having tried out an arrangement and
having sketched it so they could see its implications, but also on their continuing
to look at the new design with their sense of living in it. Desi actually talked about
the situation that he was living in his imagination in terms of past situations that
he had experienced in his office, where the bathroom opens onto a public area.

So the possibility of discovering surprises, constraints, and problems in a design is
a function of the understanding of the situation and would not exist for someone
who lacked such understanding. The projecting of a situation (with its mood and
its understanding) is the posing of a question. Gadamer (1966) formulates this
connection between the answers that can be discovered and the questions we come
to the world with in linguistic terms: “The most fundamental phenomenon of
hermeneutics is this: that any statement that is possible can be understood as an
answer to a question—and in fact that is the only way it really can be understood”
(S.107).

This sketch of Heidegger’s interpretation of the phenomena of the public realm
and of personal moods shows that understanding is neither objectively determined
nor a matter of unfounded whim. Rather, it is based on the projection of a world of
specific possibility that has the character of a shared world and/or a personal mood.
Understanding is founded on the disclosure of a network of references that point
to the person who understands the situation and also point to other people as those
who share the meaningful world. The situation is not a physical collection of
objects that can be investigated scientifically,13 but a structure of significance in
which things can be discovered as already meaningful within the projected nexus
of possible ways of relating to other things and serving human aims. The
phenomenon of mood provides phenomenological evidence that in understanding
one always finds oneself already anticipating distinct kinds of things in terms of
the network of significance in which one is situated. One always understands from
within some perspective, whether this perspective is primarily public or personal.
Although understanding is only possible from within a mood (Heidegger), a
conversation (Schön), or a questioning (Gadamer), one can subsequently modify,
shift, or change perspectives within a situation.

13 Of course, some things in the situation can become objects of scientific

investigation. But this is only possible on the basis of pre-scientific, situated
understanding. Scientific methodology is a derived form of understanding
according to Heidegger’s analysis (see next Section).

 Tacit and Explicit Understanding in Computer Support 133

4.3. Interpretation as Explication in Language
To understand, according to Heidegger, is to be tacitly situated. This philosophy
of understanding could be contrasted with Descartes’ “I think, therefore I am,” by
saying, “I am situated, therefore I understand.” This would not be meant as a
logical existence proof, but rather as a description of human existence as always
being in a world that is already understood as meaningful and that opens up
possible ways of understanding oneself, artifacts, and other people. Nor would this
yet involve any explicit cognitive act in the sense of Descartes’ propositional
cogito. Furthermore, it avoids the trap of post-Cartesian philosophy, the problem
of how subjective mental acts can understand objects in the world, because such
understanding is given with human existence. Also in contrast to Descartes, human
existence is not a “clean slate,” but always understands from some concrete
perspective, that incorporates shared traditions and personal anticipations as part
of its being embedded in an understood situation.

One way of looking at this contrast is to say that Heidegger has described tacit
situated understanding as the precondition for explicit knowledge in Descartes’
sense. Heidegger then goes on to show how everyday knowledge and even
scientific knowledge are built upon such understanding through processes of
interpretation. In general, interpretation is simply the further development of
understanding. Through interpretation, what was understood tacitly comes to be
known explicitly. Such knowledge is not the acquisition of information in the form
of propositional facts (although it can eventually be developed into that form), but
the working out of the possibilities that were inherent in the understanding. This
“working out” is a matter of interpretation. As discussed in the previous section,
such working out can produce unanticipated surprises and require a
reinterpretation that revises situated understanding.

In German, the word for interpretation is Auslegung: literally the laying-out of
something. This is similar to the English word, explication, that is derived from
the Latin for un-folding. Interpretive explication unfolds, lays out, or develops the
implications in tacit understanding. This happens in the discovery of artifacts in
the situation. When an artifact is discovered as a hammer, the references in the
network of significance concerning the hammer (illustrated in Figure 4-3 of
Section 4.1) are taken apart, laid out, or un-folded; thereby they become explicitly
understood. The artifact is seen as a hammer, as a tool for pounding nails, as a
means to the building of a structure, as something useful in pursuing human
projects. This is the structure of explicit interpretation: something as something.

The “as” makes up the structure of the explicitness of something that is understood.
It is known as the hermeneutic as: the as of interpretation. To simply use the artifact
as a hammer is to understand it tacitly, but to articulate it as a hammer is to interpret

 Tacit and Explicit Understanding in Computer Support 134

it explicitly. According to Heidegger (1927), this is, in turn, a precondition for
being able to formulate propositional knowledge (and ultimately methodological
scientific facts) about the thing as a hammer:

In the mere encountering of something, the thing is understood in terms of
a totality of references, and the encounter hides within itself the
explicitness of the assignment-relations that belong to that totality. That
which is understood gets articulated when the entity to be understood is
brought close interpretively by taking as our clue the “something as
something;” and this articulation comes before our making any thematic
assertion about it. In such an assertion the “as” does not turn up for the
first time; it just gets expressed for the first time, and this is possible only
in that it lies before us as something expressible. (S.149)

That is, tacitly understanding something as something on the basis of references in
the situation is what permits one to interpret the thing explicitly as something
subsequently and eventually to name it as something in linguistic discourse.

Section 4.1 suggested that in various kinds of breakdown cases—where an artifact
is, for instance, conspicuous, obtrusive, or obstinate by being damaged, missing,
or in the way—the implicit working of some of the references in the network of
significance may be broken and as a result these references come to prominence.
In such a breakdown case, the role of interpretation would be to mend the
referential breaks by creating new reference links to the artifact within the
situation. As depicted in Figure 4-6, the process of understanding would proceed
through the following stages:

* An initial preunderstanding discloses a world from a certain perspective of
possibilities.

* The artifact is discovered and understood as something in terms of the
situational network of references.

* However, the references are inadequate for understanding the artifact and there
is a breakdown in the network.

* The artifact is interpreted by laying out the implicit references and repairing
the break in them.

* This makes explicit the understanding of the artifact as such and such a thing.

* The new understanding can then be asserted in language and communicated or
it can revert to tacit understanding.

* The revised tacit understanding forms the preunderstanding for any further
interpretation, completing the hermeneutic circle of understanding.

 Tacit and Explicit Understanding in Computer Support 135

Figure 4-6. Two similar theories of breakdown.

A comparison of Heidegger’s hermeneutic circle with Schön’s theory of
reflection-in-action shows strong parallels. For Heidegger, the breakdown occurs
within the network of references that constitute the situation.

Note that although this process is similar to Schön’s (1985) theory of breakdown
and repair, for Heidegger the breakdown is in the situational preunderstanding, not
in the activity itself.

Actually, if one reads Schön carefully, it is apparent that he also views breakdowns
as taking place at the level of understanding, even though his terminology is open
to the misinterpretation that the breakdown is at the action level. As quoted in
Section 2.3, Schön (1985) says, “Sometimes, however, there are surprises. These
take the form of unanticipated events which do not fit existing understandings, fall
outside the categories of knowing-in-action. . . . There is a demand for reflection
[that] converts tacit knowing-in-action to explicit knowledge for action (p.24;
italics added).

At the corresponding point in Being and Time, where he is formulating his general
theory of understanding and interpretation, Heidegger does not limit himself to

 Tacit and Explicit Understanding in Computer Support 136

cases of breakdowns in action. Rather, he emphasizes the tacit basis of all
understanding of artifacts. The grounding of all understanding in a tacit grasp of
the significant references of the situation provides the first of three important
characteristics of interpretation. According to Heidegger’s analysis, there are three
preconditions of interpretation, here referred to as pre-possession, pre-view, and
pre-conception.

(a) Artifacts are always understood in terms of the totality of references of the
situation. This totality is generally not explicitly grasped through a thematic
interpretation. In fact, if it has once been grasped that way, it tends to return again
to a tacit understanding. It is in this tacit mode that understanding is the essential
foundation for everyday interpretation. In other words, interpretation of something
as something is always grounded in a situatedness or pre-possession: the
interpretation already possesses the situation through an understanding of the
totality of references, and it moves within this understandingly in order to develop
the understanding into a more explicit form.

(b) Interpretation is also always grounded in a pre-view. The development of
understanding of something that is still veiled takes place through an unveiling that
is always guided by a point of view that fixes that with respect to which the thing
should be interpreted. The preview carves up that which the prepossession has in
terms of a specific interpretability; it specifies what are to be viewed as the things
and what are the joints dividing them. This basis of interpretation was taken up
later by Kuhn (1964), who argued that even the natural sciences viewed reality
through paradigms that institutionalized this kind of preview. An indication of the
importance of preview can be seen in the way that both Schön (1983) and Kuhn
(1964) claim that a major outcome of professional schooling is the transfer (tacitly,
through apprenticeship relationships) of modes of preview that are definitive of
schools of science, technology, or design.

(c) Interpretation is grounded in pre-conception as well. Interpretation has always
already chosen a way of conceptualizing whatever is being interpreted. The choice
need not be a final decision; it can be tentative and subject to future change. The
conceptual framework can either be created appropriately through articulation of
the thing being interpreted, or the thing can be forced into a conceptualization that
contradicts its nature. But some framing of the interpretive effort in terms of a
system of concepts must be chosen. To interpret x as y is to choose a
conceptualization of x in terms of something like y. Even if this is not an explicit
choice, but happens spontaneously or implicitly, it opens a range of possible
interpretations and excludes other ways of grasping x.

 Tacit and Explicit Understanding in Computer Support 137

Table 4-1. The three aspects of interpretation.
They are grounded in the three-fold preconditions of all understanding.

 (a) (b) (c)

preunderstanding prepossession preview preconception

interpretation situated perspectival linguistic

Chapter 4 Section 4.1 Section 4.2 Section 4.3

The characteristics of prepossession, preview, and preconception make up the
three-fold preconditional structure of interpretation in Heidegger’s analysis. The
understanding that has this three-fold structure will be referred to as
preunderstanding to distinguish it as a stage of the more general term,
“understanding,” and to emphasize that it forms the initial precondition for the
development of any interpretation. The character of interpretation as situated,
perspectival, and linguistic is derived from the three-fold structure of
preunderstanding (see Table 4-1).

The three aspects of preunderstanding can be illustrated with the example of
interpretation in design given in Section 3.1, where Archie and Desi begin to
discuss privacy issues. The action in that opening scene of the transcripts is
propelled by a tension between Archie and Desi’s two different understandings of
the proposed design. They start out with somewhat different prepossessions,
previews, and preconceptions. Desi starts off trying to orient Archie to share his
prepossession of the situation represented in the sketch (Figure 3-1): “You have a
big ‘family room’ or ‘den’. And what they do is either fold down the Murphy bed
or set up cots....” Archie gets the picture—i.e., he starts to have the same
understanding of the situation in the habitat—but he has a different preview or
slant on it. Desi views the design as meeting the need to provide a minimal
accommodation for sleeping: a place to stretch out one's body during the period set
aside for sleep. Archie, however, views it on the basis of his own personal
experiences. In his view, “There are times when you’re waking up or going to sleep
and getting your clothes on or whatever, when a modicum of privacy can actually
be treasured, and when some people read a book.” While Desi is quick to respond
to Archie’s concerns, he does it while remaining within a preconception that he
has adopted from NASA. That is, he had started with an austere, military view of
providing a minimal “accommodation for sleep” and then he switched to
discussing “crew compartments,” a term used within NASA to describe private
sleeping cubicles for astronauts in Space Station.

The initial discussion of privacy ends with agreement about the importance of
privacy for a long mission:

 Tacit and Explicit Understanding in Computer Support 138

Archie: It's an interesting question. If you cross this 30 day limit, then it
seems likely the sleep compartments suddenly become a dramatically
higher priority. People start freaking out that they can't get away from
other people.

Desi: I would think so. I would think that the idea of being able to get away
would be nice. Having that privacy, the control, even if they don't use it.

Here it is clear, first of all, that Archie and Desi each have an understanding of the
situation that goes far beyond what is explicitly drawn in the sketch to include a
sense of what life would be like in the nexus of artifacts, meanings, and
relationships that are implied there. Secondly, they view this from specific
perspectives, whether based on personal experiences of feelings of privacy or on
traditions passed down by other designers. Thirdly, they bring to bear
conceptualizations such as “crew compartment” in order to understand the given
possibilities and to share this understanding.

The preconditional structure of understanding—the fact that interpretation always
already has a prepossession of the situation, a preview of a perspective, and a
preconception in specific language—means that interpretation is never a
presuppositionless apprehending of something pre-given. Rather, all interpretation
that is to contribute to understanding must have already understood the thing that
is to be interpreted. The interpretation process must understand the context of
significance in which the thing is situated; it must know how to carve up the matter
appropriately; and it must use suitable terms to interpret it as something. The
circularity of this undertaking is known as the hermeneutic circle. It is a well-
known phenomenon in literary interpretation and in holistic disciplines: one
cannot, for instance, interpret the line of a poem without understanding the context
of the whole poem, the poet’s other works, or the poet’s life; but the interpretation
of the line may be needed in order to understand these very contexts.

Such circularity cannot be avoided. It is part of the structure of human existence
and of interpretation. It does not mean that things cannot be interpreted
appropriately, but just that this is not automatic. The circular structure must be
taken into account. In it, according to Heidegger (1927), is buried “a positive
possibility of the most primary kind of knowing, that, however, can only be
grasped if the interpretation has understood that its first, last, and constant task
remains to make sure that the prepossession, preview, and preconception are not
given by fancies and popular conceptions, but that the scientific theme is secured
by working them out from the things themselves” (S.153).

One necessarily starts with sets of prejudices that have been handed down
historically. However, the interpretation process allows one to methodically reflect
upon these prejudices and develop new understandings, perspectives, and words

 Tacit and Explicit Understanding in Computer Support 139

for carrying on the interpretation. Being and Time is itself a model of such a
process, beginning as it does with the vague, confused, and obscured historical
sense of the meaning of being and explicating the way that it is understood in order
to develop a new viewpoint and vocabulary for interpreting being. Of course, the
danger exists that one will not pursue this effort and will remain with the prevailing
prejudices. (This is the basis for Heidegger’s critique of the understanding defined
by the public realm and of the corresponding inauthentic existence that does not
strive to develop beyond such understanding.)

The way the hermeneutic circle works can be seen in the way Desi and Archie
develop their understanding of the location of the toilet in Section 3.2. They start
with a set of prejudices that have been handed down in the preconditional structure
of their understanding. Desi bases his first design on the wet-wall principle, the
idea that all appliances needing plumbing should be located together to facilitate
the supply and removal of water. Archie starts out his thinking with the
conventional (at least in his culture) idea that the toilet and shower are located in a
single room, the bathroom. But then they both begin to reflect on the role of each
item in the unique situation that is being designed. If the toilet is too close to the
sleep compartments, then people may be disturbed by it during the night (as they
in fact were in Skylab). On the other hand, as Desi points out, “You’re not going
to get up in the middle of the night and take a shower.” So Archie suggests, “Could
we separate them, have the shower a little more convenient to where you’re going
to change, get dressed?” The idea of separating the shower and toilet arises out of
the process of interpretation, and then motivates the subsequent thrust of the design
effort to establish a public-private gradient across the habitat.

For both Desi and Archie, the understanding began with an assumption that the
shower and toilet would be located together. They were able to get beyond this
starting-point only on the basis of starting there and then reflecting on the problems
that they could see in the consequences of this starting-point. (In Schön’s terms,
they had to make a design decision and then let its implications talk back to them.)
Then they were willing to make their initial assumptions explicit and to criticize
them in terms of the things themselves: in this case, the functions of the shower
and toilet in the life of the habitat. Their designing necessarily begins with
uncritically accepted popular prejudices (the preconditional structures of
understanding), but it then works out more appropriate interpretations through an
on-going analysis and critique of the specific relationships of the situation, of their
own perspectives, and of the conceptual framework being used.

The first two components of the preconditional structure of interpretation have
already been discussed in the preceding presentation of Heidegger’s philosophy.
The prepossession of a situation was considered in terms of the situated cognition
of artifacts in Section 4.1, and the preview of public and personal perspectives was

 Tacit and Explicit Understanding in Computer Support 140

presented in terms of public opinion and moods in Section 4.2. However, the
conceptualization or language of preconceptions has not yet been examined.
Heidegger discusses it in terms of assertion and discourse.

Assertions are familiar from the rationalist tradition as propositional judgments
(statements of the form: “x is a y” or “x as y”). Heidegger reviews three basic
meanings of assertion: (a) assertion means pointing out, (b) assertion means
predication, (c) assertion means communication (Table 4-2). In each case,
Heidegger argues that assertions are not fundamental, but are derivative of
understanding and interpretation.

Table 4-2. The three aspects of assertion.
They are grounded in the preunderstanding that belongs to discourse. Discourse,
in turn, is grounded in the preunderstanding of human involvements.

preunderstanding prepossession preview preconception

discourse situation view shared language

assertion pointing out predicating communicating

(a) When someone asserts, “The hammer is too heavy,” this is a pointing out of an
artifact that has already been understood as a hammer and has been interpreted as
too heavy. The assertion is not about some kind of representation of a hammer
(where the status of the representation and its relation to the assertion are
problematic), but about the hammer artifact itself, as it is discovered in the
understood situation.

(b) In predication, we assert a definite character of the thing discussed. But this is
simply a variation on pointing out. We point out the thing in a way that restricts
our view of it, for instance, to its heaviness. By this explicit restriction of the view,
that which is already manifest may be made explicitly manifest in its definite
character. So predication is a development of tacit understanding into a more
explicit form.

(c) As communication, assertion is letting other people see with us what we are
pointing out, and letting them see it as explicitly restricted. It is a sharing of the
more explicit interpretation of something in the world whose understanding is
already shared as part of a shared situation.

Because it is derived from interpretation, assertion has the three-fold
preconditional structure. The pointing out requires a prepossession of what gets
pointed out. The predication that narrows the view is a development of the preview,

 Tacit and Explicit Understanding in Computer Support 141

that had already narrowed the view in that direction. The communication takes
place within a language that inconspicuously implies a preconception, because
language already hides in itself a developed conceptualization.

However, assertion (that rationalist philosophy focuses on as the basic form of
objective knowledge) may also entail an essential transformation from primary
interpretation, from which it is derived. The hermeneutic-as can become
transformed into the apophantic-as of discourse, and ultimately into the copula
(“is”) of propositional assertions. This happens through a process of
decontextualization; the artifact that is the subject of the assertion losses its
embedding in the situation. The prepossession no longer has the situation with its
nexus of references that determine the artifact’s significance (the basis of the
hermeneutic-as). Now the thing is simply present as an isolated object, which can
have attributes. The assertion still points out the thing in a definite way, but now
the definiteness is associated with an attribute, rather than with an aspect of the
situation. The binding of the object to its attribute can be further formalized into a
calculus of relations. In this way, situated understanding can eventually develop
through interpretation into theoretical knowledge, which can be represented in
formalisms. As the interpretation draws further and further from its original
concrete embedding in the situation, it becomes increasingly abstract.14

Despite the importance of language in Heidegger’s philosophy of interpretation,
he is very sketchy in his discussion of the various layers of abstraction through
which understanding can be transformed (Table 4-3) and the way each successive
level in grounded in previous levels (Table 4-2). The transformations of tacit
preunderstanding into increasingly explicit and formalized knowledge will have to
be further worked out in Chapter 5 in order to provide a basis for the theory of
computer support of interpretation in Chapter 6. Thereby, the entries in Table 4-3
will be clarified in Part II.

14 The term abstract comes from the Latin abstrahere, to draw away.

 Tacit and Explicit Understanding in Computer Support 142

Table 4-3. Increasing abstraction of the preconditions of understanding.

preunderstanding prepossession preview preconception implicit as

interpretation situated perspectival linguistic hermeneutic as

discourse identify filter associate the word “as”

assertion name clause adjective apophantic as

predication object modifier attribute the copula “is”

logical calculus variable conditional operator relation

Like all interpretation, assertion has its dangers. Assertions can become abstracted
from their basis in the preunderstanding of discourse. Communication in the public
realm can degenerate to hearsay, where the grasp on the original phenomena
becomes veiled. As assertions are passed on in re-telling, there is a widening of the
range of shared interpretations, as Plato (348 BC) had already remarked in his
famous seventh letter where he discusses the potential dangers of written language.
Whenever something is uncovered in a process of explication, there is the
possibility or even likelihood of its becoming covered up again in various ways.
Such is the dialectic of tacit and explicit. This need not be considered a problem in
every case. It is often necessary that our explicit interpretations re-submerge into
tacit understanding in order to function effectively. Heidegger (1951) provides a
good example of this in his later writings on poetry interpretation. Literary
interpretation is a process of explication whose goal is to be absorbed into a deeper,
but tacit understanding of the work:

Whatever else a commentary may or may not accomplish, the following is
always true of it: in order to make what has been composed in the poem
somewhat clearer, the commentary must always shatter itself and what it
is trying to do. For the sake of what was composed, the commentary to the
poem must strive to make itself superfluous. The final, but also the most
difficult step of every interpretation consists in disappearing along with its
commentary in favor of the pure presence of the poem. The poem, that
then stands under its own law, itself directly shines a light on the other
poems. Then, during repeated readings we believe we had always already
understood the poems that way. It is good that we think that. (S.7 f)

Heidegger’s point here is simply to show that the basis of all knowledge is in
situated understanding and in its explication via hermeneutic interpretation. He
notes that many intermediate gradations are possible between the primary form of
engaged understanding that is absorbed in the situation and propositional

 Tacit and Explicit Understanding in Computer Support 143

assertions about objects of theoretical study that have distanced themselves from
their situatedness. There are, for instance, assertions about what is happening
within the situation, accounts concerning artifacts being used, reports on things
discovered in the world, the recording and fixing of “facts,” descriptions of states
of affairs, or narrations of events that have transpired. Such assertions have their
basis in our understanding of the world; to take them as propositions whose
meaning is traced back to theoretical observations would be to pervert their origin
and misconstrue their derived status.

An interpretation or assertion can be articulated as discourse, which is expressed
in language. The existential foundation of language is discourse and hearing: our
ability to talk and to listen form the basis of our ability to use language to articulate
the meaning of our understanding or interpretations. For instance, the articulation
of the interpersonal shared world gets constituted in speech acts like assenting,
refusing, demanding, warning, and so on. Discourse and hearing make it possible
to communicate a shared world, and thereby to grasp it as truly shared. They also
make it possible (e.g., through intonation) to communicate one's personal mood.
So discourse and listening are the way in which we are open to other people and
to our shared being together.

Once more, Heidegger (1927) reverses the priority of phenomena from the
scientific view. When we hear sounds, we do not first hear tones and then
subsequently interpret them as signifying something—as though we apprehended
the tone as a neutral object and then associated an attribute with it. Rather, we first
hear meaningful, understood artifacts, that we can later abstract to pure sounds and
facts: “What we ‘first’ hear is never noises or complexes of sounds, but the
creaking wagon, the motor-cycle. We hear the column on the march, the north
wind, the woodpecker tapping, the fire crackling” (S.163).

When Desi and Archie look at the sketch reproduced in Figure 3-2 of Section 3.2,
with the rectangle labeled “toilet” near the rectangle labeled “ward room table”,
they do not observe a series of lines forming rectangles, etc. Rather they directly
perceive a public meeting and eating area with a bathroom opening onto it. Desi
immediately starts to talk about this (sketched) situation as being like the (real)
arrangement at his office, where the bathroom faces the reception area. Archie also
points to the situation as being problematic. He perceives the habitat as consisting
of meaningful areas interacting, he does not have to deduce this fact from an
analysis of coordinates of points and distances between lines—the way a computer
would have to. Furthermore, the language for talking about his understanding and
sharing it with other people is immediately available as part of his linguistic
traditions.

When Archie tries to rethink the concept of bathroom and to suggest to Desi that
other definitions might be worth exploring for the sake of the design, he does all

 Tacit and Explicit Understanding in Computer Support 144

this in language. It is clear from the videotape that his chain of ideas follows
haltingly, as one link after the other is brought out as a follow up to what came
before. It is not that Archie had an argument all logically thought out in his mind
that he then telegraphed to Desi. Rather, he thought out the relationships of the
different national models of bathrooms by linguistically pointing out different
aspects. Desi followed the discussion, not by translating sounds into symbols and
deducing consequences for some representation of bathrooms in his head, but by
seeing their shared notion of bathroom develop as its various aspects were unveiled
through discourse.

Language is the medium in which our understanding of our world is interpretively
explicated. Whereas animals exist in the wilderness of environments that are
simply understood in unmediated, instinctual ways, people dwell in richly
interpreted, socially-mediated worlds thanks to language. As Heidegger (1947)
puts it, “Language is the house of being” (S.188). Gadamer (1960) attributes an
even more universal role to language, simultaneously stressing that it is a medium
of discovery as well as of projection: “Being that can be understood is language”
(p.xxiii). For Heidegger and Gadamer language is not an arbitrary system of
symbols for representing things (the way a programming “language” is), but the
embodiment of historical tradition, the constantly evolving encapsulation of
mankind’s understanding of the being of the world, artifacts, and people. In this
sense, “being is not experienced where something can be constructed by us and is
to that extent conceived, but it is experienced where what is happening can merely
be understood” (ibid.). Thanks to our dwelling in language, we can understand,
discover, interpret, and share whatever can be that can be understood.

Part II. The Problem of Tacit and
Explicit Understanding

 “The predicate calculus is often treated by philosophers

 as if it were the universal language; but to put beliefs

 expressed in a natural language into the predicate calculus
 format, one must first interpret them—that is, one must

 deal with the very problem we wish to solve.”

 Hilary Putnam

 Representation and Reality

 (1988, p.88)

CHAPTER 5. GROUNDING
EXPLICIT DESIGN KNOWLEDGE

Part I presented several analyses of the process of interpretation in innovative
design. The various analyses were not always entirely consistent with one another
and were open to a variety of misinterpretations. Despite the effort to view them
from the perspective of this dissertation, they retained the influences of their
sources in very different enterprises: Alexander’s focus on patterns, Rittel’s on
deliberation, Schön’s on discovery, Archie and Desi’s on habitability issues, and
Heidegger’s on ontological concerns. Although most of them (except Heidegger’s)
were related to attempts at computer support for design, the analyses did not
explicitly address issues of computer support. In order to provide a foundation for
the development of a theory of computer support of interpretation in design in
Chapter 6, a number of open issues need to be clarified in the present chapter.
Inconsistencies should be resolved and misinterpretations guarded against.

In Part I, evidence was presented in Chapters 2 and 3 to show that design is an
interpretive process. Then in Chapter 4, the character of interpretation as situated,
perspectival, and linguistic was explicated using Heidegger’s philosophy.
Although some examples from the earlier chapters were used to illustrate
Heidegger’s ideas, the relation of Heidegger’s analysis of interpretation in general
to interpretation in design specifically still needs to be addressed (Section 5.1).
Here it will turn out that the domain of design fits Heidegger’s analysis particularly
well in several interesting ways.

A theory of computer support for interpretation in design centers on human-
computer interaction and the role of the people whose interpretive processes are to
be supported. The distribution of roles between the computer and the people is
determined by how interpretation is socially grounded (Section 5.2). This includes
the way in which the understood reality is socially constructed and how people
have intentional access to that reality. It has implications for the problems of
application and relevance, which are critical for a theory of computer support.

The theory of computer support is based on the transformations of tacit to explicit
forms of knowledge (Section 5.3), by which people’s preunderstandings can be

 Tacit and Explicit Understanding in Computer Support 147

articulated and represented in a computer. Definitions of tacit and explicit must be
developed. The different forms explicit knowledge can take must be distinguished
and the processes by which one form is transformed into another identified.

5.1. Applying Heidegger’s Philosophy to Design
Heidegger’s philosophy offers what is arguably the most thorough account of the
process of human understanding available. Although his analysis of interpretation
is useful if one is to understand activities like innovative design, it never addresses
the realm of design directly. Heidegger discusses interpretation at a high level of
generality and chooses his examples from interactions between people and
physical artifacts, like the use of hammers by carpenters. He is concerned with the
nature of understandingly being in the world. While a person’s world includes
conceptual and imaginative realms like design, Heidegger’s examples primarily
come from the world of physical artifacts which can be encountered perceptually.

Design is distinctive. It has its own existential structure and characteristics.
Heidegger’s philosophy must be adapted to the realm of design by reflection upon
how design differs from Heidegger’s examples, and by modifying or extending his
theory accordingly. Specifically, such an extension must address five concerns:

1. Design is different from direct action in the world. It has to do with plans on
paper as its artifact, rather than with the object that might someday be built
with bricks and mortar in the world based on those plans. Interpretation in
design differs from interpretation of one’s involvements in the world.

2. Heidegger emphasizes that interpretation is a matter of working out what is
implicit in the tacit preunderstanding that provides the necessary preconditions
for interpretation. Schön, in contrast, emphasizes the role of discovery, through
which designers creatively discover surprising consequences of their design
moves. These two components of interpretation must be integrated in a
comprehensive theory.

3. Schön argues that breakdowns in action function as catalysts for interpretive
reflection. Heidegger also recognizes the role of breakdowns, but he sees a
break in the references of the situational network of significance as the
underlying phenomenon. Accordingly, an adequate theory has to take into
account the need to repair the network of significance through interpretation,
and not just to repair the problem with the action.

4. Heidegger’s example of the craftsman using a hammer may appeal to the ideal
of the designer as solitary artist, but it conjures up a different social setting

 Tacit and Explicit Understanding in Computer Support 148

than that of a design team working on a stage in the development of a high-
tech artifact like a lunar habitat. In particular, collaborative design places more
stress on cooperation and communication mechanisms than does design by an
individual. Collaborative design that takes place over decades—as do many
NASA projects—requires communication among people who cannot directly
talk to each other.

5. Heidegger was concerned with the ontology of interpreted things—what it is
to be something that is tacitly preunderstood versus what it is to be something
that is explicitly codified in formalized propositions. His philosophical
distinctions must be recast as operational mechanisms that can be incorporated
in computer systems.

Consideration of these five concerns leads to a more comprehensive and
appropriate theory of interpretation in design.

1. From artifacts in the world to artifacts on the drawing board. In common
sense terms, there seems to be a world of difference ontologically between artifacts
and designs. However, in important senses Heidegger treats artifacts in the world
the same way he would treat design artifacts on the drawing board. That is, he is
not really concerned with them as physically present objects of perception. On the
contrary, his main effort philosophically is to distinguish artifacts-in-use from
traditional conceptions of physically-present-objects (as discussed in point 5
below). For example, a hammer in use is not understood by the carpenter as an
observed object with physical attributes, but is skillfully applied to the activities of
the current situation. Furthermore, this skillful use takes place within the context
of future-oriented plans and desires, such as the anticipation of the item that is
under construction. This is similar to components of a design, which are skillfully
arranged in terms of their relationships to other design components and within the
context of the anticipated final design. Marks in a design sketch, for instance, are
important for their roles within a network of significances, rather than for their
physical properties as lines. Interpretation of both physical artifacts and designs is
situated.

By abstracting from the world of physical artifacts, designs, in fact, present the
structure of the Heideggerian situation even more clearly than it is apparent in the
physical world. Designing can be a way of directly working out the situational
references that are of interest. Here it is clear that the designer has created the
relationships in order to achieve future-oriented goals. That is, in creating a design,
the designer discloses a network of significance. Within this network, discoveries
can be made and problems can be uncovered.

The situation is the context of interpreted meaning within which understanding
takes place. Normally, this network of significance operates tacitly in the skilled

 Tacit and Explicit Understanding in Computer Support 149

use of artifacts. However, in design work features of the situation that emerge
explicitly during phases of interpretation can be expressed in the representations
of the design medium. For instance, the distinction of two independent functions
within an artifact being designed can be symbolized by distinct graphical icons and
by separate entries in an issue-base. Design media provide external memory
mechanisms for expressing and retaining explicit by-products of interpretive
reflection, such as conceptual distinctions.

The fact that designing presents the structure of the Heideggerian situation more
clearly than other activities in the physical world provides an important
opportunity for computer support of design. If the design work can take place
within a computer system that represents the relationships properly, then such a
system can provide support for the network of significance: for the semantics of
the design, not just its syntactic outward structure. This opportunity will be pursued
in Section 5.3, where the model of interpretation is extended to include computer
support.

2. From laying-out implications to creative discovery. In the domain of
design—in which the designer creates the structure of a world—it is particularly
clear that the discoveries that can take place within the disclosed situation are
results of the creative activity of the designer. Viewed this way, interpretation in
its literal sense of laying-out (Aus-legung) the implicit meaning is seen to be
congruent with creative discovery because the structure whose implications get
laid out is one that was created by the designer. The interpretation process makes
discoveries within a creatively constructed context by laying out the implications
of that context.

In adapting Heidegger’s philosophy to design it is necessary to consider the
relationship between Heidegger’s analyses and those of the design methodologists.
In Section 4.3 of Part I, a contrast was made between Heidegger’s and Schön’s
discussions of breakdown. Figure 4-6 of that section is reproduced as Figure 5-1
with minor changes to show the contrast between their analyses.

 Tacit and Explicit Understanding in Computer Support 150

Figure 5-1. Two different theories of breakdown.

A contrast of Heidegger’s hermeneutic circle with Schön’s theory of reflection-
in-action shows a difference of emphasis. For Heidegger, the implications of the
disclosed world get laid out; for Schön, creative action leads to discovery.

Here it is clear that the two theories are describing much the same process, but
emphasizing different moments within the cycle of interpretation. Putting aside for
now (until point 3) the differences in their concepts of breakdown, one can see that
creative discovery in Schön’s theory plays the same role as disclosure in
Heidegger’s. For the sake of clarity, this process can be broken into two
moments—as is done by both Heidegger and Schön. Heidegger distinguishes
disclosing a world (as a context for things to exist meaningfully within) and
discovering things (e.g., artifacts, other people, and oneself) within that world.
With Schön, one can distinguish between creating the design structures and
discovering surprises within them. Whatever the terminology, the important thing
is that both aspects of interpretation be included: (1) the idea of creating a structure
of significance or a disclosed world and (2) of discovering things within it that
were implicit but not foreseen or intended.

Figure 5-2 shows the model of interpretation in design that is being proposed here
and in the next chapter. First, the world is disclosed. This disclosure takes place on
the basis of tacit preunderstanding, and is thus not a beginning ex nihilo but a
continuation of the hermeneutic circle of understanding. Within this disclosed
world, creative discovery (as the second moment) reveals discovered things that
exist in the situation. Surprise discoveries can lead to a breakdown of
understanding, requiring the interpretation of new meanings.

 Tacit and Explicit Understanding in Computer Support 151

Figure 5-2. The model of interpretation in design.

The rectangles represent stages of understanding within the cycle of
interpretation. The arrows represent transformations from one stage to another.
The hermeneutic circle appears at the top of the figure. Below, the basis for
collaborative design is shown.

The process of breakdown and the other pictured stages will be discussed in the
following numbered points. In particular, the role of discourse and assertion as
transformations related to explicit understanding will be discussed as further
developments of the laying out of tacit understanding, based on Heidegger’s
analysis of language in Section 4.3. The fact that understanding can become more
explicit and be externalized provides the possibility of developing a computational
medium for externalizing design understanding.

3. From breakdown in action to repair of situated understanding. The notion
of breakdown in action plays a rather small role in Heidegger’s analysis of human
understanding. As discussed in Section 4.1, Heidegger uses examples of
breakdown in order to make explicit the network of references among artifacts that
are only present tacitly under conditions of normal use. Yet, the notion of
breakdown has been elevated to central importance in the theories that have tried
to adopt Heidegger’s analysis to a theory of design and to operationalize this theory
for computer support. Thus, breakdown plays an important role in Schön (1985),
Winograd & Flores (1986), Suchman (1987), Ehn (1988), Budde & Züllighoven

 Tacit and Explicit Understanding in Computer Support 152

(1990), McCall, Morch, & Fischer (1990), Dreyfus (1991), Coyne & Snodgrass
(1991), Fischer & Nakakoji (1992).

The fact that so many writers influenced by Heidegger have focused on breakdown
does not provide multiple independent support for this emphasis. As can be seen
from Figure 4-2 in Chapter 4, most of these writers have been influenced by
Heidegger only indirectly—either through Dreyfus or through Schön. If one looks
closely at the discussions of breakdown in Dreyfus and Schön, one can note an
ambiguity in whether they are speaking about a (ontological) breakdown in the
network of references or a (practical) breakdown in action. Dreyfus is certainly
aware of the ontological role of breakdown, but he is concerned to make his
presentation acceptable to an American audience, trained in the rationalist
tradition. For the sake of concreteness, he uses examples that stress the breakdown
in action. Schön is also aware of the ontological ramifications, but he has couched
his discussion in terms of action (e.g., knowing-in-action, reflection-in-action), so
it often seems that his examples of breakdown exemplify breakdowns in action
rather than breakdowns in situated understanding. Given that it is easier to
operationalize breakdowns in action than breakdowns in situated understanding, it
is not surprising that people interested in producing practical results from Dreyfus
or Schön’s theories would tend to emphasize the action-oriented reading of the
ambiguous discussions.

Breakdowns of action and breakdowns of understanding both call for repair.
However, the repair of understanding is more complex to support. To repair a
breakdown in action, it is only necessary to propose a new action. For instance, in
Chapter 7 a critiquing mechanism in the JANUS system will be discussed that
causes breakdowns in designing activities by flagging design constructions that
violate rules in the domain knowledge. Early versions of this mechanism merely
displayed a message indicating the rule that was violated. Thus, if in laying out a
residential kitchen one located the stove in front of a window then one received a
message that the stove should not be in front of a window. The repair for this
breakdown in design action was to move the stove. In more sophisticated
subsequent versions of the critiquing system, the designer is given information
relevant to understanding the reasoning behind the rule. Then the designer can
make a reasoned decision as to how to repair the breakdown. This is a step toward
repairing the understanding that led to the breakdown.

In Chapter 3, a more complex breakdown was illustrated from the transcript of the
lunar habitat design sessions. Here, the designers recognized that the arrangement
they had sketched in with a bathroom opening onto an eating area was problematic.
To repair this situation, however, required a reinterpretation of their concepts of
privacy and of the functionality of bathrooms. This involved consideration of their
conceptualizations from various perspectives (e.g., the European WC) and the

 Tacit and Explicit Understanding in Computer Support 153

development of new terminology (e.g., the privacy gradient). The repair of this
breakdown meant a restructuring of the designers’ understanding of the situation,
perspective, and language. To provide computer support for such a process would
necessitate empowering the designers to explore the interpretive network of
significances they are using, to review alternative viewpoints, and to generate
innovative conceptualizations through reuse and modification. This would
necessarily involve representations of the perspectives and language used in the
interpretation, and not just the graphical representations of objects manipulated in
the action within the represented design situation.

To support the repair of breakdowns in the interpretation of the situation, a
computer system needs to facilitate the representation of interpreted meanings.
This involves a medium for maintaining externalized expressions of the designers’
explicit understandings that emerge from their repair of interpretive breakdowns.
Part III will suggest mechanisms for doing this.

4. From individual design to collaboration. The representation of explicit
understanding is not something new to computer support. It is an historical product
of the development of design from a craft to a technology—from
“unselfconscious” to “self-conscious” activity in Alexander’s terms. Taking
Heidegger’s example, a carpenter skillfully wielding a hammer does not need to
keep in mind conceptualizations having to do with the hammer’s characteristics.
To use Alexander’s illustrations of unselfconscious design, an Eskimo patching an
igloo or a peasant selecting colors for weaving a scarf does not explicitly follow a
theory of construction or aesthetics. People who work by themselves or with
personal apprentices can proceed without developing systems of explicit rules and
terminology. Expertise can be passed on face-to-face through concrete
demonstration. However, when the contexts of skilled activity change rapidly and
involve complex social interactions, then design necessarily becomes self-
conscious, requiring theories for understanding, coordinating, and communicating.

As design becomes increasingly explicit and interpersonal, it becomes an
argumentative process. As Rittel described it, design becomes a matter of
deliberating issues from the perspectives of various stakeholders. Using
Heidegger’s concepts from Section 4.3, the designers engage in discourse and
assertion. Discourse is the formulation of meanings in explicit terminology. This
is integral to the process of interpretation, in which breakdowns in tacit
understanding lead to repair through explicit understanding. For an individual
designer, this explicit understanding tends to resubmerge into a modified stage of
tacit understanding in which the former breakdown has been repaired. However,
in a group design context, the explicit understanding can be expressed in an
assertion. The assertion is external to the individual and available for deliberation

 Tacit and Explicit Understanding in Computer Support 154

by others in the group. Assertion is the expression of discourse in an external
medium.

As indicated in Figure 5-2 above, the assertion, as an externalized expression,
serves as a medium for communication among design participants. The
communication leads to shared knowledge, forming the basis for collaboration.
Just as individual design leads through interpretation to the tacit understanding
needed for further design work, so in collaborative design the shared explicit
knowledge generated by deliberation on externalized assertions leads to a shared
tacit knowledge that provides the preunderstanding of a shared design world.
Assertion makes it possible for the hermeneutic circle to expand from individual
understanding of being-in-the-world to shared understanding of social being-with-
others. This extends Heidegger’s analysis of interpretation from individual being-
in-the-world to collaborative design.

Heidegger and the three design methodologists all recognize the social basis of
explicit understanding. For Heidegger, social being-with-others is an important
constituent of individual being-in-the-world. Alexander sees the emergence of
self-conscious design as a social phenomenon, tied to specific stages of increased
societal complexity. For Rittel, deliberation is a social activity, essentially
conditioned by the social roles of the participants. Although Schön often focuses
on the work of the solitary designer, he is vitally concerned with the social context
in which the designer acts and in which design practices are taught. They all
recognize the role of external media of design—whether assertions, patterns,
debated issues, or reflective categories—both in the work of the individual
designer and in collaborative interactions.

The transformation of tacit understanding to explicit understanding via
interpretation makes possible many developments that go beyond the
unselfconscious skilled activity of the traditional individual designer. By
externalizing explicit understanding in the assertions of explicit language,
possibilities for communication, extended reflection and conceptual formalization
are all opened up. Communication means that communities of design can be
established, in which rules of design can be formulated and terminologies
developed. The externalization of knowledge also augments the individual’s
abilities by overcoming the severe limitations of human memory, so that ideas and
experiments can be brought into contact with other ideas and can be reflected upon
over extended periods of time. Media of communication and externalization also
encourage formalization. Explicit, externalized assertions can be gradually
formalized to increase interpersonal clarity and computational power, as discussed
in point 3. Finally, the externalization of understanding makes possible the capture
of this understanding in computer systems, providing the key to a theory of
computer support. The assertions that Heidegger discusses are primarily speech

 Tacit and Explicit Understanding in Computer Support 155

acts in natural language. However, these expressions of understanding can be
further transformed for use with forms of external memory offered by computer
technology.

5. From ontology to computer support. Heidegger’s central concern is
ontological, to determine the being of things. His discussion of human
understanding focuses on the distinction between artifacts-in-use (ready-to-hand,
zuhanden) and the traditional conception of physically-present-objects (present-at-
hand, vorhanden). Thus, he argues that we normally use things in a tacit, skillful
way without being explicitly aware of what we are doing. This tacit understanding
may under special conditions (e.g., breakdowns in understanding) become
explicitly interpreted. However, even when we have explicit understanding this is
only possible on the basis of tacit pre-understandings that serve as preconditions
for it. Thus, our ability to have explicit knowledge of physically-present-objects is
derivative of our tacit skills with artifacts-in-use. The ontological distinctions
correspond to transformations of our understanding.

This dissertation has hypothesized that computer support of innovative design must
overcome the problem that designers necessarily make extensive use of situated
tacit understanding while computers can only store and display explicit
representations of information. This is termed the problem of tacit and explicit
understanding in computer support of cooperative design.

The ontological transformation described by Heidegger provides the solution to
the problem of computer support by indicating the forms into which tacit
knowledge can be transformed. Heidegger’s analysis of the preconditions of
understanding stresses that the representations used in computer systems are
derivative of tacit human understandings and are the products of interpretation
based on those understandings. The transformations of tacit to explicit
understanding will be analyzed in Section 5.3 and will be developed into a theory
of computer support in Chapter 6.

5.2. The Social and Human Grounding of
Interpretation
This section will locate Heidegger’s philosophy historically in order to highlight
its contribution. It will show how his analysis addresses the key issues underlying
a theory of computer support:

1. Heidegger’s emphasis on the priority of the tacit over rationalist philosophers’
stress on the explicit should be understood through a recognition of his place

 Tacit and Explicit Understanding in Computer Support 156

in the history of philosophy. The view that the world is interpreted—socially
constructed—and not simply known is a result of modern philosophy.

2. Tacit preunderstanding is intimately related to the issue of intentionality. This
issue, in turn, is critical for a theory of computer support, providing the
ultimate argument for a people-centered approach to computerization.

3. Given that computer support relies upon the appropriate application of
representations to innovative situations, the problem of application arises as a
central issue. Gadamer has addressed this issue as integral to Heidegger’s
philosophy of interpretation.

4. The problem of application leads to the related and more general problem of
relevance, which pervades attempts at computer support for design.

1. The social construction of reality. The interpretation of Heidegger’s
philosophy in this dissertation bears directly upon the problem of tacit and explicit
understanding in computer support of cooperative design. His philosophy makes
particularly clear the basic ways in which (fundamentally tacit) human
interpretation differs from (necessarily explicit) computer representation. This is
in contrast to the rationalist philosophy of functionalism15, which is usually
assumed to provide a basis for AI. Functionalism proposes that human cognition
and computer computations share a common functional structure, i.e., that mind is
adequately modeled as software running on the brain’s hardware. If one reviews
the history of philosophy leading up to Heidegger, one can clearly see the roots of
AI’s belief that computer representations could correspond to the structure of
human understanding. One can also see that this belief is misleading and based on
antiquated philosophical positions.

In philosophical terms, the problem with the traditional AI approach is that it
assumes that a single interpretive framework can, at least in theory, be formulated
that will be adequate for all representations within a given domain. That is, most
influential AI systems define a representation for the domain of knowledge they
are dealing with and then proceed to compute solutions to problems in the domain
by manipulating elements of the representation. In contrast, this dissertation argues
that problem solving is typically situated in ways which require the representation
of the problem to be interpreted based upon the interpreter’s unique situation,
perspective, and language.

15 This position was most prominently formulated by Putnam (1967), although he

has more recently (1988) renounced functionalism and moved much closer to
Heidegger in the sense that he recognizes the ultimate necessity of founding any
formalism upon unformalizable human interpretation.

 Tacit and Explicit Understanding in Computer Support 157

The assumption that problem-solving intelligence is based on mental
representations that can be known a priori can be traced back to Kant. In his
Critique of Pure Reason (1787), Kant argued that the human mind imposes a set
of elements or categories on sense data in order to understand the external world.
These elements or categories of space, time, quantity, quality, etc. that Kant
derived were claimed to be universal a priori. The idea in AI is to capture such
objective categories in a representation scheme that could be determined in
advance to be valid of necessity, in analogy with the example from mathematics
or physics that within certain geometric domains all objects can be represented
with Cartesian spatial coordinates. Kant’s approach was revolutionary in that he
located the source of the objective representations or categories that we use to
make sense of our world in the human mind, rather than in some divine or natural
order. The objectivity of these categories derived from the view that all minds
necessarily used the same categories.

However, Kant’s claim for the universality of our interpretive framework was soon
criticized by Hegel, who argued that reason evolved through history. In the
Phenomenology of Mind (1807), for instance, Hegel laid out the logical stages of
reason's development in terms of a review of human history. So, for Hegel, our
interpretation of reality depends upon the developmental stage reached by reason
in our times. While there is a logic to the unfolding of reason, it happens
historically (contingently). Therefore, the appropriate representations for
understanding things change with socio-historical conditions.

Marx, in turn, tied this idealist history to the social development of production
relations in Capital (1867). The basic categories for representing social phenomena
within capitalist society—private property, exchange value, labor time, etc.—were
themselves products of the historical development of capitalism and had to be
interpreted through a hermeneutic process by people living within that society in
order to avoid ideological conceptualizations. (See Stahl, 1975a, for a detailed
discussion of the hermeneutic character of Marx’ method.)

Subsequent writers in the human and social sciences have shown many other
aspects of how our representations and conceptualizations of reality are necessarily
determined by our situation. Freud (1917), for instance, related an individual’s
understanding to the person’s formative history of inter-personal relationships.
Anthropologists and other theorists show how interpretation is necessarily
embedded in rich traditions of social, cultural, and personal histories.

Finally, Heidegger (1927) generalized these historical perspectives by saying that
we always understand from within the situation in which we find ourselves already
thrown as a result of our past. The social, cultural, and personal traditions are part
of the background that we bring to interpretation as part of our preunderstanding
of the world. But Heidegger also added a second important dimension to this

 Tacit and Explicit Understanding in Computer Support 158

critique of Kant. Our interpretive perspective, he argued, is not simply a matter of
categories that can be made explicit and stated in propositions. More
fundamentally, it is a matter of understanding what it means to be a person and
what it means for other things to be encountered in the world. This background
knowledge is fundamentally tacit. It is not only tacit in fact (most background
knowledge has never been expressed explicitly), but also in principle (tacit
knowledge is the necessary foundation for having explicit knowledge at all).
Dreyfus (1985) claims that Heidegger was the first in the history of philosophy to
point out the tacit nature of pre-understanding.

It is only in terms of our ontological pre-understanding—which can be seen in the
intentionality of our actions, in our grasp of linguistic meaning, in bodily
adeptness, and in our interpersonal skills—that we can in the first place make
things explicit and formulate propositional knowledge. Our understanding of our
world, of artifacts in it, of ourselves, of other people, and of problems we have
meeting our goals are structured by skills, preconceptions, and traditions that make
up a social construction of reality. From the historical nature of understanding and
its basis in tacit pre-understanding it follows that understanding develops through
the hermeneutic circle of interpretation, in which the categories of understanding
cannot be taken as pre-given but must evolve out of preconceptions, the situational
context of meaning, and the process of iteratively interpreting the artifacts of
interest.

The notion that our perception of reality is a social construction that fundamentally
involves acts of interpretation that are essentially structured by our socio-historical
context has had a profound impact upon contemporary thought and has driven the
critique of traditional, rationalist outlooks.16 As Resnick (1991) points out, both
Mead (1934) and Vygotsky (1978)—two of the most important analysts of the
social basis of human understanding—proposed that mechanisms of individual
thought are best conceived as internalizations of ways of interacting socially with
other people. Extending the ideas of Hegel and Marx, Mead and Vygotsky claimed
that to understand the psychological development of an individual one must
understand the social relations in which the individual has developed and operated.
Resnick (1991, p.2) concludes, “as Vygotsky (1978) and Mead (1934) have
independently suggested, social experience can shape the kinds of interpretive
processes available to individuals.”

2. The problem of intentionality. Given the complexity and subtlety of the social
situatedness of human categories of understanding, the representations proposed

16 The entrenched rationalism of AI is just starting to be subjected to such critique:

see the collection of articles in Floyd, et al. (1992), based on a 1988 conference
on Software Development and Reality Construction.

 Tacit and Explicit Understanding in Computer Support 159

for AI systems look primitive and rigid indeed. Even if large amounts of
commonsense background knowledge could in principle be represented in a
computer system, as proposed by the CYC project (Smith, 1991), there are three
major limitations to computer systems carrying out the interpretive tasks
autonomously:

* The “background knowledge” for interpretation consists largely of procedural
skills and ontological understandings that cannot effectively be made explicit.
For instance, people know how to interact with broad ranges of artifacts (e.g.,
specialized tools) and how to behave in cultural settings (which involve
recognizing the intentions of other people). They can identify different kinds
of beings and are able to interact with them appropriately.

* Interpretation is not an algorithmic process. Although we know that
interpretations are conditioned by various factors in the situation, we cannot
say that a certain interpretation will arise given certain inputs. Interpretation
seems to be an emergent phenomenon from a holistic context. Heidegger’s
analysis argues that interpretation is a response to an open-ended set of
preconditions and situational factors, but it gives no suggestion of causal
effects that could be programmed into an autonomous computer system.

* The problem of intentionality probably presents the greatest barrier to defining
an autonomous computer system for interpretation. Searle (1980) convincingly
argues that computer software does not (and never can) understand the
semantics of what is represented symbolically. Even a thorough cognitivist
(functionalist) like Fodor (1981) must concede that the symbol systems of
programs must be interpreted by people.

One useful way of stating the problem of intentionality is as the “symbol grounding
problem” (Harnad, 1993). This refers to the fundamental principle of model theory,
that regardless of the formal syntactic relations among symbols in a model, their
truth or meaning depends upon a mapping to things in the real world. This mapping
is not part of the model itself, but is a matter of the human interpretation of the
model. Even if one takes a functionalist view of human thought and hypothesizes
that thought takes place by the manipulation of formal or formalizable symbols,
one must in addition assume that the thinking person has grounded the symbols of
thought in some kind of understanding of their meaning.

The term intentionality has the same implication as the term grounding. They both
indicate that when a person uses a word, sentence, or symbol that refers to
something, then that person “intends” the thing referred to. In other words, the
person’s understanding of the word is “grounded” in the thing. Very few
philosophers have much idea about how this grounding takes place. Searle makes
vague references to biology. Marx would locate the grounding in social practice.

 Tacit and Explicit Understanding in Computer Support 160

Wittgenstein speaks of a “form of life.” For Heidegger (1927 and 1975; see also
Dreyfus, 1991), the structure of being-in-the-world provides the solution to the
problem of intentionality. The fact that people are in-the-world in Heidegger’s
sense means precisely that they have direct, meaningful, semantic access to—are
grounded in—things in the world. The situation is the network of the understood
things with which one is more or less involved. The disclosure of the world as
preunderstood is what makes interpretation possible. This is very different from a
simplistic argument that knowledge is often “in the world” rather than “in the
head.” Whether we are understanding an artifact in our physical environment or
one represented mentally, we rely on preunderstandings that are grounded in our
interpretive situation.

Computers lack being-in-the-world. They merely manipulate ungrounded
symbols. As Searle (1980) argued, even if computers are placed in robots that
move among and interact with things in physical space, they lack intentionality of
those things. This means that when computers are used in tasks like innovative
design that involve interpretation, they cannot accomplish the entire task
autonomously, but can at best support people in the required interpretations.

Computers lack intentionality. They can only manipulate explicit, ungrounded
symbols; they have no tacitly-based sense of the semantics of the formal symbols.
This has been identified in the present dissertation as the fundamental problem of
tacit and explicit understanding that must be addressed by a theory of computer
support for interpretation in design. Suchman (1993) has formulated this problem
as a lack of access by computers to “semantic resources” and has agreed on its
centrality. She summarized her book (Suchman, 1987) as an attempt to locate the
“sense-making ability for machines in the limits of their access to relevant social
and material resources, and identify the resulting asymmetry as the central problem
for human-machine communication” (Suchman, 1993, p.73).

The problem of intentionality or symbol grounding underlies the problem of tacit
and explicit understanding. The asymmetry in the relationship of people to
computers—the fact that people have intentional understanding but computers do
not—means that computers can only support the interpretive processes of people.
This means that (at least within application domains like innovative design) a
theory of human-computer interaction should be framed as a theory of computer
support for (human) interpretation. People’s intentional grounding is, according to
Heidegger’s analysis, primarily a matter of tacit situated understanding.
Computers, on the other hand, can only operate with explicit symbolic
representations. This poses the core problem for a theory of computer support: how
the computer’s manipulation of explicit symbols can support people’s
fundamentally tacit understanding.

 Tacit and Explicit Understanding in Computer Support 161

3. The problem of application. Decontextualization of knowledge presents
problems for the subsequent application of that knowledge in new contexts of
interest. Because hermeneutic theory claims that all interpretation is situated in
concrete circumstances, the problem of application of knowledge is an important
issue. In particular, the theory of computer support of interpretation must address
the question of how the explicit, formalized, and decontextualized information that
can be provided by computer systems can be applicable to the human tasks of tacit
interpretation that this information is supposed to support. For instance, in Section
3.2 this problem arose in the context of how to apply specific patterns from
Alexander’s pattern language to particular decisions in the design of a lunar
habitat.

Gadamer (1960) addresses the problem of application as a central issue for his
hermeneutic theory of interpretation. Although Gadamer is primarily interested in
the human sciences and bases his discussion of application on examples of ethics,
law, and theology, his characterization of the role of application in interpretation
has broad generality. Schön (1983) makes similar arguments concerning the
application of scientific principles in design and engineering.

Generalizing from his analysis of Aristotelian ethics, Gadamer (1960) concludes
that application is not a secondary phenomenon of understanding, but an essential
determinant of understanding as a whole from the start. That is, a textual statement
in ethics or some other subject matter of interpretation cannot be interpreted in the
abstract first and then subsequently applied to the situation of the interpreter:

The interpreter dealing with a traditional text seeks to apply it to himself.
But this does not mean that the text is given for him as something
universal, that he understands it as such and only afterwards uses it for
particular applications. Rather, the interpreter seeks no more than to
understand this universal thing, the text; i.e., to understand what this piece
of tradition says, what constitutes the meaning and importance of the text.
In order to understand that, he must not seek to disregard himself and his
particular hermeneutical situation. He must relate the text to this situation,
if he wants to understand at all. (p.289 / S.307)

Granted, historical texts arose within situations that are different from the situation
of the current interpreter. This is particularly clear in stories from the Bible or legal
case law. Here the moral or precedent of the story was originally situated in a
context that could be removed by thousands of years and vast cultural distances
from the person who tries to understand it now. But for Gadamer, a religious
proclamation is not to be understood strictly as an historic document, but is to be
taken in a way that exercises its religious effect upon the interpreter. Similarly, a
legal case is not simply an historic fact, but needs to be made concretely valid as a

 Tacit and Explicit Understanding in Computer Support 162

precedent through being interpreted in a contemporary context. Gadamer claims,
“The text, whether law or gospel, if it is to be understood properly, i.e., according
to the claim it makes, must be understood at every moment, in every particular
situation, in a new and different way. Understanding here is always application”
(p.275 / S.292).

The term application may be misleading because of its rationalist innuendoes.
Gadamer is not talking about taking a decontextualized meaning and applying it to
some set of particular conditions by somehow adjusting this pre-given meaning the
way one thinks of applying a scientific law to a practical problem by adjusting
parameters or taking into account confounding factors like friction. As discussed
in Section 4.3, according to Heidegger understanding always takes place within
the preconditions of prepossession, preview, and preconception. Application of a
text to an interpretive situation in Gadamer’s sense means that the text is
necessarily interpreted within the preunderstanding of the current interpreter. This
preunderstanding includes an anticipation of what the text is all about. For
instance, if we are reading a text from the Bible, then our background knowledge
and prejudices concerning the Bible come into play. These include the results of a
long history of biblical interpretation and religious traditions through the ages,
which has sedimented in our preunderstanding. So, for Gadamer, our “openness to
the text” always includes placing its meaning in relation to the whole of our own
understandings.

In this sense of application, the problem becomes not one of somehow adjusting a
pre-given meaning to our circumstances, but of making sure that our
preunderstanding provides access to the text as something that transcends (i.e., can
surprise) our preunderstanding of it. This is the role of interpretation: to start from
a preunderstanding and to go beyond it on the basis of it. This involves a process
of critiquing the assumptions of the preunderstanding in terms of the text (as
revealed by that preunderstanding): “Methodologically conscious understanding
will be concerned not merely to form anticipatory ideas, but to make them
conscious, so as to check them and thus acquire right understanding from the things
themselves” (p.239 / S.253). This is why interpretation must be a critical reflection
upon its presuppositions. The restructuring of the network of significance (the
situation) that takes place in interpretation takes place on the basis of the
anticipatory preunderstood situation but questions its adequacy in the face of
discoveries made of the text as disclosed by that preunderstanding. This dialectical
process of anticipation and discovery—and not some objective viewpoint—
provides the foundation for the validity of interpretation. Thus, validity and rigor
of interpretation are situated in the process of application.

4. The problem of relevance. The problem of application is related to the larger
question of relevance. Given a task—whether a design task or a task of textual

 Tacit and Explicit Understanding in Computer Support 163

interpretation—the question arises as to what past experience is relevant to the
accomplishing of that task. Once the relevant past experience has been selected, it
can then be applied to the task at hand.

There are basically three ways a computer system can “know” what information is
relevant to a given design situation: First, there are often useful heuristics that can
be programmed into a system for use in strictly delimited domains. Second, people
can be in control of crucial aspects of the system’s decision making and can use
their human interpretive powers to determine what is relevant. In this case, the
computer may be able to provide support for the person’s decisions and it can store
representations of the decisions for future reuse. Third, the computer can present
these stored past decisions for a person to approve reusing in the current case.

In general (excluding the narrowly confined domains where appropriateness can
be algorithmically defined in advance), the judgment of what is relevant to a
particular task at hand requires the tacitly-based judgmental skills that require the
involvement of people. As suggested above, the decision of relevance involves
carrying out to some extent the process of interpretation in which experiences
recalled from the past are applied to (interpreted within) the current situation.
Being based on tacit preunderstanding, this process cannot be carried out in explicit
computer algorithms. Furthermore, as already discussed, the judgment of
relevance relies upon an understanding that is intentionally grounded in being-in-
the-world with the artifacts of the current task and of the past experience. Without
human intentionality and interpretive powers, questions of relevance are
intractable. The explicit nature of computerized knowledge means that computers
may be able to support human judgments of relevance, but they cannot replace
them. The following chapter explores how computers can support interpretation in
domains of non-routine design such as lunar habitat design.

5.3. Transformations of Tacit to Explicit
Understanding
Definition of tacit and explicit. In formulating the central problem for computer
support, it has been repeatedly stated that human understanding is at bottom tacit
while computer representations are necessarily explicit. In this claim, the terms
tacit and explicit have been tacitly assumed to mean something like “unverbalized”
and “verbally expressed,” respectively. In order to address the problem of tacit and
explicit understanding in computer support of interpretation, it is now important to
make the usage of these terms more explicit.

 Tacit and Explicit Understanding in Computer Support 164

The dictionary (Merriam-Webster, 1991) provides the following definitions:

tacit: expressed or carried on without words or speech; implied or indicated but
not actually expressed.

explicit: fully revealed or expressed without vagueness, implication, or ambiguity;
leaving no question as to meaning or intent; verbal plainness and distinctness
such that there is no need for inference and no room for difficulty in
understanding.

Comparing these definitions, it seems that there is a continuum of verbal
expression, whose extremes are defined as tacit (not expressed) and explicit (fully
expressed). The analysis of understanding as a result of the iterative hermeneutic
circle suggests that understanding indeed progresses along such a continuum of
gradual explication. The discussion of the hermeneutic as indicates that what
becomes explicit in an individual step of interpretation is not a complete
understanding of a whole state of affairs, but rather one particular aspect (the thing
considered as such and such).

A taxonomy of tacit and explicit information. The interpretive movement from
tacit to explicit is only the first of several possible transformations of
understanding that Heidegger is interested in explaining. Ultimately, he wants to
show how the formalized and codified scientific knowledge (which the rationalist
tradition took as fundamental) is founded in tacit being-in-the-world. Section 4.3
above summarized Heidegger’s discussion of the role of language in expressing
understandings. He uses the term discourse as the basis for verbal expression.
Discourse does not necessarily mean that an understanding is spoken out loud, but
simply that it is verbalized, if only in the mind of the person who understands. This
qualifies as making explicit. Discourse makes the interpretive step from an
understanding that has not been verbalized (but can be inferred from a person’s
understanding of related things or from the person’s behavior) to one that is
revealed to the person who has the understanding. So far, the discussion remains
at the level of an individual person.

Discourse can be asserted: spoken out loud. This makes it available to other
people. An assertion produces an externalized expression. According to
Heidegger’s analysis, assertion can mean pointing out, predicating, or
communicating. With assertion, shared knowledge is possible through one person
pointing it out or communicating it to others. Furthermore, it is possible to codify
knowledge in canonical forms through predication. This formalizes the structure
of the knowledge and paves the way for preserving the knowledge in media of
external memory, including representing it in a computer symbolism. Capturing
the knowledge in a computer provides a stored representation of the knowledge. If
the computer system is flexible, this captured knowledge can evolve through

 Tacit and Explicit Understanding in Computer Support 165

modification of the stored representations for use in computer modeling of
innovative situations.

Figure 5-3. Successive transformations of knowledge.

The left-hand column lists consecutive forms of information. The right-hand
column indicates the transformation processes from one form to another.

Figure 5-3 shows the sequence of possible transformations of understanding.
Moving down the progression, the knowledge becomes increasingly explicit and
formal. Through this sequence, Heidegger’s theory connects the grounding of
knowledge in tacit preunderstanding with the potential for evolving computer
representations of knowledge. This provides the epistemological foundation for a
theory of computer support for interpretation.

Each transformation involves a reinterpretation of the informational content in a
new medium of expression. This entails both gain and loss. Not only is there a gain
in precision and clarity with the increasing explicitness, but new discoveries are
made along the way. On the other hand, there is a loss of contact with the
experiential grounding in the tacitly understood situation. For instance, when the
lunar habitat designers first began to interpret privacy in their design, they began
with a tacit feeling that they had discovered a problem in the adjacency of the
bathroom to the ward room. This feeling was grounded in their personal
experiences (e.g., Desi’s memory of the location of the bathroom at his office) or
their imaginations of life in the habitat. The tacit preunderstanding of this problem
was interpreted in the discourse of privacy. Then Desi and Archie made assertions
about privacy in the habitat. This externalized their understanding in language so
it could be communicated. If they wanted to preserve their interpretation, they
could have predicated it as design rationale, using some semi-formal or formal
method such as IBIS. Using a computer support system like HERMES, they could
then proceed to capture their concern with privacy in a computer representation

 Tacit and Explicit Understanding in Computer Support 166

that could subsequently be evolved into a useful computer model of privacy for
future design efforts.

Figure 5-4 presents a vocabulary of different forms of information for the theory
of computer support. All the forms of understanding or knowledge discussed above
may be considered forms of information. These are divided into the forms of
human knowledge (which are hermeneutically grounded in the intentional
presence of the understood situation) and forms of computer representation
(formal symbol systems). The taxonomy moves from information forms that are
appropriate to individuals to those that form data for computer manipulations. In
the middle are forms of shared knowledge. They can be shared by several human
designers, or by designers and a computer system.

Figure 5-4. A taxonomy of classes of information.

This taxonomy is meant to provide a vocabulary for discussing a theory of
computer support founded on the analysis of interpretation as the transformation
of tacit understanding to increasingly explicit knowledge. A taxonomy draws
conceptual distinctions. In practice, the categories may be blurred and inter-mixed.
A designer dealing with privacy while using HERMES with privacy critics already
represented may be working with an understanding of privacy that synthesizes all
these forms of information.

The taxonomy is laid out along the dimension of explicitness. This is not the same
as formality. Formal information is structural (syntactic); it may be processed by
computer. Explicitness is a precondition of such formality, not its equivalent.
Consider for instance the semi-formal information of design rationale in an IBIS

 Tacit and Explicit Understanding in Computer Support 167

format. An issue, stated in English text, may have an answer, also in English.
The structural relationship between the issue and its answer may be formal in
the sense that computers can process this information algorithmically. At the same
time, the semantics of the texts of the issue and answer are informal: they
cannot be processed by the computer, but require human interpretation.
Nevertheless, all the design rationale information has been stated explicitly in
order to be entered into the computer.

Figure 5-5. Successive transformations of information.

Successive transformations of tacit and explicit information. Figure 5-5
expands the model of interpretation in design (Figure 5-2) to include Heidegger’s
three-fold analysis of assertion. At the end of Chapter 6 (Figure 6-2), it will be
further expanded to include the transformations of knowledge capture and
representational evolution. This will provide a model of the theory of computer
support for interpretation in design.

Here, the subsequent transformations of assertion have been included in the
diagram: (i) communicating, (ii) pointing out, and (iii) predicating:

(i) The externalized expression that has been asserted can be used for
communication with other people. This makes possible the shared knowledge that
forms the basis for collaboration in activities like designing. Understandings that
have been made explicit in the process of interpretation can affect the tacit

 Tacit and Explicit Understanding in Computer Support 168

understanding that enters into future activity, either directly as part of the
individual’s understanding or indirectly as a social process involving a change in
the shared knowledge of a communicating community.

(ii) Alternatively, the externalized expression can serve as a pointing out of the
object of the underlying intentionality. When something is put into words there is
a potential that it will become reified and lose its semantic grounding; but the act
of assertion can be used to counteract this tendency.

(iii) Moreover, the assertion can take the form of predication, in which the
reference to the meaning is subsumed in a syntactic formulation. The loss of
personal relatedness to that which is understood is traded for an increase in the
intersubjective availability. Predication leads to the multiple advantages of
codified knowledge:

* An increase in the explicitness of the knowledge.

* A standardization of the formulation in a more canonical form.

* An increase in the formality of the expression, so that it can more easily be
syntactically manipulated.

* An increased ability to preserve the knowledge in external media.

These characteristics are essential for the development of scientific knowledge.

The codified knowledge can be transformed into the logical calculi of formal
science. Heidegger was interested in this transformation because it allowed him to
tie scientific knowledge to tacit, commonsense, background knowledge in a way
that shows that the formal knowledge is only possible on the basis of the tacit.
This, of course, counters the rationalist assumption that one should analyze tacit
knowledge as a partial and faulty expression of underlying formal, precise,
symbolic, intersubjective, or objective scientific knowledge. For Heidegger, the
successive transformations of understanding from tacit knowledge to explicit,
externalized, codified, and formalized knowledge is an ontological transformation.
Tacit knowledge has to do with our understanding of artifacts-in-use. As the
knowledge is transformed through explicit interpretation, externalized assertion,
codified predication, and formalized calculi, the artifact becomes a physically-
present-object, something observed from an objective status rather than used
transparently. With this ontological transformation, the artifact/object becomes
decontextualized.

Codified knowledge can also open the opportunity for computer representations.
The transformations from tacit preunderstanding to successively explicit forms of
information provides a basis for the theory of computer support in the following
chapter.

CHAPTER 6. A THEORY OF
COMPUTER SUPPORT

While Heidegger’s analysis of understanding provides the opportunity for a theory
of computer support of innovative design, his analysis must be operationalized if
it is to guide the development of useful software systems. This task of
operationalizing Heidegger’s categories will be undertaken here, resulting in the
outline of a theory of computer support for interpretation in design.

What does it mean for a computer system to support the processes of interpretation
that designers use in their work? Chapter 6 addresses a number of the central issues
of this question:

6.1. As argued in the previous chapter, a people-centered approach is needed in
which designers using software are in control of determinations of relevance,
application of representations, modifications of reused structures, and other
matters of judgment that cannot be reduced to computational mechanisms. The
analysis of interpretation in Part I distinguished three characteristics of
interpretation: (a) its situated, (b) perspectival, and (c) linguistic nature. Each
of these three characteristics involves the modes of (1) reuse and (2) innovative
modification. Computer software should provide support for each of these
three characteristics of interpretation in both modes.

6.2. (a) Experience with graphical and textual tools for designers has shown that
computer systems can be useful for capturing explicit understandings of design
situations. Additional media—including pen-based sketches, pictures, videos,
and audio commentary—can also be useful for this. With each of these media
it is important that they be sufficiently expressive to meet the demands of
designers. Ideally, computer control of the media should not be much more
intrusive than use of a hand-held pen. The advantage of the computer is that it
can coordinate representations of the situation in these media in
computationally powerful ways in order to support the designers’
interpretations. (b) One way a computer system can help organize information
is through systems of perspectives. Each designer, design team, or design case
can have its own perspective for gathering related information. A general

 Tacit and Explicit Understanding in Computer Support 170

perspectives mechanism can provide computational support for storing and
viewing information in categories defined by the designers to support their
organizational and collaborational needs. (c) Language is as important a means
of externalizing design ideas as is sketching. It serves to make the ideas explicit
and to communicate them, so their problems and opportunities can be
discovered. A computer-based language facility can help to store and
communicate definitions and interrelationships of terms. To the extent that the
language can be processed by the computer, it can serve as a means for
communicating with the computer and defining or refining mechanisms of
control and operation.

6.3. Plasticity of knowledge representations is critical for offering designers the
necessary control over the computer system and over their designs. As
mentioned in the preceding paragraphs, the media, perspectives, and language
must all be expressive and malleable. This facilitates reuse of previous design
constructs, because approximate solutions to an innovative need can be reused
from computer memory and modified by the designer for application to a
current case. By capturing past design elements and allowing them to be
flexibly modified and reused in new designs, the computer support system in
effect embodies a model of the process of interpretation. Each characteristic
of the interpretive process is modeled in computer representations and
mechanisms: the situation, perspectives, and language. The explicit nature of
the computer model aids the designer’s reflection, offering objects to make
discoveries with.

These issues of support spell out in practical terms the kinds of mechanisms needed
to support interpretation in design. These points determine what related systems to
consider in Chapter 7 and what features to look for in those systems. Then, Part III
describes HERMES, a substrate for design environments that implements
illustrative instantiations of these support mechanisms.

6.1. A People-Centered Approach
HERMES is a people-centered computer system, designed with the nature of human
understanding foremost in mind. People and computers have different strengths. If
one accepts Heidegger’s principles of human understanding and contrasts them
with traditional AI analyses of computer computation, it follows that people
process information very differently from computers. So if one wishes to use
computers to support humans doing difficult cognitive tasks like designing then it
is necessary to distinguish the roles of computer and human carefully and to define

 Tacit and Explicit Understanding in Computer Support 171

a “cooperative problem solving system” (Fischer, 1989) in which they can work
together most effectively.

While much attention has been paid in computer science to the theory of
computation and to the mechanics of making computers perform efficiently, little
work has been devoted to a theory of the human understanding that is necessary to
make sense of computer output and to extend the domain of computer application
beyond routine algorithmic computations. Computer scientists tend to leave the
analysis of the human partner in human-computer interactions to cognitive
psychology, which generally ignores Heideggerian ideas in favor of functionalist
approaches. There have been some notable exceptions to this rule, which have
provided much of the inspiration for this dissertation and that have covered much
of the argumentative background that therefore does not have to be detailed here—
e.g., Winograd & Flores (1986), Suchman (1987), Ehn (1988), Budde &
Züllighoven (1990), Dreyfus (1991), Coyne & Snodgrass (1991), Schön (1992).
Unfortunately, these exceptions have not included convincing examples of
software as models for a people-centered approach.

HERMES is an example of people-centered software. It grew out of a recent
tradition of domain-oriented design environments (discussed in Chapter 7) that
tends toward a person-centered approach. This tradition was a practical response
motivated by breakdowns in autonomous expert system approaches. The present
dissertation is a reflection on the theoretical framework implicit in that tradition,
aimed at repairing the breakdown at the conceptual as well as the practical level.

The systems that HERMES evolved from are people-centered in various ways.
Fischer & Nakakoji (1992), for instance, argue that the JANUS system empowers
the human designers who use it. Similarly, McCall, et al. (1990) point out that the
PHIDIAS system allows the use of an open-ended set of domain categories so that
designers are not restricted to a predefined representation of relationships. The
previous chapter tried to sketch a philosophical justification for these ideas. It
argued that tasks like innovative design require acts of application and judgments
of relevance that require interpretive powers and intentionality that come naturally
to people but cannot be programmed for computers. A reasonable conclusion to
draw from this argument is that computer systems for non-routine design should
be people-centered.

People-centered software in the sense proposed here is computer software that
provides information to people and then lets the people make the judgments.
Rather than incorporating heuristic tricks that allow the computer to make
decisions that in most cases look like reasonable human judgments, the software
is structured to involve the people using it in a decision-making partnership. The
partnership is based on the asymmetry in which computers excel at searching large
information spaces and people excel at making judgments of relevancy. In other

 Tacit and Explicit Understanding in Computer Support 172

words, designers interpret and computer systems like HERMES support this
interpretation in design.

The term “people-centered” is intended to extend the approach of “user centered
system design” (Norman & Draper, 1986). That was an attempt to view interface
issues from the user’s perspective, not necessarily to include system users in either
the software design process as in participatory design (Ehn, 1988) or in the
computational decision-making as in the people-centered approach. User centered
system design views people as information processors, not as interpreters; it seeks
to adjust the software interface to the parameters of human processing
characteristics at the periphery of the computation rather than trying to support
human interpretation as the center-piece of the computation.

The first principle for a theory of computer support that overcomes the problem of
tacit and explicit understanding is that the software should be people-centered.
Three further principles are given in the next section.

6.2. Supporting Situated, Perspectival, Linguistic
Interpretation
The analysis of interpretation in Part I suggests that computer support for design
should:

(a) Capture computer representations of tacit situated understanding at the points
when it becomes articulated as explicit interpretations.

(b) Provide multiple perspectives for analyzing and understanding designs.

(c) Allow users to evolve and refine interpretive expressions in language without
starting from scratch or accepting predefined frameworks.

This dissertation will pursue these possibilities. Accordingly, three hermeneutic
principles will be adopted in trying to develop computer-based environments to
support the work of designers:

(a) Provide facilities so designers can create representations of the design situation
during the process of solving the task.

(b) Provide facilities so designers can define multiple interpretive perspectives on
design problems.

 Tacit and Explicit Understanding in Computer Support 173

(c) Provide facilities so designers can articulate explicit conceptualizations in
language expressions for their work and submerge this new knowledge into
tacit forms of knowledge for future use.

These principles will be used to select relevant systems from the literature to
review. They will also provide a framework for critically evaluating the systems
in Chapter 7. Then, in Chapters 8, 9, and 10, the design of HERMES will be
discussed. HERMES is a prototype software substrate that extends the functionality
of the domain-oriented design environments and knowledge representation
languages that are reviewed so they can support interpretation. The three
hermeneutic principles will be used to justify the primary features of HERMES :

(a) An extensible computational medium for representing and evolving artifact
constructions, design rationale, computational critics, and other forms of
design knowledge.

(b) A mechanism for sharing group and personal interpretive perspectives to
support collaboration and deliberation.

(c) A language for explicitly defining computations and for hiding information that
can then function in a tacit way.

Capturing explicit understandings of the situation. Human cognition is a
complicated business. A recent analysis of its structure by Donald (1991) based on
anthropological, neurological, and linguistic evidence suggests four stages in its
historical development, all of which remain still active in contemporary cognition:
(i) episodic memory that is case-based; (ii) mimetic memory that is tacit or gestural;
(iii) mythic memory that is social and linguistically founded; and (iv) extended
memory of modern thought that relies heavily on using external media such as
pictures, writing, and computers. Heidegger's (1927) philosophical analysis of the
logical structure of human being-in-the-world can be seen as a parallel to this
sequence: (i) there is the preunderstanding of the world as disclosed to us and of
meaningful things discovered in the situation; (ii) through interpretation we use
our tacit skills to make things stand out as what they are; (iii) discourse allows us
to talk about and thereby share things; and (iv) with assertion we can form
predications and externalize our knowledge. In both Donald’s theory of the
evolution of the consciousness of the species and Heidegger’s theory of the
development of an individual’s cognitive acts, increasingly explicit understanding
emerges out of and on the basis of primordial tacit understandings that remain
active under the surface.

A system for computer support of human cognitive activities such as innovative
design should at least take this complexity into account, recognizing the role of
tacit preunderstanding at the origin of all true understanding. That is the reason for
the person-centered emphasis: to keep the intentionality of people in the decision-

 Tacit and Explicit Understanding in Computer Support 174

making loop. Ideally, one would hope to provide support for the various levels of
explicitness that continue to play a role in even the most sophisticated
understanding. For instance, (i) one might try to provide a computer representation
of case-based memory to stimulate human episodic memory and intentionality. (ii)
Direct manipulation of graphical icons might be used as an analog to mimetic
understanding. (iii) A language facility for people using the computer system to
make assertions about objects in the domain in which they are working could
provide the ingredients for mythic-linguistic comprehension of that domain. (iv)
Finally, the computer can provide a computationally active medium that can
extend human mental abilities by storing and manipulating vast quantities of
symbolic information.

The successive transformations of information from tacit preunderstanding to
increasingly explicit forms of expression result in codified knowledge, as shown
at the bottom of Figure 5-5, above. As Heidegger pointed out, this form of
knowledge provides the possibility of formal science. By the same token, it puts
knowledge into a state that can be captured for the physical symbol systems of
computer representation.

In particular, if a computer system is being used to provide a medium of external
memory for people, then the representations they are using in that medium are
available for retention by the computer system for future use. This suggests that
computer systems to fill this role need to be structured to provide an enticing and
useful medium in which people will represent and solve their tasks. They should
also be structured to capture representations as they are developed and used for
future reuse and modification. Given the cyclic nature of interpretation, this works
well, because the logical source of building blocks for representing the situation of
a given task is traditional representations used in the past for representing similar
tasks. The abstract chicken and egg problem is solved by starting with a seeded (to
shift the metaphor a bit) database. The seed is, of course, generated on the basis of
(real or imagined) previous tasks in the domain.

In general, what one wants to capture in the database that grows out of the seed is
a palette of symbols for supporting the various forms of interpretation used by
people working in the given domain. In particular, it is necessary to support the
representation of situated understanding. The situation is a network of
significance. Computer representations of the situation might include icons with
defined behaviors that are semantically meaningful to people who will be
manipulating them. It could also include domain terminology—perhaps structured
as a semantic network to reflect interrelationships among terms—to help people
formulate meaningful assertions about their work. For a field like design, it would
likely include tools for sketching and catalogs of sample designs.

 Tacit and Explicit Understanding in Computer Support 175

If design is a constructing of reality as argued in Chapter 5, then a computer system
to support interpretation in non-routine design is a medium to facilitate such
construction. The social construction of reality generally—of what we call the
“real world” we all live in—takes place largely through the mediation of artifacts.
Design as the design of artifacts (e.g., habitats) is therefore the construction of the
artifacts through which reality is, in turn, constructed. The computer systems—as
media for design—construct a reality in which this design can take place. In
designing approaches (e.g., people-centered) to such systems, one is formulating a
theory for building systems (e.g., HERMES), for providing representations (e.g.,
graphical design components, rationale issues), for designing artifacts (e.g., lunar
habitats), for mediating the social construction of reality. This is an example of a
high-level design task and illustrates the open-ended character of the tasks that
human cognition sets for itself and that exceed the capability of the unaided
individual mind.

Organizing perspectives on shared knowledge. Complex design tasks require
collaboration. The design of lunar habitats, for instance, began in the 1960’s and
may continue for one or more additional decades before the first lunar habitat is
ever lived in. This design process relies upon many teams of professionals, from
numerous fields of expertise. The teams that continue working over long periods
of time change their membership. Designs pass from team to team, developing
from requirements documents, to design concepts, to drawings for technical
reviews, to mock ups, to construction, and so on. The designs change and earlier
stages are iterated. Ideas, explorations, and rationale from one team or one design
are reused in others or eventually forgotten.

At one level of analysis, the design of lunar habitats is an unfathomably intricate
social process involving hundreds of people, shifting political priorities, changing
technologies, financial constraints, and management headaches. But at another
level, each actual act of designing is ultimately carried out by an individual person.
Some concrete individual must make the suggestion that the wardroom table be
shaped a certain way. Other individuals must either agree with or argue against
that decision. Each time an individual comes up with an idea or considers a
proposal, an act of interpretation takes place. Such acts of interpretation are
grounded in the interpreting person’s situation, perspective, and language. People
are necessarily the cognitive atoms of collaborative design because only individual
people can ground interpretation in intentionality. So the overall social process is
dependent upon many individual perspectives interacting in a process of
deliberation.

A computer system to support such social processes of interpretation, involving
deliberation among multiple perspectives, should provide mechanisms that reflect
and aid this process. First, designers using the system need to be able to represent

 Tacit and Explicit Understanding in Computer Support 176

their own ideas and their design rationale. If teams of designers are to use the
system, then there should be ways for team members to represent their personal
ideas, sketches, arguments, and conceptualizations. The representations of one
person need to be kept distinguished from those of other designers. At the same
time, design is a collaborative process. The purpose of a design team is to share
each other’s ideas, to bring different perspectives on a problem together and to
arrive at a consensus through argumentation. A system to support this must allow
separate definitions, but also facilitate bringing these differing views together and
resolving the differences. Consensus or resolution may not always be possible, so
one might also want mechanisms for maintaining minority or competing opinions,
by means of which it can easily be determined who supports which ideas and why.

The concepts and design rationale for complex design projects evolve. The
contents of individual perspectives must be easy to change. In addition the
structure of perspectives must be able to evolve fluidly, defining, for instance, what
shared group perspectives include which personal perspectives, or include which
particular contents of various personal perspectives. It might be useful to be able
to chart the history of evolving ideas, establishing “snapshot” versions of designs
in particular personal or group perspectives.

The suggestion is that all representations of design knowledge should be stored in
system-defined perspectives because all interpretation is situated in perspectives.
This notion transforms the idea of traditional knowledge-based systems that there
exists a single body of domain knowledge in the minds of domain experts and that
there should be a corresponding fixed knowledge representation. Now the
knowledge represented in the system is (1) always relative to the selection of a
perspective and (2) continually evolving. The design environment must provide
tools to support this view of knowledge and to facilitate the evolution of networks
of perspectives and of their knowledge.

Linguistic tools for collaboration. Language plays an undeniable role in
collaborative design. Even the individual designer engages in discourse when
conducting innovative design. As previously discussed, all acts of interpretation
essentially involve explication, which depends upon discourse. Design in teams
involves the use of language for the deliberation of design rationale from various
perspectives. Much of the work of teams takes place linguistically through group
meetings and written reports. These media rely on assertion for the communication
of ideas. Language forms the basis for the sharing of knowledge, which is the
hallmark of collaboration. The formulation of understandings in language makes
possible the formalization of knowledge in methodologically-based systems and
the representation or capture of knowledge in external media such as
documentation.

 Tacit and Explicit Understanding in Computer Support 177

As seen in the videotaped lunar habitat design sessions, the design process relies
heavily upon concepts, rules of thumb, and constraints. Each of these can be more
or less formulated in sentences. To some extent they can even be codified,
formalized, operationalized, computerized; to some extent they remain tacit, out
of either necessity or practicality. In providing computer support, it is important to
analyze the use of techniques like conceptualization, rules of thumb, and constraint
formulation. One should support the explication of these to enhance their sharing,
retention, and reuse. At the same time, one should recognize that the advantages
of explicit knowledge are offset by costs in time, cognitive effort, rigidification,
and loss of intuitive control. Designers may wisely decline to make their
understanding explicit in many cases. Systems should encourage a flexible mixing
of knowledge in the head with knowledge in the machine, of tacit and explicit, of
intuitive and verbalized.

When it is deemed desirable to capture knowledge in a computer support system,
then language can play a major role. According to the theory proposed here based
on Heidegger’s analysis, the capture of knowledge is a refinement of the process
of putting tacit preunderstanding into language. One way to make this process
explicit and to help people exert control over it is to provide a language facility to
support the expression of knowledge for computer capture. Because people need
to relate explicit assertions to their tacit preunderstanding, it is important to tie the
language facility to people’s natural modes of expression as much as possible. So,
for instance, the computer-based language could use terms from the design domain
chosen by the designers actually using the system. This means having most of the
vocabulary user-defined and easy to extend or modify. The appearance of the
language can be made similar to natural language also, to ease the translation back
to the level of original discourse in which the intentional content is less alienated
than in codified and formalized expressions of logical calculii. This can be
accomplished to some extent by careful design of the syntactic appearance of the
language facility, keeping this naturalness a priority.

Linguistic tools to support interpretation and collaboration in design should
support the interplay of tacit and explicit understanding in the interpretation of the
language. While it may be necessary to structure an end-user programming
language in a way that can be used to control the computer like traditional
programming languages, one wants to avoid the cognitive costs of using these
languages as much as possible. Although it may be important to include some of
the basic functionality of traditional programming concerns such as variables,
recursion, types, control structures, etc., it is desirable to avoid requiring the users
to keep the associated doctrine in mind. One wants a programming language in
which most of these structures are kept tacitly behind the scenes most of the time.

 Tacit and Explicit Understanding in Computer Support 178

At the same time, the user still needs to be able to analyze the structure of the
representations explicitly and formally (e.g., as a hypermedia node and link
structure) and have expressions in the language reflect that. For instance, if one
wants to capture a rule of thumb involving the separation of public and private
areas in a lunar habitat, then one must think through a scheme for operationalizing
and representing the notion of privacy that is involved. This is an extension of the
process of explication that is involved in all interpretation of innovations that are
not adequately comprehended by situational preunderstanding. However, once the
rule of thumb has been expressed (written) in the language, the explicit
understanding should be able to resubmerge into a more tacit comprehension. That
is, when the rule is used in the future—whether by the original creator or by a
subsequent designer using the system and its language—it should be available
(readable) in a more tacit way.

The problem of tacit and explicit understanding pervades the design issues for a
system of computer support of cooperative design. The design of a language
facility for computer support must particularly address this problem because
discourse is the medium through which one moves back and forth between tacit
and explicit understanding within the process of interpretation.

6.3. A Model of Computer Support
The goal is to support the situated, perspectival, linguistic character of
interpretation in cooperative design. This requires plasticity (flexibility,
malleability, or adaptability) of representation. For each of the many individual
designers involved, their situation is somewhat unique. They have different
trainings, traditions, formative experiences, areas of expertise, skills, priorities,
interests, motivations, and so on. For each of them to represent what they take the
design situation to be requires a toolbox of representation elements and techniques
that can be customized to their individual needs. Their different perspectives also
have crucial commonalities, without which collaboration would be impossible.
These interrelationships can usefully be modeled in a network of perspectives for
organizing knowledge representations by individual and group owners. Group
perspectives need to combine knowledge from multiple other perspectives,
selectively deleting, modifying, or adding to particular items. The hierarchical
structure of perspectives must be able to evolve fluidly over time. The language,
too, must be flexibly expressive so that it can generate innovative locutions. Like
natural language, it must be capable of spawning infinite variations and arbitrarily
complex structures from a manageably finite syntax.

 Tacit and Explicit Understanding in Computer Support 179

In Figure 6-1, the schematic of computer support from Figure 1-1 in Chapter 1 has
been expanded to depict the dimensions of interpretation as (a) situated, (b)
perspectival, and (c) linguistic. The upper-left-hand rectangle, which stands for
tacit preunderstanding, includes these three dimensions. The figure has also been
expanded to depict the need for (1) reuse and (2) plasticity of representation in its
lower portion.

Figure 6-1. Computer support for interpretation in design.

The process of interpretation is depicted across the top of this figure. The
movement of the hermeneutic circle from preunderstanding via interpretation to
explicit understanding and from there via communication to shared knowledge has
been detailed: (a) The disclosure of the situation leads to discovery. (b)
Perspectival anticipations move to an appropriate fit of the understanding to what
has been discovered. (c) The linguistic preconceptions express themselves in
explicit conceptualizations. In the realm of shared knowledge, the discoveries can
take the propositional form of facts, perspectives can become paradigms or
worldviews, and conceptualizations can be elaborated as theories.

In addition to following the communication path to interpersonal knowledge, the
externalized expressions of assertion and predication can be captured in a computer
system. In this case, the representations that capture the codified knowledge can
provide (a) representations of the interpretive situation, (b) filters for selecting
knowledge belonging to specific interpretive perspectives, and (c) associations

 Tacit and Explicit Understanding in Computer Support 180

among related conceptions in a personal sub-language.17 Once captured, this
knowledge can be stored for future use in the computer knowledge base as models
of the situation, perspective, and language of a specific instance of understanding.

Future use is not confined to simply retrieving and displaying frozen knowledge.
This knowledge is intended to support new and innovative design work. While
even frozen knowledge has an important role to play in reminding designers of
past solutions, the ability to reuse and modify the past solutions by applying them
to new tasks is desirable as well. For this, the representations of the situations must
be malleable, the perspectives should be capable of evolving, and the language
must be generative. Knowledge can be applied to support interpretive tasks, in the
sense discussed in Chapter 5, only when the representations of knowledge have the
plasticity to allow them to be adapted flexibly enough to represent innovative
interpretations.

The computer process in the bottom part of Figure 6-1 mirrors the upper loop of
interpretation. That is, the computer system constitutes a model of the human
interpretive process. The three-fold structure of interpretation as situated,
perspectival, and linguistic is modeled in the ability of the computer system to
represent these with, for instance, hypermedia, perspectives, and a language as in
HERMES. The possibility of creating such a model is based in the fact that the
understanding in the interpretive process can be explicated to the point where it
can be captured on a computer. This possibility of knowledge capture is added to
the sequence of successive transformations of information in Figure 5-5 from
Section 5.2 to produce an expanded model in Figure 6-2. In addition, the computer
support process in the bottom loop of Figure 6-1 is added as well. (An expanded
view of the hermeneutic circle from the top of Figure 6-1 had already been
incorporated.)

17 Wittgenstein (1953) would term these personal sub-languages “language games”

corresponding to the individual’s “form of life”.

 Tacit and Explicit Understanding in Computer Support 181

Figure 6-2. A model of cooperative interpretation and its computer support.

The rectangles represent classes of information. The arrows represent
transformations from one class to another.

Now Figure 6-2 presents a complete model of the theory of computer support for
interpretation in cooperative design. The information in tacit preunderstanding is
successively transformed through disclosure, creative discovery, surprise,
discourse, assertion, predication, capture, plasticity, and evolution. Then it is
available to support new acts of interpretation by providing candidates for the
interpreted meaning that is needed to repair situational breakdowns of
understanding. The many transformations are necessary to produce representations
that may be truly helpful, given the nature of human interpretation. Of course, the
final judgment of which representations are relevant and how to apply them
requires human judgment, based on intentional grounding in the world. Such
grounding cannot be captured symbolically. The computer can only supply tools
for the ultimately human project of constructing a meaningful understanding of
reality.

This model shows the interplay of tacit and explicit understanding in the process
of interpretation. The path of assertion and predication opens up the possibility of
knowledge capture in a computer system. A properly designed computer system

 Tacit and Explicit Understanding in Computer Support 182

oriented toward evolution of knowledge and plasticity of representation can
provide support for human interpretation in the form of an external medium for
representing the situation, displaying alternative perspectives, and articulating
linguistic expressions.

CHAPTER 7. RELATED
COMPUTER SYSTEMS FOR

DESIGN

The theory of computer support in the previous chapter has suggested that systems
to support interpretation in innovative design should be oriented toward the
evolution of domain knowledge and should provide for plasticity of knowledge
representations. It suggests that such systems should be people-centered and
should offer—among other things—(a) a computationally active form of external
medium for representing the situation, (b) a mechanism for displaying alternative
perspectives, and (c) a language for articulating interpretations. Above all, it
stresses that such functionality should be implemented so as to support a healthy
mix of tacit and explicit understanding. This mix is required to support the process
of human interpretation as the explication of tacit understanding. This chapter will
look at software systems that have been developed to support designers and see
what techniques they incorporate for meeting these suggestions. These related
systems provide many of the ideas that led to the mechanisms, functionality, and
concerns of the HERMES substrate.

The approach of this dissertation is within the tradition of situated cognition. A
number of influential works in this tradition have addressed the question of
computer support for design. They are uniformly opposed to the approach of expert
systems like MYCIN (Buchanan & Shortliffe, 1984) for innovative domains. Rather
than endorsing systems that automate the decision making process, they call for
systems that provide media in which people can exercise their design skills while
benefiting from computational supports. Unfortunately, these writings have
proposed little in the way of detailed proposals for alternative software techniques
to support situated interpretation in design.

Dreyfus (1972), for instance, makes some high-level suggestions about designing
software to augment human understanding. But Dreyfus is a philosopher and not a
computer scientist, so he does not propose any software prototypes. Similarly,
Schön (1992) is not a programmer and can, in the end, merely hope that better

 Tacit and Explicit Understanding in Computer Support 184

work will be put into building “designer assistant” programs than has been in the
past, rather than into expert systems. The architects Coyne and Snodgrass (1991)
propose a hermeneutic philosophic basis for AI, and they too make general
recommendations along the lines of Dreyfus and Schön.

Suchman (1987) emphasizes the contrast between rationalist plans and situated
action. She also stresses the role of language in constituting human interpretation
of situations. But she is concerned with human-computer communication in which
the computer must understand and act (produce Xerox copies), rather than with the
computer as external memory or as a medium for shared human cognition. Instead
of proposing an alternative programming approach, she fine-tunes traditional
programs with more hardware sensors of the human situation and with more
situated testing of the human-computer communication.

Another forceful critique of expert-system style AI from a Heideggerian
perspective is presented by Winograd and Flores (1986), who call for a new
approach to software design. They note that the computer is ultimately a structured
dynamic communication medium and they stress the central role of language in
coordinated action. They propose the COORDINATOR program as an example of
new software as a medium for Computer Supported Cooperative Work. They note
its limitation: "In many contexts this kind of explicitness is not called for, and may
even be detrimental" because language is ultimately an "open-ended domain of
interpretation." Despite this recognition, they propose software that initially failed
to be accepted in many social settings because it imposed a rigid, explicit, public
structure where people often want to remain implicit. In such cases it did not
empower personal interpretations because it misjudged the balance between tacit
and explicit.

Participatory design, as described by Ehn (1988), is a method for developing
software in partnership with the end-users, so it can be designed to support skillful
work and democratic workplace relations, in contrast to traditional automation
approaches like those reported by Noble (1984). The idea is to design computer
tools for experts that support and extend their situated skills, including their tacit
know-how. As an example, the Utopia project worked with graphic layout
professionals to pioneer a desktop publishing toolkit, as an alternative to the
automated systems that were putting graphics professionals out of work. This
toolkit approach may have been innovative at the time, but is now considered
mainstream. Participatory design proposes alternative approaches to design, but
offers little in the way of recommended software functionality for supporting
interpretation.

The situated cognition literature has not made it clear what kinds of differences the
alternative theory makes at the level of software techniques. Therefore, this chapter
must look elsewhere and define its own answer to this question. It will do this by

 Tacit and Explicit Understanding in Computer Support 185

turning for ideas to two traditions of system building in AI that do provide
alternatives to expert systems. While these traditions have not produced adequate
systems for supporting interpretation, they have prototyped mechanisms for
supporting either tacit or explicit understanding. The traditions to be considered
are: design environments and knowledge representations. These “traditions” will
be caricatured here as distinct and contrasting approaches, although there are
significant cross-influences and confluences.

To represent the tradition of design environments, a series of systems developed
during the past several years at the University of Colorado will be reviewed:
especially JANUS (Fischer et al., 1989) and PHIDIAS (McCall, et al., 1990a). These
systems provide tools for designers to construct design artifacts and to reflect upon
them. PHIDIAS and JANUS serve as the particular focus because the development
of the HERMES system was intimately influenced by them. The tradition of
knowledge representations will be taken to include a series of knowledge
representation languages and a series of design rationale capture systems. The
knowledge representation languages include PLANNER (Hewitt, 1971), CONNIVER
(Sussman & McDermott, 1972), KRL (Boborow & Winograd, 1977), and PIE
(Boborow & Goldstein, 1980a). The design rationale capture systems include IBIS
(Kunz & Rittel, 1970), PHIBIS (McCall, 1987), GIBIS (Conklin & Begeman, 1988),
and DRL (Lee & Lai, 1991).

The caricature of these two traditions consists in taking the design environments
as systems that support tacit designing and the knowledge representation
languages as systems for supporting explicit documentation of argumentation. This
is an exaggeration, because the design environments include explicit knowledge
structures and the knowledge representation systems have made efforts to support
tacit usage. Nevertheless, the major thrusts of these traditions (at least as they are
distinguished in principle) is usefully characterized this way. Moreover, the real
question is not simply whether some mixing of tacit and explicit understanding is
supported, but precisely how that mixture is defined. That is, the previous chapter
called for support of the movement between tacit and explicit understanding based
on the particular sequence of transformations of understanding that are outlined in
the analysis of human interpretation and in the corresponding theory of computer
support. The question is how to take the two traditions’ ideas for supporting tacit
and explicit understanding respectively and to “apply” them in an integral
approach to supporting interpretation.

This chapter will argue that the traditions of design environments and knowledge
representation languages call for the following functionality to support
interpretation in innovative design:

* an external medium for design (Section 7.1);

 Tacit and Explicit Understanding in Computer Support 186

* perspectives for deliberation (Section 7.2);

* a language for human problem-domain communication (Section 7.3).

Each of these realms of functionality should support the designer’s movement back
and forth between tacit and explicit understandings of the design artifact.

While design environments strive to provide tools for doing the design work,
knowledge representation systems focus on tools for explicating the knowledge—
e.g., as formalized design rationale. They both overlook the importance of the
dynamic interpretive cycle. Developers of design environments claim that their
knowledge bases capture rules of the domain, and the design rationale system
developers ignore the grounding of arguments in human understanding. In this
way, both groups of systems understate the role of human interpretation. However,
together they provide mechanisms that can be integrated into systems for
supporting interpretation. This integration is prototyped in HERMES, as described
in Part III. Systems that properly merge the ideas of the two traditions have the
potential to be both expressive and usable by exploiting the synergy of tacit and
explicit, human and computer.

7.1. External Media for Design
Expert systems—which incorporate domain knowledge in a set of explicit
computational rules and infer solutions to problems in the domain automatically
from these rules—do not represent the only approach developed in AI. There have
always been some researchers who sought ways to use technology to augment
human problem solving (e.g., Bush, 1945; Engelbart, 1963), rather than to model,
simulate, or replace it. The characteristics of design found in the studies of lunar
habitat design suggest that computer systems for innovative design in such
exploratory domains should be structured to capture evolving design rationale and
other design knowledge during actual design processes. That is, at critical moments
during design work the understanding which is normally tacit takes on some form
of explicit expression, permitting it to be captured in external media or computer
representations for future use. Computer systems that take advantage of this can
support human designers, rather than trying to automate design on the basis of
heuristics and knowledge representations formulated in advance. The idea is to
keep the human designers in control, but to extend their ability to reuse knowledge
gained in past design work (by themselves or by others).

There are two difficult aspects to this approach: (1) how to capture knowledge (i.e.,
design concepts, terminological refinements, critiquing rules) without imposing

 Tacit and Explicit Understanding in Computer Support 187

inappropriate representations and without requiring excessive effort, and (2) how
to retrieve and present to the designers knowledge that has been stored but that is
now timely and relevant. Issues of design capture and retrieval have been
addressed by design environments. PHIDIAS and JANUS are prototypical design
environments, both originally developed using the sample domain of the layout of
kitchen floor plans. They address knowledge capture by proposing a process of
seeding, evolutionary growth, and reseeding of the knowledge base. They address
timely knowledge retrieval by the use of triggers and critics. These systems will
be discussed in this section.

The PHIDIAS design environment. PHIDIAS18 combines a hypertext issue-based
information system with a CAD-style construction kit. The issue-base contains
issues that are important for designing in the domain, along with possible answers
to the issues and arguments supporting those answers. The issue-base is motivated
by Rittel's view of design as an argumentative process (see Section 2.2). Designers
can add their own answers and arguments, which can contradict alternatives
already in the issue-base. The graphical construction kit facilitates the designer in
constructing a solution to the task at hand. It provides an external representation of
the design concept with which the designer can enter into dialogue.

The integration of graphical construction with this textual deliberation is seen by
the developers of PHIDIAS (and JANUS) as a way of operationalizing Schön's theory
of reflection-in-action or breakdown-and-repair, in which designers construct,
observe, reflect, and respond (see Section 2.3). PHIDIAS embodies knowledge of
its domain in the hierarchy of information in the issue-base and in the palette of
design items for the construction. Relevant knowledge is displayed through a
trigger mechanism, which presents issues related to what palette item to select and
where to place it. The designer can trigger this information by clicking on a button
during the selection of a palette item. The designer is free to navigate through the
hypertext from these displays to explore related issues. The trigger mechanism
provides the designer easy access directly to the knowledge in the issue-base that
is most relevant to the current decision of what to place where.

A simple query language is also available for displaying information from the
issue-base. The query language—which is PHIDIAS’ most important contribution
to the problem of tacit and explicit understanding—will be discussed in Section
7.3 below.

18 PHIDIAS has undergone continuous development for many years. Most recently,

it has been re-implemented on top of the HERMES substrate. The version
discussed here is prior to that conversion and is described by McCall, et al.
(1990a).

 Tacit and Explicit Understanding in Computer Support 188

The JANUS design environment. JANUS19 takes a similar approach, with
significant differences in the details and implementation. Knowledge about kitchen
design is encoded in the various components of JANUS' multi-faceted architecture
(see Figure 7-1): A palette of kitchen appliances provides a kit of parts for a
graphical construction of a layout.

Figure 7-1. The multi-faceted architecture of JANUS.

The major components of the system (shown in ellipses) each use a different data
representation. Other components (shown in rectangles) are used to bridge
between these representations. Designers alternate between problem framing
(altering the partial specification) and problem solving (altering the graphic
construction).

Sets of critics embody rules of thumb about the placement of these appliances—
such as that the stove should be near but not next to the refrigerator—and domain
distinctions provide a vocabulary for expressing these rules. A specification
checklist prioritizes client concerns, like whether the kitchen should be child-
proof. An argumentation issue-base contains discussions of rationale for kitchen
design, including deliberation related to the critic rules. There is also a catalog of

19 JANUS has gone through many versions. The most advanced prototype system,

called KID (Nakakoji, 1993), is the one discussed here. An end-user modification
component was developed in a version called MODIFIER (Girgensohn, 1992). The
view of JANUS as a communication medium has been stressed in the INDY version
(Reeves, 1993).

 Tacit and Explicit Understanding in Computer Support 189

past kitchen designs, which can be used as starting points for new designs or
illustrations of abstract rules.

A number of additional components in JANUS are used to link the major
components together, translating the data representations used in one component
to those in the other. For instance, the Catalog Explorer prioritizes items in the
catalog according to the decisions made in the specification, and the
Argumentation Illustrator displays catalog items that relate to a given topic in the
argumentation.

Perhaps the most powerful computation in the system is carried out by the
Construction Analyzer, which critiques the construction using a set of critic rules.
These rules can be modified by decisions in the specification as well. For instance,
if there is a stove and a refrigerator in the construction, then their distance apart is
calculated and used in rules about minimum and maximum distances. The critics
“fire” automatically when one of their rules is violated by the placement of items
in the construction. If the construction does not meet the critic rules, a message is
displayed alerting the designer to a possible problem. The designer can then view
the relevant section of the issue-base. Like the triggers of PHIDIAS, the critics of
JANUS present knowledge from the issue-base that is most relevant to what is
taking place in the design construction, but now as analyzed actively by the system.

Despite the progress that systems like JANUS represent in meeting the needs of
designers, they still fall short of supporting interpretation. Consider the forms of
knowledge in such a system. The paradigm is still that the programmer who built
the system obtains pieces of knowledge from books and from domain experts, and
enters it all in the system. Users benefit from being guided by the knowledgeable
system (e.g., the critic rules). When designers want to, they can also explore the
rationale for critic rules and defined characteristics of the standard appliances. But
the bulk of the knowledge exists independently of the personal concerns of the user
or the specifics of the task at hand.

Recently, an "end-user modification" component was created for JANUS (Fischer
& Girgensohn, 1990). This allows users to add new appliances (e.g., when
microwave ovens become popular they can be added to the palette) and to modify
existing definitions and critic rules. However, this is not intended as a mechanism
for continual redesigning of components under alternative interpretations: it does
not support multiple simultaneous definitions for different users or different
interpretations. Nor does it provide a medium for designers to articulate and
explore innovative interpretive perspectives. The ideal of support for an evolving
knowledge base requires the ability to partition the knowledge base for alternative
modifications, but JANUS provides only a homogeneous knowledge base.

 Tacit and Explicit Understanding in Computer Support 190

The reliance on standardized components and non-controversial rules of thumb in
JANUS may work in the realm of kitchen design because this domain is, in fact,
well-defined and well-understood. Stoves, sinks, and cabinets come in standard
sizes and raise few issues for the designer. By ignoring broader issues of aesthetics,
sociability, and architectural interactions with the rest of the building, JANUS is
free to concentrate on rules that are independent of the interpretive perspectives of
designers or their clients. For instance, the implemented critics have to do with
distances between appliances, the size of the work triangle, the placement of the
sink under a window, or the separation of the stove from the refrigerator. However,
this approach needs to be extended for domains like lunar habitat design that are
less well understood and less "tame".

JANUS and PHIDIAS are still like expert systems in their reliance on encoding
domain knowledge in representation systems that are fixed in advance at the level
of domain representations. They go beyond expert systems in two significant ways:
(1) they recognize that most interesting design tasks cannot and should not be
automated so they provide user-centered support systems, and (2) they recognize
that domain knowledge evolves so they provide user-extensible systems. However,
if one wants to have a design environment that, for instance, recognizes different
people's definitions of privacy—and helps users explicate and share these
definitions—and critiques designs using these multiple definitions, then one must
extend the domain-orientation of PHIDIAS and JANUS to allow divergent
interpretive perspectives, as discussed below in Section 7.2.

In a sense, the idea of a design environment is to open up an environment, or to
disclose a world in which designs can come to be. In other words, a design
environment provides a software model of the design situation, in Heidegger’s
sense (see Section 4.1). The modeled situation includes the developing design of
the artifact (modeled by graphical figures), rules of thumb (modeled by critic
rules), the designer’s concerns (issues in the issue-base), design goals
(specifications), domain concepts (issue-base distinctions), available parts for the
design (palette), and past experience (the catalog of prior designs).

The theory of human problem-domain communication underlying the JANUS
system corresponds roughly to Heidegger’s insistence on the tacit nature of the
understanding of the situation that is modeled. According to Fischer, et al. (1989),

To shape the computer into a truly usable and useful tool, users must be
able to work directly on their problems and tasks. The goal of human
problem-domain communication is to eliminate computer-specific
programming languages and instead to build layers of abstraction with
which domain specialists—such as kitchen designers—can feel
comfortable. Human problem-domain communication provides a new

 Tacit and Explicit Understanding in Computer Support 191

level of quality in human-computer communication because the important
abstract operations are built directly into the computing environment. (p.5
f)

The idea is to replace (for the users) general purpose computer programming
languages with domain-specific media that represent or model elements of the
problem-domain situation. Then kitchen designers can communicate their ideas
about kitchen appliances in terms of tacitly comprehended representations of these
appliances (e.g., icons of stoves and refrigerators) rather than by means of abstract
and explicit statements in an abstract language like LISP.

In order to turn the computer system into an “invisible instrument” that can be used
tacitly in this way, Fischer (1989) calls for a layered architecture in which the
“transformation distance” between the problem domain (e.g., kitchen layout) and
the underlying system (e.g., LISP) is in effect reduced for the designer by building
intermediate layers of abstraction (i.e., the design environment).

The existence of a series of intermediate layers supports end-user modifiability
because if a modification is needed at one layer it can probably be made at the next
lower level, without requiring the designer to descend to (and understand) the
lowest level of implementation. For instance, if there is no microwave in the palette
of the Kitchen Design Environment, then procedures in the Architectural Design
Environment (MODIFIER) allow a microwave to be defined.

Fischer, et al. (1989) argue convincingly that it is important to relieve designers of
the burden of “mastering the many details inherent in general purpose
programming languages” (p.6). Designers have enough to keep in mind without
learning and applying the complex knowledge required by sophisticated
programming languages. However, the question is whether the palette of icons
offered by JANUS has sufficient expressiveness for creative, professional,
innovative design. Even with its end-user modification component, there is only
limited plasticity in JANUS’ representations. Ironically, use of the modification
component itself requires at least some knowledge of LISP. The question of how
to provide adequate expressivity without overwhelming the design task with
extraneous programming tasks will be taken up in Section 7.3.

 Tacit and Explicit Understanding in Computer Support 192

Figure 7-2. A layered architecture

The design environment provides a layer of abstraction between the problem
domain and the implementation language, reducing the transformation distance-
1 for the designer to transformation distance-2. From (Fischer, 1989, p.15).

One way to think about this problem is to ask whether JANUS has gone far enough
with the layered architecture. There are two major gaps in Figure 7-2.
Transformation distance-2 is certainly smaller than the original transformation
distance-1, but it may be possible to build additional intermediate levels to further
reduce the average effective transformation. Also, transformation distance-3 could
be filled in to relieve at least two kinds of problems: (i) the difficulty for system
developers of building new components and (ii) the fact that end-users of
MODIFIER are often forced to use LISP to define modifications. HERMES will
address these gaps by introducing new layers in both of these areas. The
perspectives mechanism allows designers to build their own hierarchies of layers
of knowledge between their specific task and the design environment, filling in
transformation distance-2 with arbitrarily many levels. The HERMES substrate fills
transformation distance-3, providing high-level functionality for system
developers to use in building new components and providing a language for
designers to use in making their modifications (see Part III).

 Tacit and Explicit Understanding in Computer Support 193

Design environment support for interpretation. A final question must be raised
during this look at the computationally active media that PHIDIAS and JANUS
propose for supporting design. To what extent do they support the designers’
interpretative processes?

The developers of PHIDIAS and JANUS justify their systems by appeal to Schön’s
description of design and the process of breakdown. They are anxious to
operationalize this theory in system mechanisms. In order to operationalize the
analysis of breakdown, they construe it as breakdowns in action, rather than the
underlying breakdown in situated understanding. For instance, McCall, et al.
(1990a) write:

Reflection-in-action takes place when action breaks down. There are at
least two major types of breakdowns. One is when the designer’s action
results in unanticipated consequences—either good or bad. The second is
when the designer is stuck and simply does not know how to act or which
action to take. To apply Schön’s theory to environmental design we
operationalized his concepts by dividing design into construction and
argumentation. . . . To support reflection-in-action, the section of the issue-
base relevant to a particular construction task must not be brought to the
designer’s attention in such a way as to interfere with construction. There
are two ways this can be accomplished: by allowing immediate retrieval
of this section of the issue-base when construction produces surprising
side-effects or by allowing such retrieval when the designer is deciding
how to act. The former strategy is used by JANUS; the latter by PHIDIAS.
(p. 156f; italics added)

In operationalizing Schön’s concepts of knowing-in-action and reflection-in-
action, the developers of JANUS and PHIDIAS have squeezed out much of the
interpretive content. Interpretation—the basis for innovative design—has been
reduced primarily to a choice among pre-interpreted actions. Rather than
supporting interpretation, these systems propose alternative actions.

The innovative interpretive tasks have been replaced by choices among limited
actions listed in an issue base. Of course, it is necessary to drastically limit the set
of palette icons and their possible locations in order to make it feasible to supply a
manageable list of answers for their selection or a computationally tractable set of
rules for critiquing them. But this restricts design to the level of routine design. It
allows for more flexibility than automated expert systems because human
designers are “kept in the loop” to make the choices among alternative actions and
because new actions can occasionally be added to the system. However, this
approach to operationalizing Schön’s theory does not fully support interpretation
or the repair of breakdowns of interpretations.

 Tacit and Explicit Understanding in Computer Support 194

The triggers of PHIDIAS do provide partial support of interpretation in the sense
that the issue base that is displayed can include alternative options and rationale
for them. A designer can explore this rationale and use it to revise his or her
understanding of the design situation. PHIDIAS even allows the designer to add new
options that arise in this deliberation. The shortcoming of this approach is that it
takes little advantage of the computational power of the computer system. It goes
beyond a paper system only in the indexing of information for display and linking
of it for browsing.

JANUS adds the power of computational critics. Fischer & Nakakoji (1991) point
to Schön (1983) as the major theoretical influence behind their use of critics, but
then claim to “move beyond Schön’s work”:

Schön’s framework is based on the cycle of ‘seeing-drawing-seeing.’
However, Schön’s notion of seeing is ‘not good enough;’ as Rittel pointed
out, ‘buildings do not speak for themselves.’ Non-expert designers (and
this is what designers are, in almost all realistic situations) do not have the
complete knowledge and experience to understand fully the conversation
with the materials of the situation. Critiquing mechanisms serve as
‘interpreters’ that support designers in seeing and understanding the ‘back
talk’ of the situation. When a critic fires, reflection does not occur on the
simple basis of the message. Designers ‘listen to’ the design material with
the help of the interpreter in the form of a critic (p.27; italics added).

 In what sense do the critics serve as interpreters? A critic may act as a reminder
to focus one’s seeing, but scarcely as an insightful interpreter. The only sense in
which a critic provides an interpretation of the design situation, is that it provides
the abstract, decontextualized interpretation of whoever programmed the critic
rule. This is someone else’s interpretation, far removed from the designer’s
situation. The programmer may have been considerably less expert than many
users in terms of domain knowledge, having expertise in the area of programming.
Like a knowledge engineer for expert systems, the programmer may have relied
on generally accepted rules. These rules were then “interpreted” by the
programmer in the sense of being expressed in a formalism that JANUS could
execute. They were not interpreted within the context of a concrete design situation
because they have to apply to all designs.

The MODIFIER (Girgensohn, 1992) and KID (Nakakoji, 1993) versions of JANUS
move further toward supporting interpretation. MODIFIER allows a designer to
modify critic rules and other domain knowledge. However, this feature is intended
more to support changes in the domain (e.g., the invention of new appliances) or
in generally accepted domain knowledge (e.g., new rules of thumb or building
codes), than to support tailoring knowledge to an individual designer, a particular

 Tacit and Explicit Understanding in Computer Support 195

design case, or a technical viewpoint. In addition to selecting critic rules based on
the selection of design units that are placed in the construction area, KID selects
rules based on a series of specification questions that the designer answers for a
specific design project. KID derives “specific rules” by adapting the generic critic
rules to the choice of specification answers. In these ways, the system of critics is
tied to the specifics of the construction, the specification, and the evolving
knowledge base. Furthermore, the critics merely display information which the
designer can reflect upon; they leave the decision to the designer.

Triggers and critics have been shown to be useful, even powerful mechanisms for
design environments. JANUS and PHIDIAS have recognized the need to support the
repair of breakdowns in designing. However, their mechanisms fall short of
offering the necessary support of interpretation. Nor is it a matter of scaling up the
prototypes, for their approach to operationalizing the concept of breakdown is
itself the problem. The representations proposed are simply not expressive enough
to model the situations, perspectives, and languages of designers in order to
support their interpretations in more than a partial way. Mechanisms for
customizing domain knowledge to the situations of individual designers and teams
are called for (such as the perspectives discussed in Section 7.2). Also, more
expressive knowledge representation systems are needed (such as the languages in
Section 7.3). As shown in Section 10.3, HERMES extends the trigger and critic
mechanisms with its perspectives mechanism and end-user language to provide
interpretive critics. These more fully support the capture, reuse, and modification
of critic rules.

7.2. Perspectives for Deliberation
An adequately expressive system of knowledge representation for supporting
interpretation in design requires (among other things) a perspectives mechanism.
This is a conclusion that can be drawn from many of the related systems considered
in this chapter. The general need to mix tacit and explicit support means that the
perspectives must be easy (natural, transparent, tacit) for designers to select,
change, create, and merge, while providing an explicit structure (e.g., a browsable
hierarchy of well-defined inheritance relationships) for organizing alternative
versions of domain knowledge.

The systems reviewed suggest three ways in which alternative versions of domain
knowledge must be distinguished in order to support design:

 Tacit and Explicit Understanding in Computer Support 196

* Domain knowledge is different in different times and conditions. For instance,
kitchen design is different on the Earth, on the moon, and on a space station
due to gravity and atmospheric conditions. Each of these can be captured in a
design tradition. Domain knowledge also changes as technology develops and
as new ideas come along. Design traditions can evolve along multiple
branches, creating a tree of alternative versions of knowledge.

* In their work, designers view various aspects of their task or their partially
designed artifact. There are, for instance, various technical aspects of a design
(plumbing, electrical, structural, aesthetic), as well as a wealth of different
theoretical or argumentative aspects from which to interpret the task. Each of
these aspects brings different domain knowledge into play.

* In collaborative design, several people each elaborate their own personal
viewpoints. The individual viewpoints incorporate shared knowledge and also
contribute to a shared group viewpoint. Much of the detailed work of a design
team is done by individuals working within their own viewpoints. The
deliberative processes of groups then consider ideas from the individual
viewpoints and create a shared viewpoint that modifies those individual
viewpoints to provide a basis for continued work.

Systems for design that do not support interpretation by providing a perspectives
mechanism in effect proclaim that there is a single body of domain knowledge.
That is, they make an implicit choice of a tradition, an aspect, and a viewpoint from
which design is to be carried out. Of course, they may include alternative choices
in an issue-base or in a catalog of design suggestions, but they do not support the
designer in making a decision about what tradition or aspect to view things from.
More importantly, they do not allow the designer to build an individual viewpoint
and to select what other viewpoints to share knowledge from. A perspectives
mechanism provides the means with which to build alternative versions of the
knowledge base corresponding to traditions, aspects, and viewpoints. A number of
perspectives mechanisms to support traditions, aspects, and viewpoints have been
proposed in the literature. The three classes of perspectives are considered one at
a time in this section.

Perspectives for traditions. Recent work on design environments indicates a
strong need for support of alternative traditions. The end-user modification
capability of JANUS (Girgensohn, 1992) allows designers to add new kitchen
appliances to the palette and to define new critic rules. This allows for a cumulative
growth in the represented domain knowledge. But suppose that different designers
want different definitions of the same critic rule. For instance, they may think that
the work triangle should be different for residential kitchens, kitchens for disabled
people, and commercial or industrial kitchens. To support these variations
simultaneously without causing a proliferation of alternatives that the designer

 Tacit and Explicit Understanding in Computer Support 197

must cope with explicitly, a perspectives mechanism would be useful. Such a
mechanism would allow the development of various traditions of kitchen design,
like “disabled,” “commercial,” etc. Then all the palette items, catalog examples,
issue-base entries, domain distinctions, and critic rules relevant to a given tradition
would be grouped together in their own perspective. Section 9.1 presents a scenario
showing how lunar habitat designers can use HERMES to work with information in
multiple perspectives for traditions.

Figure 7-3. Growth in total and formalized information.

From Fischer, et al. (1993c, p.5).

A perspectives mechanism for traditions would facilitate the evolution of the
knowledge base. Developers of design environments have proposed a model of
evolutionary growth that mixes tacit and explicit development by means of
alternating phases of system usage and reseeding (Fischer, et al. 1993c). (See
Figure 7-3.) They think of the use phases as periods in which knowledge is entered
in predominantly informal formats (e.g., natural language text). Then, during a
phase of reseeding of the knowledge base, knowledge engineers would help to
formalize this new knowledge, explicating and operationalizing it in, for instance,
formal (computer interpretable) critic rules. (Shipman, 1993). A perspectives
mechanism would allow new knowledge to be organized into alternative traditions
by defining perspectives in which to group related information. To some extent,
the use of perspectives for these traditions would allow users to add their informal
knowledge within the appropriate perspectives in which they were working, so that

 Tacit and Explicit Understanding in Computer Support 198

the organization would take place naturally. Section 9.3 describes mechanisms in
HERMES for supporting knowledge evolution by creating and merging
perspectives.

A mechanism for supporting perspectives for traditions was proposed by Mittal, et
al. (1986) as part of the PRIDE design environment. They called their technique
“virtual copying of networks.” They noted that in many systems knowledge is
represented by networks of inter-connected sets of objects. Closely related
alternative versions of these networks can be created efficiently by using the
original network as a prototype and defining alternatives by pointers to this original
where there are no changes. Only differences have to be represented by new data
in memory. This “copy-on-write” strategy is a standard approach in many
versioning systems, CAD graphics, and even operating systems (Fitzgerald &
Rashid, 1986). In Pride, domain knowledge is represented in a design net, from
which alternative virtual copies (of different traditions) are made. Design work can
then proceed in different versions of the knowledge base:

Specific designs are created by making a virtual copy of this design net. .
. . Alternative designs can be explored by making a number of virtual
copies of a partially completed design, and continuing operations in the
virtual copies. Versioning in this way allows comparison of alternative
designs, something not supported by all versioning systems. (Mittal, et al.,
1986, p.164)

Most versioning mechanisms are file based. They can save the historical state of a
design at a given time to a file on disk for later reference. In contrast, a perspective
mechanism must maintain alternative versions of a knowledge base or of a
particular design within the design environment, so designers can move from one
tradition to another. This is achieved by the virtual copying technique.
Unfortunately, the mechanism described by Mittal, et al. is specific to the LOOPS
programming language and involves modifying the implementation of this
language. McCall (1991/92) proposed a technique for implementing this approach
to virtual copying of issue-base networks in hypermedia to support perspectives
for traditions. This proposal has been worked out in the HERMES substrate (see
Chapter 9).

Perspectives for aspects. Rittel argued that people bring different interests to bear
on design tasks and view the problems under these different aspects (see Section
2.2). Deliberation requires the confrontation of arguments made by people with
these different interests. So Rittel’s IBIS and its subsequent versions have put the
conflicting arguments into one structure where they can be compared. But this
makes it hard to see which arguments belong together within a common
perspective. If one wants to suspend deliberation for a while and work within a

 Tacit and Explicit Understanding in Computer Support 199

commitment to a given perspective, that is not supported by IBIS. The IBIS structure
also does not represent relationships among perspectives as such (since the
perspectives are not themselves represented, but only their elementary arguments).
Thus, one cannot determine if one perspective incorporates others or modifies only
particular arguments of another perspective. In HERMES, perspectives can be
defined to organize any collection of knowledge in the system. Inheritance
relations can be established among perspectives so that information is virtually
copied from one to another.

The discussion of design in Part I repeatedly stressed the importance of viewing
aspects of a design problem. In Chapter 2, Schön particularly emphasized that
designers continually move from focusing on one aspect of a design artifact to
another. In Chapter 3, the aspect of habitability and privacy became determinant
of the designing—the problem with the NASA knowledge base was that it largely
ignored this aspect. In Chapter 4, the idea of interpretive perspectives is key to
Heidegger’s analysis of interpretation; all interpretation, according to this analysis,
takes place focused on a certain aspect of that which is interpreted.

It has been experimentally demonstrated that it is often helpful to consider one
aspect of a problem at a time. Redmiles (1992) showed the usefulness of this for
the interpretation of examples in computer programming problems. His
EXPLAINER system allows a user to switch between several alternative aspects of
problem explanations: graphical, mathematical, programming language
representations, etc. The system uses a perspectives mechanism for viewing the
knowledge base under a given aspect. While the user can select which of several
perspectives to view, the choice is limited to a fixed set of perspectives. The
mechanism here does not allow users to create new perspectives as versions of
existing ones and modify them in line with their interests.

KRL (Boborow & Winograd, 1977)—a sophisticated computer language for
representing knowledge—provides a more flexible perspectives mechanism. KRL
is based on the following principles (among others):

* A knowledge representation language must provide a flexible set of underlying
tools, rather than embody specific commitments about either processing
strategies or the representation of specific areas of knowledge.

* Reasoning is dominated by a process of recognition in which new objects and
events are compared to stored sets of expected prototypes.

* A description must be able to represent partial knowledge about an entity and
accommodate multiple descriptors that can describe the associated entity from
different viewpoints.

 Tacit and Explicit Understanding in Computer Support 200

KRL provides a syntax for describing things in terms of prototypes having default
characteristics (slot values). For instance, a lunar habitat wardroom could be
described as a public area, a meeting space, or a large room. In each of these
descriptions, different characteristics would be specified. Users of KRL can define
new aspects of things by defining prototypes. This does offer a flexible, extensible
system for describing things from aspects. However, it is too fine-grained to
provide a mechanism for organizing systems of perspectives. It allows users to
view different aspects of a given object but does not support the defining of
perspectives which apply to many or all objects, as in HERMES.

Perspectives for viewpoints. In the first versions of JANUS, the issue-base
component was named “Viewpoints.” By this, the developers recognized the need
to support perspectives for aspects. However, JANUS has never had a mechanism
for distinguishing or organizing different people’s viewpoints. While the PHIDIAS
project recognized the need for supporting perspectives for traditions, neither
JANUS nor PHIDIAS have considered supporting the perspectives of individuals or
design teams. As seen in Chapter 9, this is an important use of perspectives in
HERMES.

 It is clear that collaborative work in innovative areas involves dynamics among
individual and group perspectives. The SPIDER system (Boland, et al., 1992) is a
software environment for enriching communication within “learning
organizations”, i.e., less hierarchical, more network-like organizations able to cope
with changing tasks, technologies, and environments. The developers of this
system argue for the importance of mechanisms to support the sharing of
perspectives:

The impromptu, ad hoc nature of the understandings the decision makers
wish to represent requires flexibility in both the representational structures
made available and in the ways these structures can be created, shared, and
modified. In creating an environment to foster richness of communication
through the sharing of perspectives, there are two primary representational
issues to be addressed: 1. What are the structures to be used in the
formation of a perspective? 2. In what ways and through which tools
should users be able to present their perspective for their own introspection
and for the use of others? (p.309)

They claim that structured decision aid systems like IBIS and DRL, which provide
powerful representational tools, “orient the user to a mathematical modeling
paradigm that is neither conducive to flexible, impromptu thinking nor amenable
to the rich communication between colleagues” (p.310). Rather, what they think is
needed is a set of mechanisms that allow the user to easily build and modify a
layered understanding of the situation. SPIDER provides a set of tools to do this

 Tacit and Explicit Understanding in Computer Support 201

within the domain of organizational management, producing linked networks of
spreadsheets, graphical browsers, and textual annotations. These networks are
considered perspectives. The contribution of SPIDER is to emphasize the need for
some kind of perspectives mechanism and to stress the importance of making its
interface easy enough to support tacit thinking rather than just explicit,
mathematical modeling. Unfortunately, SPIDER is not in the domain of design.

Perhaps the most concerted effort to represent design alternatives was that of the
PIE system (Goldstein & Boborow, 1980). Focusing on design in the domain of
software programming, the authors of PIE call for a “contexts” mechanism to
support the flexible examination of alternative designs:

All designers create alternative solutions, develop them to various degrees,
compare their properties, then choose among them. Yet most software
environments do not allow alternative definitions of procedures and data
structures to exist simultaneously; nor do they provide a representation for
the evolution of a particular set of definitions across time. It is our
hypothesis that a context-structured database can substantially improve the
programmer’s ability to manage the evolution of his software designs.
(p.19)

The context mechanism in PIE is complicated in two ways. (1) Contexts (which
support perspectives for viewpoints) are sequences of layers, where layers are
saved states (versions). (2) Layers can be saved by the user or by the system. Once
saved, a layer cannot change, although contexts can evolve by adding new layers.
The contexts and the layers are nodes in the knowledge representation network
itself, rather than separate files, so they can be accessed during the retrieval of
information.

PIE supports personal viewpoints through the convention that different designers
place their contributions in separate layers. Shared viewpoints can be created
through the merging of two designs in a new layer. The designers of PIE do not
claim that such a merger is trivial for complex designs. PIE does not eliminate the
complexity and the need for extensive user intervention, but “it does provide a
more finely grained descriptive structure than files in which to manipulate the
pieces of the design. Layers created by a merger have associated descriptions in
the network specifying the contexts participating in the merger and the basis for
the merger” (p.5).

The context mechanism of PIE provides support for perspectives, but at the cost of
increased cognitive overhead, i.e., a demand for more explicit understanding of
relationships among contexts. The developers tried a number of responses to this
problem through interface features: (1) a way for a user to view two contexts
simultaneously, with differences highlighted; (2) the use of a metadescription to

 Tacit and Explicit Understanding in Computer Support 202

specify default selections of contexts for saving and retrieving information; (3) the
option to turn off the context mechanism. They conclude that “all three of these
strategies have proved useful in some circumstances, but it remains an important
research goal to make the context machinery available to the user in a convenient
fashion” (p.15). This is similar to the approach in HERMES, except that HERMES
perspectives are less complicated and rigid than the PIE layers. Also, a number of
system methods have been defined for supporting the merger of information from
multiple perspectives (see Section 9.2).

Systems like PRIDE, SPIDER, and PIE have responded to the need to develop
mechanisms to support perspectives. In each case, they provide a formalism that
raises and addresses certain important issues of functionality. They also point to
the difficulty of making it easy (i.e., natural, transparent, tacit) to take advantage
of the perspectives mechanism. None of these systems has solved the problem of
how to support perspectival interpretation in cooperative, innovative design within
a domain like lunar habitat design. However, all of them have contributed ideas
for the perspectives mechanism in HERMES (Chapter 9).

7.3. Languages for Human Problem-Domain
Communication

As discussed in Section 7.1, a central thrust of design environments like JANUS is
to eliminate the need for designers to “master the many details inherent in general
purpose programming languages” (Fischer, et al., 1989, p.6) by supporting “human
problem-domain communication.” For example, JANUS provides a palette of icons
that represent key objects in the problem domain of kitchen design. These icons
can be manipulated tacitly with a mouse, with no need for the designer to express
decisions in an explicit programming language. Similarly, the designer views
discussions in the issue-base and messages from the critics in natural language
statements that are formulated in the language of kitchen design, not that of
computational operations.

However, it has also been noted that this kind of human problem-domain
communication is insufficiently expressive for supporting interpretation in
innovative, cooperative design. This section will discuss three arguments for
supplementing human problem-domain communication with some form of
programming language: (1) Recent versions of JANUS have come up against the
limit to expressivity in various ways that call for an end-user programming
language. (2) PHIDIAS and other systems have successfully incorporated end-user

 Tacit and Explicit Understanding in Computer Support 203

programming languages to different degrees. (3) Discussions of knowledge
representation languages provide strong arguments for the utility of general-
purpose programming languages for communicating with the computer more
flexibly. Once more, the point is to find the right mix of tacit and explicit support.
It may be necessary to include an end-user programming language within design
environments for designers to use in extending the current vocabulary of human
problem-domain communication. However, the need to use that language should
be minimized to where it is truly necessary to express things explicitly.
Furthermore, the structure of that language itself should be designed to promote
tacit usage as much as possible, in order to minimize the number of details of the
language that must be mastered.

Increasing expressivity. The need for increased expressivity of communication
in design environments is greatest when it comes to modifying existing knowledge
representations. As long as one can express one’s ideas adequately with the given
representations (for instance, the defined palette items, domain distinctions, critic
rules), there may be no need to go beyond them. This follows from the analysis of
interpretation: explication is triggered by breakdowns in one’s understanding.
Only when the nexus of signification of one’s current tacit preunderstanding is
inadequate for the understanding of something is there a need to make one’s
understanding more explicit. However, when one’s understanding does have to be
extended innovatively, then one needs linguistic resources to make things explicit.
The degree to which things must be made explicit and the length of time for which
they must remain explicit before being resubmerged into a revised tacit
understanding depends on the particular circumstances. It is the same with
interpretation within a design environment (which is, after all, a model of the
designer’s understanding). When the current representation is inadequate, there
must be a way of analyzing that representation more explicitly, modifying its
structure or significance, and then re-submerging the new representation in a form
that can once more be used tacitly.

The end-user modification component of JANUS (Girgensohn, 1992) failed to
provide a smooth transition to the explication of palette items and critic rules that
needed to be modified. It provided extensive interface support for creating new
representations in the form of examples, context-sensitive help, checklists of
required steps, and even critics of the modification process. But it provided no
means for explicating existing tacit representations short of the LISP code of their
implementation. For non-programmers, LISP does not offer a graceful transition
from human problem-domain communication. Moreover, although this version of
JANUS was completely rewritten to support end-user modification, it’s structure
severely limits the scope of possible innovation, even using the power of LISP. This
is because it is not designed to make use of an end-user programming language to,

 Tacit and Explicit Understanding in Computer Support 204

for instance, define critic rules that are significantly different from the existing
seeded rules. As Girgensohn (1992) writes:

The representation of critic rules in JANUS proved to be difficult to
understand for many of the subjects in the user studies. Especially the
applicability condition that relates a critic rule to descriptions of design
units such as (Cooks Self Food) was a source of problems. The
LISP-like format of descriptions and the use of keywords such as Self
was a part of these problems. A representation has to be found that is more
familiar to users such as natural language and at the same time constrained
so that the system can reason with it. Another source of confusion was the
mechanism for specifying how many combinations of design units had to
be tested. For example, a stove has to be near to only one refrigerator, but
it should be away from all windows. . .. A related problem [is] that critic
rules [to] check for the absence of design units cannot be formulated in the
current representation. For example, it is impossible to check whether a
kitchen has a door or whether the window area is at least 10 percent of the
floor space. Stahl (1992) proposes to tackle problems of this kind by
formulating critic rules with a natural-language-like query language in
which the user can formulate queries. (pp. 79f)

This statement lists some of the kinds of issues that an adequate end-user language
would need to be able to express: applicability conditions, self-reference,
combinatorics, absence of units.

There is no reason why these issues could not be stated in a format more natural to
designers than abstract LISP syntax—particularly since LISP itself is designed to
build up more application-specific languages. As suggested in this quotation, what
is needed is a language that can represent the explicit relationships that are implicit
in the tacitly used critic rules and design units in a way that makes sense both for
the designer and for the computer. The HERMES language (discussed in Chapter
10) tries to do just this. It builds up an end-user language for defining critic rules
and other design knowledge in formulations which are as close as possible to
domain terminology. Through the generality of its syntax, the HERMES language
permits designers to define a much less constrained set of critics than those in
JANUS.

A similar limit to expressivity is found in X-NETWORK (Shipman, 1993). This
design environment employs agents to “search for information with certain
attributes within the system and perform operations based on what, if any, objects
they locate. Agents consist of a trigger, a query, and an action” (p.32). By basing
the agents on queries of the current database, the system allows all actions and
displays to be dynamic. The power of the agents is largely determined by the

 Tacit and Explicit Understanding in Computer Support 205

expressivity of the queries, which determine what kind of information the agents
can respond to. In particular, if a designer wishes to modify the way a given agent
is operating, the designer is dependent upon the expressivity of the query
expressions for extending or innovating the agent behavior.

Currently, the queries in X-NETWORK (Shipman, 1993) are limited to the
specifying of a conjunction of attributes:

The query defines the information that must be located before the agent
will execute its action. The query definition area within the agent editor is
similar to the property sheet used to attach attributes to objects in the
information space. This interface limits the expressiveness of the query to
the location of objects matching attribute patterns but allows for the
transfer of skills acquired in using the property sheets. Use of a more
powerful query language based around a hypermedia model, such as that
found in HERMES (Stahl, this dissertation), would allow greater
expressiveness but with the added cost of the users being required to learn
the syntax and semantics of the formal language. Beyond such traditional
query mechanisms, query definitions should also be allowed to use built-
in primitives that do complex analysis (p.34).

An end-user language such as that in HERMES could express more than
conjunctions of attributes without requiring a forbidding syntax and semantics. It
could also include primitives for the complex analyses mentioned. As noted in this
passage, the concern is with the trade-off between increased expressivity and
mounting cognitive overhead. The ideal would be to partially end-run this trade-
off by minimizing the cognitive overhead that comes from making things explicit
by keeping even the use of the language as tacit as possible.

Incorporating end-user programming languages. PHIDIAS (McCall, et al.,
1990a) incorporates a query language for its issue-base. That is, the issue-base
consists of a hypertext network in which each issue, answer, or argument is a
distinct node connected with labeled links. In order to display part of the issue-
base, PHIDIAS evaluates a query. Thus, if issue-234 is “What should be the location
of the refrigerator?”, then the issue-base discussion of the proper location of the
refrigerator would be generated with the query:

issue-234 with answers with arguments

The PHIDIAS query language began in an earlier version named MIKROPLIS
(McCall, 1989). This was primarily a system for constructing and using issue-bases
for designing. It was based on McCall's (1987; 1991) variant of Rittel's IBIS:
Procedurally-Hierarchical-Issues (PHI). A PHI issue-base consists primarily of
issues, answers, arguments, and resolutions connected by links based on the

 Tacit and Explicit Understanding in Computer Support 206

"serves" relation. PHIQL, the PHIDIAS Query Language was developed to meet the
needs of someone using a PHI issue-base. Its primary use was to display subtrees
of the issue-base hierarchy, such as:

answers of subissues to issue-105
answers of issues with arguments
issues containing "doorway"

The original PHIQL language was based on a number of observed regularities in
the formulation of queries in natural language. It was hoped that by incorporating
these patterns of natural language in the computer language it would seem more
natural and "English-like" than existing programming languages. In particular, it
was noted that the procedure of following links of type L from node N was
expressed by the phrase L of N in English. N was considered to be the subject of
this expression and L to express a relationship applied to that subject. Successive
relationships (i.e., link traversals) could be applied by adding additional phrases to
the front of the query: L3 of L2 of L1 of N. Various conditions, such as
containing a given substring, could follow the subject (McCall, 1989). By means
such as this, a query language was defined with a simple syntax that could be easily
parsed and that appeared English-like. The Mikroplis User Manual (McCall, et al.,
1983) noted:

The Mikroplis command code is similar to natural English. It is, however,
a code, and as such must be learned and followed. The intention in
imitating natural language—for instance, the fact that a variety of
prepositions and articles is allowed, or that the syntax generally follows
the subject/predicate conventions of English—was to minimize learning
effort and to essentially eliminate the kind of opaque codes often found in
other command sets (n. p.).

A number of limitations were imposed to maintain the workability of this
approach: issue, topic, and document nodes had to have standardized names like
issue-123; other nodes could not be direct subjects of a query; and the syntax
was kept simple.

Query input was done through a prompted command line interface, so users simply
typed in the query like a sentence. Incidental words like articles and prepositions
were allowed but ignored by the parser. Users could think about the information
they wanted in the same terms that PHIDIAS accepted as a query. This made the
query language easy to learn and to use. In proposing to use PHIQL for defining
queries in virtual structures, McCall (1990/91) continued to emphasize the
English-like character of the language:

 Tacit and Explicit Understanding in Computer Support 207

PHIQL is a highly English-like language which has been in use by end users
for more than six years. This experience has consistently shown PHIQL to
be learnable within a single day—often within an hour. . .. Though it
appears purely declarative to end users, PHIQL is in fact an applicative
(functional) language . . . [yet] statements in PHIQL almost always appear
to be ordinary (declarative) English expressions. (p.6)

McCall (1990/91) proposed extending the original PHIQL to help make PHIDIAS a
viable alternative to expert systems. This proposal focused on adding the
functionality of virtual structures, that is expressions in the query language
embedded in hypertext nodes. When a node that has been defined as a virtual
structure is evaluated, it returns the results of the embedded query in place of its
textual contents. This mechanism was seen as a way of embedding computational
power in the very nodes of the hypertext database. (See Appendix B for a
discussion of how this idea has been developed in the HERMES language.)

To give significant inferencing power to virtual structures, the PHIDIAS query
language needed to be extended to include several new operations. The technical
section of the proposal (McCall, 1990/91) detailed the planned modifications as
follows:

1. Addition of comparison operators: PHIQL now only uses substring
matching. It will need other comparison operators, including >, <, and =.

2. Addition of existential and cardinal (numerical counter) quantifiers:
These will allow queries which ask for such things as nodes having no
children.

3. Addition of negation operator (“not”).

4. Addition of a true "if" statement, so that conditional queries can be
stated more naturally.

5. Addition of capability for conjunction of conditions.

6. Addition of capability to compare the contents of a pair or more of
retrieved nodes. This will allow the comparison of user-input nodes,
whose contents cannot be known in advance by the system (p.7).

These extensions were implemented in an initial version of the HERMES language.
They were tested by developing an application in the text-based domain of
academic advising. This domain was chosen because it took good advantage of the
inferencing capability. It also provided a basis for comparison with a hypertext
system lacking inference (Peper, et al., 1990) and with expert system approaches.
This version of the language is reported on by Stahl, et al. (1992). Appendix A

 Tacit and Explicit Understanding in Computer Support 208

reports on a programming walkthrough of this language and Appendix B discusses
the academic advising application.

To support a wide range of inferencing, the language had to be extensively
expanded to include true/false conditionals, numerical calculations, comparison
operations, and nesting of phrases. A typical request in the new language—taken
from the test domain of academic advising—might look like the following:

courses of sandra that have studio_types and that also have
less than 3 prerequisites, with their prerequisites.

To evaluate this statement, the system would navigate from the student node,
sandra, across all its courses links; check which nodes arrived at had at least
one studio_types link and also had less than three prerequisites links;
and output a list of the course nodes that satisfied these conditions, along with a
sublisting of their prerequisites. Here is the output:

***COURSES:
1. ENVD 2110 Architectural Studio
 *** PREREQUISITES:
 1. ENVD 1000 Environmental Design Studio
 2. ENVD 1014 Intro to Environmental Design
2. ENVD 2120 Planning Studio
 *** PREREQUISITES:
 1. ENVD 2110 Architectural Studio

The structure of statements in this language and their method of evaluation are
based on the structure of hypermedia. The queries investigate the node and link
structure, rather than the content of a relational database, and their evaluation
proceeds by navigation across the links from initial nodes. In this sense, the
research represents an effort within the hypermedia paradigm. The thrust of the
effort is to exploit hypermedia mechanisms to achieve certain functionality of
artificial intelligence and information retrieval technologies. Thus, the goal was to
expand hypermedia to include:

* Some of the inferencing capability of PROLOG, but without the comprehension
difficulties of predicate calculus and explicit variables;

* Some of the querying ability of SQL, but applied to an object-oriented,
hypermedia database;

* Some of the advantages of semantic databases, but allowing semantic
relationships to be defined between instances as well as types by labeled links;
and

 Tacit and Explicit Understanding in Computer Support 209

* Some of the utility of semantic networks, but without restriction to a pre-
defined set of link types or to semantic relationships.

The PHIDIAS query language illustrates a number of important principles: (1) It
shows one approach that has proven successful for defining an end-user
programming language that minimizes the cognitive overhead by modeling its
syntax and semantics on that of natural language. (2) While the syntactic structure
of queries follows a standard subject/predicate order, the vocabulary of terms is
taken from the problem-domain (e.g., the node names and link types for issue-base
queries are user-defined). (3) Moreover, the vocabulary is easily extensible by the
users, so they can develop terminology for expressing their innovative
interpretations of the structure of the issue-base. (4) The advanced version of the
language includes logical and computational operations for specifying complex
conditions. (5) Additional computational primitives can be included that would be
useful in a design environment for a specific domain. (6) The language is based on
the hypermedia structure of the database that it queries and expressions in the
language can be incorporated in the nodes of the hypermedia as virtual structures.

The HERMES language is based on the PHIDIAS query language. It significantly
extends the computational power and flexibility in order to support interpretation
in design. It retains the idea of a constrained syntax, that made the PHIDIAS
language easy to use, and it provides additional interface supports for its much
larger syntax. However, the HERMES language moves away from the “English-
like” emphasis in PHIDIAS as a result of issues that arose in programming
walkthrough evaluations of intermediate forms of the language. Rather, the
HERMES language normally hides much of the computational details to support
tacit usage while allowing users to make the structure of expressions more explicit
as needed for modification and interpretation.

The PHIQL language suggests the possibility of including an end-user
programming language in a design environment. Such languages have proven
useful in other computer applications. Many commercial products like CAD
systems, spreadsheets, word processors, database management systems,
MATHEMATICA, and HYPERCARD include macro languages, scripting languages,
or end-user programming languages. While these languages are not always easy
for non-programmers to use (Nielsen, et. al., 1991), they often provide a middle
ground between canned applications and programming environments in which
non-programmers can gradually learn to customize operations and local
developers or local-site super-users can help people go beyond the limitations of
standard applications (Nardi & Miller, 1990).

Another advantage of a language for design environments is to integrate the
knowledge representations of various components. Even if some effort is involved
in learning to use the language, if the same language applies uniformly to many or

 Tacit and Explicit Understanding in Computer Support 210

all of the system’s components then once it is learned it provides the power to
modify and extend all knowledge in the system. The language can impose a unity
on a complex system. For instance, the KID version of JANUS is the most multi-
faceted implementation of that system, with many components and linking
subsystems. The developer of KID has remarked that “now that all these
components have been prototyped with different knowledge representations it is
time to integrate them with a unified substrate, and the HERMES language would
be a great way to do that.” (K. Nakakoji, personal communication, June 7, 1993.)

Of course, the inclusion of a language does not change a design environment’s
knowledge representations, but the decision to use a language across components
imposes a design constraint that favors an integrated system built on a consistent
knowledge representation. Part III discusses the role of the language in the
HERMES integrated substrate.

Communicating more flexibly with the computer. For a design environment
that is centrally built around an end-user language, the design of the language and
the design of the knowledge representation are intimately linked. The developers
of the design rationale language, DRL (Lee & Lai, 1992), for instance, point out
that “a large body of research in the last two decades or so points to the importance
of choosing the right representation for a given task (e.g., Brachman & Levesque,
1985; Winston, 1984). The task of using and reusing design rationales is no
different.” They argue that the common perception that the capturing of design
rationale is not worth the effort may be based on a representation problem. It may
be that a different representation system or language would allow people to
represent more easily what they want to represent in a way that can provide
significant benefit.

Many research programs in AI have concentrated on designing knowledge
representations and languages that had maximal computational power based on
formal schemes. Only afterward did they attempt to add a user-friendly interface
facade. However, it may make more sense to start out from an effort to design a
language oriented toward tacit understanding and then to gradually extend its
computational power, always keeping in mind its usability. Systems like KRL, PIE,
and DRL demonstrate the importance of sophisticated programming languages in
knowledge-based systems. However, they require a high level of explicit, abstract
analysis to use. The PHIDIAS Query Language, in contrast, proved to be rather
natural to use, but it had limited power.

The ACE project took the alternative approach to combining computational power
with usability by starting with a consideration of how to empower non-
programmers and then worrying about formal computational issues. The ACE
developers studied the programming language needs of end-users and local
developers, and attempted to develop end-user languages for them. This resulted

 Tacit and Explicit Understanding in Computer Support 211

in ACE, an Application Construction Environment (Johnson, et al., 1993). ACE
provides a set of frameworks for defining application-specific programming
languages. These languages allow end-users and local developers to extend the
functionality of applications by adding behavior to their systems without their
having access to source code and without recompilation (p.47). ACE adopts the
model of spreadsheets, by focusing on a well-thought-out set of primitives and
avoiding complex explicit control structures, such as “for” loops and recursion.
Thus, it goes beyond the superficially user-friendly style of HYPERTALK, which
requires iterations and conditionals to be explicitly expressed rather than being
implicit in application-specific operators. ACE is intended to “foster a methodology
more like that fostered by spreadsheets. It puts users at the center of the
development process” (p.53). That is, users are seen as the primary implementors
of applications; they assemble the main components of their application and get it
working. To support this, users are supplied with application componentry in the
form of reusable, extensible software libraries, and components are self-describing
so that new ones can be easily added to the system.

The HERMES language adopts much of the ACE approach, starting with a
consideration of the user’s (interpretive) needs. The HERMES language provides a
computationally active medium in which designers can build up their own
behaviors and supports. Systems of defined language expressions can evolve, be
organized in perspectives, and be shared by different designers of different skill
levels.

Programmable design environments. The idea of combining design
environments with the approach of programmable applications (Eisenberg, 1992)
has been explicitly proposed by Eisenberg and Fischer (1992). They motivate this
combination on pragmatic grounds, hoping to integrate the best features of each
approach and overcome their respective weaknesses. While they do not address
many of the issues that arise in actually implementing a programmable design
environment, they recognize the advantages of extending a direct manipulation
system with an appropriately designed end-user language. HERMES can be seen as
a first instantiation of the idea of a programmable design environment, moreover
one that is motivated by principles of human understanding.

The system suggested by Eisenberg and Fischer (1992) consists of two
independently conceived halves (as mirrored in the structure of the paper, which
discusses the notions of programmable applications and design environments
separately, and then worries about their interactions). However, the indications are
already present in their discussion that the attempt to implement such a system
would lead to an integrated approach, as it did in HERMES. For instance, they
suggest that “the programming environment ‘half’ of the application should be
constructed around a domain-enriched language (which might be a newly-

 Tacit and Explicit Understanding in Computer Support 212

constructed language or an application-specific ‘dialect’ of some existing general-
purpose language)” (p.81). This distinction between a new language and a dialect
of an existing one underestimates the extent to which the language must be
integrated with the structure of the design environment’s knowledge
representations. Any language useful for extending the expressibility of the design
environment will be severely constrained by (i) the need to incorporate primitives
that refer to the elements of the design environment, (ii) the need to incorporate
functionality that corresponds to the structure and tasks of the design environment
(e.g., navigating hypermedia links and filtering by specific kinds of criteria), and
(iii) the goal of making the language accessible to designers. Whether or not an
end-user language that meets these constraints is built on top of an existing
language like PASCAL, FP, LISP, or SCHEME it will look like a new language. On
the other hand, any flexible end-user language would want to incorporate much of
the power of programming languages and would do well to build upon or model
itself after a successful language at the computational level. So, in the end the
proposed alternatives come down to roughly the same thing and the important
point is the integration of the language with the structure and goals of the design
environment. Chapter 10 will show how the HERMES language was designed
specifically to satisfy these constraints.

Design rationale is a particular concern of Eisenberg and Fischer (1992). They
want the user to be able to reuse design examples from the catalog and to copy and
modify the associated rationale. They recognize that this puts a general
requirement on the system to support incessant reuse and plasticity: “The upshot
of all this is that our systems must support users in creating, retrieving, browsing,
modifying, storing, and reusing information structures that capture design-related
decisions—and the systems must moreover support this type of activity
interactively, in the broader context of creating new artifacts” (p.86).
Unfortunately, they never suggest mechanisms to achieve such system-wide
plasticity of representation or to organize the proliferation of different versions of
rationale and other kinds of knowledge. The substrate in HERMES (see Chapter 8)
is designed to maximize the ability of users to modify all forms of knowledge and
the perspectives mechanism (Chapter 9) is available for users to organize their
versions of knowledge and reuse design examples with their associated rationale
through virtual copying.

The HERMES perspectives also solve another problem raised by Eisenberg and
Fischer (1992), that of maintaining “historical” information. Versions of a design
at a given state can be saved in their own perspectives. The issue of whether
something was created by direct manipulation or by programming does not arise
in HERMES, because the HERMES language does not change state; it only displays,
analyzes and critiques the current state—which is created via direct manipulation
and dialog boxes. Although the SCHEMEPAINT (Eisenberg, 1992) programmable

 Tacit and Explicit Understanding in Computer Support 213

application showed that a programming language could be useful in creating
precise, complex graphics, there is little sense in Eisenberg and Fischer (1992) how
the language would be used in the creation of designs in other domains.

The example given for use of the language in a programmable design environment
for graphs does not create new graphs but queries the hypermedia database. It is to
“write a procedure to find all catalog entries of a particular graphical type within
two links of a particular entry” (p.87). This example is not worked out but could
be accomplished in the HERMES language. Say the particular catalog entry was
named mike’s graph and the particular graphical type of interest was pie
graph. Then the following expression would return the desired results:

all associations of all associations of mike’s graph that
are of kind pie graph

If the only kind of link type of interest is that of similar example links
between catalog entries, then one could define list of pies as:

similar examples of similar examples of mike’s graph that
are of kind pie graph

and then evaluate the expression,

deliberation of list of pies

to display the design rationale attached to all the catalog entries in the list.

Note that in order to carry out this task, all the relevant knowledge must be in an
integrated knowledge representation, linked together by hypermedia links. That is,
the catalog items (graphical representations), the specification elements, and the
design rationale (text and pictures) must be compatible nodes that can be linked
together in a way that the language can navigate. Both by the nature of the tasks
that are proposed as desirable by Eisenberg and Fischer (1992) and by the necessity
of having a single language refer to and analyze all knowledge in the system, an
argument is implicitly made for the use of an integrated substrate to define a
hypermedia structure and its accessibility via the language and perspectives. As
Part III will show, this is precisely the role of the HERMES substrate as a basis for
programmable design environments.

There are good reasons to incorporate programming languages in design
environments in order to go beyond the limited expressivity of human problem-
domain communication as suggested by the notion of a programmable design
environment. Systems like KRL, PIE, and DRL have shown the utility of languages
to define sophisticated knowledge representations and design rationale capture
systems that can be supported with powerful computational means. Each of these
systems has, however, run into the need to make the systems more usable by

 Tacit and Explicit Understanding in Computer Support 214

supporting tacit understanding. The PHIDIAS query language has suggested an
approach to syntax and semantics that promises to reduce the explicit cognitive
overload of formal programming languages for non-programmers. ACE suggests
additional techniques for keeping computations tacit and for designing languages
that help promote plasticity of knowledge representation. HERMES tries to
incorporate ideas like these to achieve an adequate mix of mechanisms requiring
tacit and explicit understanding on the part of designers using an end-user language
in a design environment. Thereby, it hopes to go far toward overcoming the
problem of tacit and explicit understanding in the computer support of
interpretation in design.

Part III. Computer Support of
Cooperative Design

 “The philosophers have only interpreted

 the world in different ways;

 the point would be to transform it.”

 Karl Marx

 Theses on Feuerbach

 (1844, S.192)

 Tacit and Explicit Understanding in Computer Support 216

The chapters of Part III discuss the three major features of HERMES: the
hypermedia knowledge representation, the perspectives mechanism, and the
language. HERMES is an instantiation of the theory of computer support proposed
in Part II. The discussion of these features of HERMES is intended to illustrate how
a system based on the theory might look—a set of mechanisms for supporting the
situated, perspectival, linguistic character of interpretation. While the theory
suggests the usefulness of a language and a perspectives facility, many very
different kinds of languages and perspectives mechanisms are possible. The
particular mechanisms in HERMES that have been prototyped as part of this
dissertation, suggest one possible approach. The discussion of these mechanisms
should illustrate the application of the theoretical framework previously developed
to the concrete design of software; these mechanisms represent an attempt to
transform the philosophical interpretations into practice.

In this Part, Chapter 8 discusses the integrated hypermedia structure. This provides
the medium for representing the design situation using the many media of design.
The perspectives mechanism of Chapter 9 provides for flexible organization of all
knowledge in the system in order to support collaboration. The language presented
in Chapter 10 offers designers increased power for interpreting, communicating,
and capturing their tacit understandings more explicitly.

Each of these chapters is divided into three sections. The first reviews the needs
which must be addressed by the mechanisms discussed in the chapter. The second
describes in some detail the implementation of the mechanisms in the HERMES
prototype. The third illustrates how the explicit mechanisms are actually used by
designers working in HERMES. Generally, the interfaces to these mechanisms
encapsulate their computations so that they normally function behind the scenes of
relatively tacit usage by designers, only becoming more explicit when the
designers must articulate their understanding.

Together, the three mechanisms that are detailed here are intended to support
interpretation in design. Specifically, they support the situated, perspectival,
linguistic character of design. The kind of design they are meant to support is that
of exploratory domains like lunar habitat design, which can be characterized as
innovative in nature and collaborative in structure. The computer support proposed
has been developed particularly to help designers move back and forth along the
spectrum of tacit and explicit understanding. The description of each mechanism
will show how it promotes tacit usage as well as facilitating more explicit
understanding when that becomes temporarily necessary.

 Tacit and Explicit Understanding in Computer Support 217

CHAPTER 8. REPRESENTING
THE DESIGN SITUATION

Many forms of knowledge are required to support design. The lunar habitat
designers in Chapter 3 used sketches of previous designs, graphical representations
of design components, discussions of design rationale, terminology for thinking
about the design, information from experiences of former space missions,
drawings from references, and guidelines from NASA documents. They viewed
problems from alternative perspectives, and they deliberated issues using concepts
that were redefined in the process. Rather than simply constructing a solution from
these many pieces of retrieved knowledge, the designers continually modified the
knowledge, trying numerous variations. They continually reinterpreted their task,
candidate solutions, and the knowledge that went into the solutions.

To support what Part I of the dissertation described as the process of interpretation
in design with a computer-based design environment requires a system that
provides many media of representation. Furthermore, the representations of
knowledge in the media must be designed to support incessant modification,
tailoring, customizing, or plasticity by end-users.

According to Part II, a design environment should be people-centered, supporting
the human designer’s ability to interpret and make judgments. It should support
tacit usage as well as allowing designers to make knowledge successively more
explicit to meet their specific interpretive needs. This suggests incorporating an
end-user language for explicating terms and a perspectives structure for organizing
different people’s customized versions of knowledge. To take advantage of the
computational power of the computer, a design environment should provide a
computationally active medium in which the designers can work individually,
communicate with the computer, and collaborate with other designers on team
work.

The HERMES system described in Part III attempts to meet these requirements by
providing a substrate of functionality that can be used by all components of a
design environment. It defines a multi-media structure in which all elements of
knowledge can be defined and interconnected. All knowledge is represented as
data that can be retrieved and modified by the end-user. The knowledge
representation structure integrates a perspectives mechanism so that all
representations of knowledge are organized into hierarchies of user-defined
contexts. It also integrates a language that designers can use for defining and

 Tacit and Explicit Understanding in Computer Support 218

modifying representations of knowledge, including definitions of computer agents
such as critics, queries, and displays.

Section 8.1 describes the characteristics of the HERMES substrate. It discusses how
it meets the requirements from the analysis of design as interpretation presented in
Part I and from the theory of computer support for interpretation in design
proposed in Part II. Section 8.2 shows how the substrate is defined at a more
technical level. It discusses the knowledge storage, retrieval, modification, and
interconnection mechanisms. Section 8.3 then illustrates how a lunar habitat design
environment with multiple components can be built on top of the HERMES
substrate. In addition to outlining how components for construction, rationale,
specification, and catalogs can be built, it highlights the usefulness of the
hypermedia, perspectives, and language in defining these components.

8.1. A Computationally Active Medium for
Designers
The HERMES substrate. HERMES is a substrate for building design environments
to support interpretation in innovative design. Many of the previous design
environments discussed in Chapter 7 got along without primary attention being
given to a substrate level. This is because those systems prototyped functionality
specific to individual components. However, recently there has been a proliferation
of efforts related to JANUS to introduce functionality that spans all the components
of a design environment. KID (Nakakoji, 1993) pushes the non-substrate, multi-
faceted approach to its limit, integrating design decisions made in one component
with displays in others by “linking mechanisms” to bridge different knowledge
representations. But even here, the beginnings of an integrating language are
established with the formulations of specification-linking rules, which tie together
several major components (critic rules, specification, catalog, domain
distinctions). MODIFIER’s (Girgensohn, 1992) approach to end-user modifiability
of data in all components was an effort that naturally led to integration. The
components whose knowledge became modifiable (e.g., the palette and its critics)
were, in effect, redesigned to be based on a minimal common substrate of LISP
tools for using property sheets. INDY (Reeves, 1993) proposes history capture
mechanisms and embedded annotation techniques that apply to events in all parts
of the system. In order to implement this, it was necessary to rewrite JANUS to
represent all events in the system uniformly. Similarly, the idea of a
“programmable application” (Eisenberg, 1992; Eisenberg & Fischer, 1992)

 Tacit and Explicit Understanding in Computer Support 219

suggests the applicability of an end-user programming language throughout a
system, as noted in Chapter 7.

An explicitly designed substrate is a way to have various special components
implementing multi-faceted functionality while at the same time providing a base
of common functionality that is shared by all these components. Certainly, a
construction component needs to provide some special supports that are not
appropriate to a design rationale component. However, it may be useful to have
hypermedia linking, partitioning of knowledge by perspectives, and definition of
expressions in an end-user language available in many or all the components. An
architecture based on an integrated substrate can support the multi-faceted
functionality required for a design environment.

X-NETWORK (Shipman, 1993), for instance, has hypermedia linking, multi-user
access, and incremental formality mechanisms that must apply to multiple
components; it implements these within a hypermedia object system substrate.
HERMES is also a substrate that can provide functionality that applies to all parts
of a design environment built on it. Its language supports end-user-
programmability of all components, and its perspectives affect all knowledge used
in the system. Its critics, palette, catalog, construction, and argumentation displays
are all programmable in the language and their definitions or contents are
dependent upon the selected perspective.

There are several benefits to creating a design environment substrate. As shown in
Section 8.3, it facilitates creating new components within an integrated, high-
functionality system by exploiting powerful existing data structures. It permits
adding additional trans-component functionality (e.g., for supporting learning,
collaboration, interpretation, evolving formality, or agent mechanisms) by
enhancements at the substrate level. It provides an integration that helps both
developers and end-users because the various components now use standardized
structures, mechanisms, and interfaces, so techniques learned in one component
transfer well to others.

The layered architecture of HERMES has the following structure (see Figure 8.1):

(1) Programming environment. This layer includes commercial object libraries for
list processing, graphics, B+ indexing, windowing user interface, etc., as well as
the PASCAL source code compiler.

 Tacit and Explicit Understanding in Computer Support 220

Figure 8-1. Layered architecture of HERMES.

(2) HERMES substrate. In addition to the hypermedia structure, the language
definition, and the perspectives mechanism, this substrate level includes an
efficient, scalable object-oriented database management system for persistence of
the hypermedia data structure. With the language interpreter, this substrate alone
consists of about 200 object classes (roughly 20,000 lines of code). The power and
flexibility of HERMES for empowering users to represent, manipulate, and interpret
domain knowledge comes from the complex interactions of the functionality of the
substrate—much more than from the higher-level components of the multi-faceted
user interface built on top of it.

(3) Design environment user interface. Components like adaptive palettes, design
catalogs, and adaptable argumentation are defined as specialized window objects
(graphical user interface features). They use the functionality of the substrate to
retrieve hypermedia nodes in the active perspective using queries in the language.
Some interface components are necessary for user access to the language and
perspectives; others are specific to an application, like lunar habitat design. User
interface components can take advantage of terms defined in the language, so that
end-users can modify the behavior by redefining the terms.

(4) Seeded domain knowledge. The system is initially seeded with knowledge
specific to the domain for which the system will be used, such as lunar habitat
design. This includes definitions of useful terms and queries in the language and
an initial hierarchy of perspectives for organizing knowledge. This seeded

 Tacit and Explicit Understanding in Computer Support 221

information is represented using mechanisms defined in the substrate and is stored
in the database.

(5) User definitions and perspectives. Users can read, modify, and add to any of
the domain knowledge. They can organize alternative versions of text, graphics,
and language definitions (e.g., domain distinctions, critics, and queries in the
language) by perspectives. The substrate is designed to empower users of various
skill levels to reuse, modify, and extend all forms of information stored in the
knowledge base and to reorganize it into meaningful perspectives.

A hypermedia system. The HERMES system is built on an extended form of
hypermedia. Hypermedia can be understood as a system of nodes having content
of various kinds connected together by links to form a network or graph structure.
Alternatively, if one focuses on the language elements and their interconnections,
the HERMES hypermedia can be viewed as an extended form of semantic network
(Woods, 1975). In HERMES, the content of nodes can take the form of various
media, such as text (e.g., for the issue-base), graphics (for the construction area),
or expressions in the HERMES language (like critic rules). In this way, everything
that needs to be represented in the computer to support design can be represented
in an appropriate data structure that is still part of an integrated system. Each
element of information can be interconnected with other elements as needed.

The media requirements for a system to support design are extensive. As
mentioned in the introduction to this chapter, the lunar habitat designers in the
transcripts used the following: sketches of previous designs, graphical
representations of design components, discussions of design rationale, terminology
for thinking about the design, information from experiences of former space
missions, drawings from references, and guidelines from NASA documents. In
order to represent these in the HERMES system, the hypermedia substrate defines
the following media for the content of nodes: character (text), number (reals),
conditions (boolean-valued expressions), graphics (vector graphics), images
(bitmaps), pen-based sketches, sound (recorded voice), and video recordings.

Because HERMES needs to display information in accordance with interpretations
that are not pre-defined but are defined by the user, all displays must be computed
dynamically. This is done with dynamic displays, in contrast with the page-based
approach of most hypertext systems. In a program like HYPERCARD, a presentation
of design rationale might contain a pre-formatted page of issues. Embedded with
an issue might be a button for its justification. Clicking on that button brings up
another page of text presenting the justification. Similarly, in JANUS a page of
design rationale contains highlighted terms; clicking on one of them displays
information about that term, allowing one to browse through pages of related
textual information. In HERMES, however, the justification must be recomputed
based on the current interpretation. This is done by executing a query specifying

 Tacit and Explicit Understanding in Computer Support 222

the information desired (e.g., justifications of answers of a
certain issue) and based on the currently active interpretive perspective. The
results of the query are then displayed, in place of a pre-formatted page. This
approach was adopted from the PHIDIAS design environment, which featured a
limited query language for allowing the user to structure textual displays (McCall,
1989). Because in this approach design rationale is generally stored at the relatively
fine granularity of sentences rather than pages, it can be modified either by
changing or adding short sentences, or by modifying the definition of the query.

The HERMES language provides the means of navigating the links of the HERMES
hypermedia. Links between nodes have types, like an answer link to connect an
issue with its answers. In addition, as described in Chapter 10, the language defines
processes of information retrieval, analysis, filtering, display, and critique, which
make link traversal more dynamic than just following static link types. Expressions
in the language can be incorporated in computational agents or in interface features
of a design environment. All terms and expressions defined in the language are
stored as nodes of the hypermedia. The language can also be embedded in the
hypermedia structure in various ways. For instance, nodes and links can be made
conditional on an arbitrary expression in the language that evaluates (at run-time)
to true or false. The content of a node can also be defined by the result of an
expression in the language that evaluates to a list of other nodes. These two uses
of the language to make the content of nodes dependent upon the run-time
evaluation of expressions are known as conditional nodes and virtual structures,
respectively. (See Halasz, 1988, and McCall, et al., 1990a.)

The hypermedia system also defines and incorporates HERMES’ perspective
mechanism. The links between nodes maintain lists of which perspectives can or
cannot view the connected nodes. When the link is traversed during the evaluation
of an expression in the language (which is, at an implementation level, the only
way that the node the link leads to can be retrieved or displayed), the currently
active perspective is compared with this list.

Active media. The HERMES hypermedia provides a computationally active
medium for designers to work in. All information retrieval, display, analysis, and
critique are performed by navigating the hypermedia network of nodes and links.
The content of the nodes may be dynamically dependent upon other content in the
network, as in conditional nodes and virtual structures. Whether or not such nodes
are involved, the retrieval of information depends upon an expression in the
language, which may in turn be composed of many other terms, whose definitions
can be changed. Furthermore, information retrieval and display are always
dependent upon the current perspective and the list of perspectives from which it
inherits. All of these dependencies are under the control of the person using the
system. However, the synergy of the various dependencies (definition of the

 Tacit and Explicit Understanding in Computer Support 223

retrieval expression, content of nodes, definition of language terms, choice and
structure of perspectives) quickly exceeds the ability of people to foresee the
results in detail. Rather, users of the system proceed with a largely tacit
understanding and the computer works out the details. In this way, people can
concentrate on the interpretive tasks while the computer takes care of the detailed
but routine bookkeeping. This exploits the advantage of a computational medium
over passive external media like paper.

People-centered system. The language provides a central control mechanism over
computational processes in the HERMES system. As such, it makes the control over
all computations ultimately available to designers using the system. The language
is a means of communication between the computer and its users, through which
end-users can specify in as much detail as they wish how information is to be
stored, retrieved, analyzed, displayed, and critiqued. At the same time, the system
is seeded with default definitions so that designers do not have to be concerned
with these matters in any more detail than they need to be as a result of their design
tasks.

Because HERMES is designed for exploratory domains like lunar habitat design,
however, a seeded knowledge base is only a starting point and source of reusable
definitions. Design requires incessant modification and tailoring of definitions of
all relevant knowledge based on the particular design situation, the active
perspective, and the linguistic frameworks and terminology in use. This means that
all information in the system must be flexibly modifiable.

It is not only that there are no longer any experts in the traditional sense because
systems of knowledge have become too extensive and too rapidly changing for
individuals to master (Fischer & Nakakoji, 1992). Beyond this, in exploratory
design tasks like lunar habitat design, there is no such thing as an objective body
of domain knowledge that could even in principle be defined once and for all. So-
called domain knowledge arises through processes of interpretation that are
situated, perspectival, and linguistic. This certainly does not mean that such
knowledge is arbitrary or that it cannot be justified. On the contrary, it is grounded
precisely in the situations, viewpoints, and traditions that provide its background
knowledge and in the deliberations that importantly accompany it. But the point is
that alternative versions of the knowledge are applicable under different conditions
and only designers can determine relevance.

Evolving knowledge base. The plasticity of HERMES’ language and other media
takes off from the ideas of PHIDIAS. In PHIDIAS, node and link types were user-
defined. This was a simple matter of allowing users to define new names for types
of nodes and links. Then, new nodes and the links between them could be labeled
with any one of these types. The importance of this came in its effect upon the
PHIDIAS query language (discussed in Chapter 7). This language consisted largely

 Tacit and Explicit Understanding in Computer Support 224

of options for combining node and link types. So by careful choice of type names,
query expressions could be made to read descriptively, and the language could be
extended to include new terms. The HERMES language is far more complex, but it
retains the principle that all semantic elements should be user-definable and
namable. In fact, this principle is extended to the various media as well, so that
everything in the knowledge base can be named and modified.

All representations of knowledge in the HERMES system are maintained as data in
the hypermedia information base on disk. This makes it easy for the system
builders who define components for design environments built upon the HERMES
substrate, for knowledge engineers who seed or reseed the knowledge base, as well
as for end-users who tailor the information to their own needs. Standard interfaces
are available for browsing, editing, and extending knowledge in all media.

The HERMES substrate is designed to support constant tailoring of all information
in the knowledge base. All nodes in the hypermedia can be browsed, modified,
annotated, or deleted within the current perspective. Much knowledge is defined
by language expressions, which can likewise be edited. The terms used in
expressions can also be edited, and so on recursively. Knowledge is organized by
perspectives. Together, the hypermedia, perspectives, and language provide
considerable control over all knowledge in the system by designers using it. The
following chapters will detail how this works.

8.2. Knowledge Representation in the Hermes
Substrate
Figure 8-2 shows how the functionality of the most important objects in the
HERMES substrate is built up. Starting at the top is the generic HERMES named
object. Any object descended from this can optionally have a name and can be
stored on the object stream (file) that functions as the database for HERMES. The
objects below it in the hierarchy successively accumulate data slots (indicated in
parentheses) and methods.

 Tacit and Explicit Understanding in Computer Support 225

Figure 8-2. The HERMES substrate object hierarchy.

The Active object adds two features that provide considerable power for the
advanced user: conditionals and procedures. Any object that inherits these (for
instance, all varieties of nodes and links and language elements) can be made
conditional upon a language expression or can incorporate an arbitrary procedure.
A conditional can be any boolean expression defined in the HERMES language.
When an object with this conditional is encountered in traversing the hypermedia,
the conditional is evaluated. If it evaluates to true, then the link can be traversed or
the node evaluated and displayed, otherwise, the object is ignored. A procedure is
a user-defined procedure written in any commercial programming language that
supports WINDOWS dynamic link libraries (DLLs), e.g., PASCAL or C++. HERMES
includes a DLL with ten procedure identifiers, so that users can define and compile
up to ten procedures. The procedure identifiers can then be attached to HERMES
objects. When the object is encountered during hypermedia traversal, the
procedure is run. This mechanism of procedural attachment has also been used
internally to implement one of the procedures for the HERMES perspectives

 Tacit and Explicit Understanding in Computer Support 226

mechanism (see the implementation of “lazy virtual copying” in Chapter 9). With
these mechanisms, procedures written in either the HERMES language or in a
general-purpose programming language can be embedded anywhere in the
hypermedia database.

Persistent objects can be retrieved from the HERMES database. They have a unique
object id, which is used internally for direct random access to the stream on disk.
A set of methods for persistent objects defines an efficient database management
system that performs buffered reads from disk. Once accessed, objects are cached
in memory by these methods since they are likely to be traversed again. For objects
that have user-defined names, a B+ index is used to retrieve the internal object id
for object retrieval. This means that even when the database is scaled up to millions
of objects, any object can be retrieved from disk either by user-defined name or by
internal id with no appreciable increase in the number of disk accesses. The index
to the stream maintains the node kind of each stored node, so lists of nodes of a
given kind can be generated. Similarly, the index of named objects maintains the
object type, so lists of named objects of a given language type can be displayed
quickly for pick lists in the interface.

VCopy objects can participate in the virtual copying mechanisms that implement
perspectives in HERMES. A set of ten object methods (defined in Section 9.2) are
used for the virtual copying of nodes, links, hypermedia networks, and
subnetworks.

Stamped objects are time-stamped with the name of the person who was logged in
when the object was created, the date and time of creation, and the date and time
of the last modification. This information is useful for browsing the knowledge
base with queries in the language. It can also be used for security systems built on
top of HERMES.

Node objects are the “first class objects” of the HERMES hypermedia system. They
can all be interconnected in the hypermedia, referred to by the language, and
organized into perspectives. This is the basis for the interlinked hypermedia
structure. Any node objects can, for instance, have annotations or arbitrary features
attached to them. A node object maintains a tree of links coming into it and a tree
of links going out. The trees of links consist of lists of link lists, where each link
list contains links of a given link type. This list of lists is sorted by link type. The
link lists contain the object ids of the individual links. This structure makes for
efficient access of a node’s links for traversal and language expression evaluation.

Links are stored independently of the nodes that they connect, because they may
contain considerable data and may be accessed, traversed, or modified without
needing to read in their attached nodes (which may be very large for bitmaps,
video, etc.). A link consists of a list of sublinks, which maintain information about

 Tacit and Explicit Understanding in Computer Support 227

perspectives, display attributes (e.g., color, font), and spatial transforms (e.g.,
scaling or rotation for 3-D graphics). By combining a list of sublinks between a
given two nodes into one link rather than having multiple links between the same
two nodes, the number of links that need to be read in from memory is minimized.
Combining all links between two nodes is important because there may be very
bushy trees of sublinks due to the perspectives mechanism’s implementation. For
many functions, one needs to look at all or many of the sublinks. Also, often one
only wants to cross one sublink of a link (the first one), otherwise one would get
multiple copies; this is efficiently done with a for-each or for-first method on a list
of sublinks.

Contexts, node kinds, and link types are very simple node objects. They just have
user-defined names. Contexts are linked in a hierarchy that defines the perspectives
and their inheritance relations (see Chapter 9). Node kinds and link types can have
synonyms defined. When they are created, the HERMES interface suggests a plural
form to be defined as a synonym. This is useful for making language expressions
smoothly readable.

Nodes have no content themselves. Rather, they have content links that connect
them to content nodes that contain the content (e.g., characters, numbers, language
elements). This separation of the named nodes from their content is useful and
efficient in a number of ways. It allows a given node to have multiple contents. It
may have a different content in different perspectives; it may have several contents
of the same or different media; or it may be part of a hierarchy of graphical objects,
from a complex lunar habitat, through its components and subcomponents, down
to its ultimate polylines of points in 3-D space. The separation of nodes and
contents allows perspectives information (as well as display attributes and spatial
transforms) to be stored in the intervening links. There are also accessing
efficiencies that result from the separation.

Content nodes provide the knowledge representation media. The language
elements and terminology elements are explained in Chapter 10 and in Appendix
C. The media elements provide the various media required for supporting design.
These media elements are traditional objects of hypermedia systems. However, as
part of the HERMES substrate their retrieval, modification, display, and analysis
take place through mechanisms that are standardized across components, allow
integration, are fine-grained, are organized in perspectives, provide for plasticity,
and are computed dynamically.

 Tacit and Explicit Understanding in Computer Support 228

8.3. Lunar Habitat Design Environments
This section will indicate how design environments built on top of HERMES can
achieve goals that have long been set for JANUS and PHIDIAS but not previously
achieved. In particular, it will argue that the combination of a powerful, integrated
hypermedia substrate, a perspectives mechanism, and an end-user language
facilitate the desired functionality.

Figure 8-3 shows a screen view of five open windows that are typical of the
HERMES interface. This screen view is taken from a prototype Lunar Habitat
Design Environment (LHDE) built on top of HERMES. From left to right, the
windows are:

1. A control dialog for navigating hypermedia. It shows the selection of the
discussion predicate for navigating the out-going links from an issue,
“What are the design considerations for bunks?” Discussion is an
expression in the HERMES end-user programming language, defined as an
indented hierarchy of issues, subissues, answers, and arguments. The results
of the query, discussion of the selected issue, is displayed in the next
window.

2. The Design Rationale window shows the results of the query evaluated in the
privacy perspective. The query was defined in the previous control dialog
window by choosing a predicate relevant to the issue link type going out of
the selected issue.

3. The Critique window displays the result of the critics analyzing the construction
of a lunar habitat. The critics were evaluated as defined within the privacy
perspective. The user-initiated critiquing with a button (not shown) in the next
window.

4. The Drawing window or construction area displays the current design. This
window has buttons (not shown in the Figure) to change perspective, save the
drawing in the current context, navigate links connected to the drawing (its
rationale), and critique the construction.

5. The Context selection window (partially shown) allows the user to change to a
new interpretive perspective in the context hierarchy. This affects contents of
textual nodes, definitions of elements of the language used for expressing
queries and critics, and contents of drawings.

 Tacit and Explicit Understanding in Computer Support 229

Figure 8-3. A screen view of the LHDE interface.

In this interface to LHDE, one can see a 2-D graphical construction area similar to
that of JANUS and PHIDIAS. Subsequently, a version of PHIDIAS II has been built
on top of the HERMES substrate by researchers in the College of Environmental
Design’s CAD lab. It features a very general 3-D construction area, which can be
viewed from any angle and distance. It allows a designer to move through the
design space and view things at greater or less distance. The LHDE interface shown
in Figure 8-3 has a palette of simple geometric shapes along the left edge of the
drawing window. The PHIDIAS II interface has palettes of chairs, tables, etc.
specifically for lunar habitat designs. In both cases, the palettes are “hard-wired”
and cannot be modified by end-users. However, this is not necessary when using
the HERMES substrate. Instead, one could define an expression in the language to
display a palette. This has not been done because PHIDIAS II’s 3-D graphics system
is not yet fully integrated with the HERMES substrate. The advantages of an
integrated approach will be discussed below.

The LHDE interface shows a view of design rationale. This is dynamically
displayed based on the results of the language expression, discussion of the
issue selected (“What are the design considerations for bunks?”). Note that the
system user did not have to worry about “programming” in the language.
Everything was done by direct manipulation, and the language implemented things
behind the scenes. The user selected an issue with the mouse in a previous Design

!?#$%##?&'(&)(?##%*+
,-./(.0*(/-*(!*#?1'($&'#?!*0./?&'#()&0(2%'3#4

)&0(2%'3#4

 Tacit and Explicit Understanding in Computer Support 230

Rationale window. The Navigation dialog appeared, with the “Navigate out-going
links” option already chosen as the default and with the names of types of links
coming out of the selected issue (namely, issue, i.e., subissues) listed in the Out-
going Links box and the names of predicates “relevant” to those types (i.e.,
language expressions that begin by traversing links of those types) listed in the
Predicates box. When the user selected discussion from the list of Predicates,
the system automatically applied the discussion predicate to the previously
selected node and evaluated the resulting language expression within the active
perspective. The result is displayed in the new Design Rationale window. That
window also has buttons so that the user can modify the display in a number of
ways. The display can be replaced by selecting previously saved results. (A button
for saving the current results is located at the bottom of the window.) Another
button allows the user to select a different query to be evaluated; it displays a list
of all defined queries. A third button allows the user to create a new query. This is
the point where something like programming may enter, although the interface for
the language encourages reuse and modification of previously defined expressions
(see Chapter 10). Finally, a last button allows the user to select a different
perspective, thereby changing the display.

The PHIDIAS II interface provides an alternative display mode for design rationale
and similar displays. Rather than showing an entire indented structure, it displays
the top level of the outline form only (the unindented nodes). Every node that has
hidden indented material is indicated with a small icon. Clicking on that icon
displays the next level of indentation under that node. (This is similar to file
directory displays in the Macintosh SYSTEM 7 and WINDOWS 3.1.) What is
interesting here is that this mechanism is implemented with the HERMES language,
not in a hard-wired, programmed-in way. That is, clicking on a node’s icon causes
the evaluation of the expression, all associations of that node in the result
list. The availability of the language made it easy to implement this interface
feature and ensures that the feature can be flexibly modified by simply modifying
the definition of the language expression (which does not require recompilation)
and can be done by an end-user.

The critics in LHDE are passive agents, similar to the triggers in PHIDIAS. That is,
the user must press a button to evaluate the critic rules. In LHDE, the critic rules
are expressions in the language. (See Chapter 10 for the LHDE version of JANUS’
kitchen critics and for an analysis of privacy critics for lunar habitats.) No
additional mechanisms are necessary because the language is designed to traverse
and analyze the hypermedia representations of the design situation. In PHIDIAS II,
the triggers for displaying design rationale on the selection and location of palette
items is implemented using the HERMES language. For instance, the trigger for
selection of chairs evaluates the expression, discussion of chair

 Tacit and Explicit Understanding in Computer Support 231

selection issue. As discussion is defined in the LHDE seed, this goes
to the issue named chair selection issue in the issue base and displays
all the related issues, answers, and arguments.

Of course, one could add additional components to a design environment built on
HERMES. For instance, one could make critics fire automatically when a design
unit they were defined for is moved, as in JANUS. One could define specification
linking mechanisms as in KID, or formalization mechanisms as in X-NETWORK.
Even if these mechanisms were borrowed from other systems, the HERMES
substrate would pay off. Critic rules would still be defined in the HERMES
language, without having to be programmed in LISP, and they could be associated
with design units via general-purpose hypermedia links instead of special
mechanisms. The specification linking would be greatly simplified in LHDE by
defining domain distinctions as well as critic rules in the HERMES language, and
then using the language to traverse the specification hypertext. Even the
formalization mechanisms would be aided by using the HERMES language for
formulating queries (as suggested in Chapter 7) and for providing a medium of
formal (computer understandable) expression. The perspectives feature would also
come in handy, allowing different versions of critics to be organized into
perspectives and using these perspectives for making their critics more specific to
the situation corresponding to that perspective (perhaps obviating the need for a
separate specification mechanism).

The most important benefit of the HERMES substrate is the synergy possible with
the hypermedia network, the perspectives organization, and the language
expressivity. For instance, the HERMES substrate provides a useful basis for finally
achieving the goals proposed as “future work” in the classic JANUS paper (Fischer,
McCall, Morch, 1989), as discussed in the following paragraphs:

(1) Within the argumentation system there is a pressing need for authoring
to be integrated with browsing. (2) Allowing ad hoc authoring during
browsing would enable the designer to annotate the issue base, record
decisions on issues and generally personalize the argumentation. (3) This
in turn would create the need for certain basic kinds of inference
mechanisms. (4) For example, if the designer has rejected the answer
“dining area” to the issue “What functional areas should the kitchen
contain?” then the system should probably not display any issues, answers
or arguments that presuppose or assume that the kitchen has a dining area.

(5) Construction and argumentation might usefully be connected in a
number of additional ways. (6) Catalog examples could be used to
illustrate argumentation, and argumentation could be used to help in
selecting examples from the catalog (p.12; sentence numbering added).

 Tacit and Explicit Understanding in Computer Support 232

(1) Integrating authoring with browsing. In the LHDE interface, authoring is
integrated with browsing. At every step of hypermedia browsing, the navigation
dialog in Figure 8-3 gives the user a choice of traversing out-going links, traversing
in-coming (inverse) links, editing the current node or authoring or annotating the
node. The editing option brings up an editor appropriate to the medium of the
current node, with its content ready to be edited. (In cases of multiple contents, the
contents are automatically placed in the editor consecutively.) The authoring
option allows the user to create a new node and link it to the current node.
Annotation is a typical application of this, where one links a text node to the current
node with a link of type annotation. Adding the phrase, with their
annotations, to a predicate will then include all the attached annotations in a
given display. Of course, all authoring in LHDE takes place within the current
perspective.

(2) Personalizing the argumentation. The authoring option in LHDE is also used
for recording decisions in an issue base. Suppose you are browsing through a series
of issues that correspond to the issues in KID’s specification component. Then
when you come to an answer that you wish to accept as a specification for your
design, you can author a node that you attach to the answer with a resolution
link. You define its content as the boolean value true. (This is easier to do in the
LHDE interface than it sounds when described because the separation of nodes from
their content is never apparent to the user, and the hypermedia linking is generally
transparent.) In favoring the personalizing of the argumentation in the preceding
quotation, the developers of JANUS did not carefully consider the implications of
having many users “personalizing” the same homogeneous issue base. It is one
thing for Rittel to have advocated including the deliberations of half a dozen
opposing positions in a single issue base; quite another to accumulate the
exploratory thoughts of arbitrarily many users, over long periods of time, following
diverse and unrelated interests. This may not be a problem for a single-user system;
however, LHDE is intended as a repository for extensive exploration. The
perspectives mechanism is an important tool that allows “personalization” to scale
up in LHDE and to function in a collaborative setting.

(3) Inference mechanisms. In HERMES, the inference mechanism is not some add-
on function, but the embedded language itself. While the language does not allow
fully general inference across large sets of production rules, it does allow people
to encode dependencies. Conditionals, for instance, are used in a number of ways
in LHDE. The evaluation of any object in the database can be made conditional
upon an arbitrary expression in the HERMES language that evaluates to true or
false. Queries incorporating such conditional expressions can also be defined as
the content of nodes. Another approach is used in LHDE to preface display
expressions with conditional expressions, as illustrated in point (4).

 Tacit and Explicit Understanding in Computer Support 233

(4) Adaptive argumentation. In LHDE one can build up a dining area
conditional as follows:

if resolutions of answers of the functional areas issue
that contain “dining area” are true.

As would be clear when building this expression in the language interface (shown
in Chapter 10), the phrase, that contain “dining area”, is applied to
the answers of the functional areas issue prior to checking if the
resolutions of the answers that pass through that filtering condition have
the boolean content, true. Once this conditional expression has been defined, it
can be used in the variety of ways suggested in point (3). For instance, if the design
rationale included the display expression, discussion of dining area
issues, then that expression could be modified to be: if dining area
conditional then discussion of dining area issues. This
would display the issues, answers, and arguments concerning dining areas
if and only if the dining area answer of the functional areas
issue had been resolved in the positive.

(5) Connecting construction and argumentation. Because the HERMES
hypermedia substrate integrates the construction graphics and the design rationale
text, graphical examples from the catalog can be linked to entries in the issue base.
Assume that a particular kitchen layout is linked to an issue about dining areas
with an examples link. Then you can amend the display expression above to
include dining area issues with their examples. Depending on
whether the LHDE or PHIDIAS II interface was being used, either the text and
graphics would be inter-mixed in the outline indented form, or the graphic
examples would be represented by an icon and clicking on that icon would display
the graphic in situ or in another window.

(6) Connecting catalog and argumentation. In LHDE, catalogs are not fixed
displays. They are defined by language expressions. These expressions can, of
course, be modified with conditionals and other inferencing computations.
Following are some sample catalog definitions illustrating a filtering of the content
of the displayed catalog based on decisions in the argumentation (i.e., the issue
base is treated as a specification component):

if dining area conditional then kitchens that contain
dining areas

if safety is important then kitchens that are safe
if privacy is important then habitats that have parts that

have privacy ratings
if privacy is important then privacy gradient catalog

 Tacit and Explicit Understanding in Computer Support 234

The first of these evaluates the conditional that was defined earlier. If it is true,
then kitchens are displayed if they contain subparts that are of node kind
dining areas. The second makes use of an expression named safety is
important, that checks the resolution of some issue related to safety. It then
evaluates an expression that performs an analysis of kitchen layouts similar to the
safety-related subset of JANUS’ critics. The third again begins with a specification
conditional. It then accesses all habitats in the database. For each habitat, it goes
through its subparts to see if any of them have a link of type privacy rating.
As soon as such a link is found, the habitat is added to the list of items to be
displayed. The last expression takes the idea of the third one further, critiquing the
separation of parts of a lunar habitat based on the privacy ratings attached to its
parts (see Chapter 10 for a detailed analysis of this last expression).

These examples of the synergy possible with the HERMES substrate have
emphasized the use of hypermedia linking made possible by an integrated
substrate. That is, all the objects inherit common functionality, including the ability
to be linked together. The role of the language as a tool for traversing the
hypermedia has also been emphasized. Expressions in the language can be defined
to relate information from different components of a design environment. The
utility of the perspectives mechanism has not been stressed as much. However, it
can play a powerful role in personalizing the information, in coordinating sets of
specifications, and in promoting collaboration. That theme will be taken up in the
next chapter.

CHAPTER 9. INTERPRETIVE
PERSPECTIVES FOR

COLLABORATION

The HERMES substrate includes a mechanism for organizing knowledge in a design
environment into a network of perspectives. These perspectives provide support
for design as a process of interpretation and deliberation. They allow designers to
interpret the design situation according to their individual and group interests.
Perspectives provide a mechanism for creating, managing, and selectively
activating different sets of design knowledge, such as critics, spatial relations,
domain distinctions, palette items, and argumentation, so that alternative ideas can
be deliberated and either adopted, rejected, or modified.

The perspectives mechanism organizes all the design information in the knowledge
base. A designer always works within a particular perspective. At any time, the
designer can select a different perspective by name. When a given perspective is
selected (“active”) then only information indexed for that perspective (or for a
perspective inherited by that perspective) can be accessed, traversed, or displayed.

A new perspective can be created by assigning a name to it and selecting existing
perspectives for it to inherit. Perspectives are connected in an inheritance network;
a perspective can modify knowledge inherited from its parents or it can add new
knowledge. Designers switch perspectives to examine a design from different
viewpoints. Switching perspectives changes the currently effective definitions of
critics, the terms used in these definitions, and other domain knowledge. For
example, imagine that Archie was collaborating with Desi using the HERMES
computer system. Then he could create archie’s habitat perspective
and select desi’s habitat perspective to inherit from. This would allow
him to build upon and critique Desi’s work, without altering what is viewed by
Desi in his perspective.

The organization of information by perspectives encourages users to view
knowledge in terms of structured, meaningful categories that they can create and
modify. It provides an extensible structure of knowledge contexts that can

 Tacit and Explicit Understanding in Computer Support 236

correspond to categories meaningful in the design domain. This eases the cognitive
burden of manipulating potentially large numbers of alternative versions of critics,
rationale, graphics, language expression definitions, and other design knowledge.

The perspectives mechanism allows items of knowledge to be bundled in various
ways, which can overlap orthogonally or inter-connect. Common types of
perspectives are:

* personal and group viewpoints of individual designers and teams

* topical groupings by content traditions (e.g., kitchen design)

* technical aspects by specialties (e.g., plumbing)

* historical versions (e.g., Archie’s Monday morning habitat design)

For instance, archie’s habitat perspective might include
considerations specific to Archie’s design, as well as incorporating many ideas
from Desi’s. If Desi and Archie are part of a larger team, then the team’s
perspective could display concepts and rationale from all its members, or it could
select from and modify the knowledge inherited from multiple sources. Archie
would also want to inherit knowledge from lunar habitat design traditions and
related technical specialties. Then, as his design evolved, Archie could define
perspectives for archiving versions of his work.

Lunar habitat design takes advantage of information from many technical
disciplines and domain traditions: kitchen and bathroom design, low-gravity and
vacuum considerations, electrical and lighting expertise, submarine and Antarctic
isolation experiences. It can borrow selectively from both space station and Mars
habitat prior designs. Each of these bodies of knowledge can be defined within a
network of domains and subdomains that inherit, share, and modify knowledge
from each other. Perspectives can also be used to save networks of historical
versions of developing designs. The HERMES perspectives mechanism is a
general—but hypermedia specific—implementation of contexts20 that can be used
to supply a variety of functionality to a design environment.

This chapter will present the HERMES perspectives mechanism in three sections.
First, Section 9.1 offers a scenario to show how a design team using HERMES might
approach the task documented in the protocol analysis of Section 3.2,

20 The terms perspective and context will be used interchangeably in this Chapter.

Technically, the functionality of perspectives is implemented by defining
contexts. As M. Gross suggested, perspectives are similar to the notion of
“binding contexts” in programming languages: a definition is bound within the
perspective in which it was created.

 Tacit and Explicit Understanding in Computer Support 237

“Perspectives on Privacy.” Second, Section 9.2 describes the techniques used to
implement the perspectives mechanism in HERMES. This will detail the
hypermedia character of the implementation. Third, Section 9.3 discusses how the
perspectives mechanism can provide computer support for cooperative work. This
will include examples of interface features for displaying, browsing, and sharing
knowledge in multiple perspectives representing different people, interests, or
domains.

9.1. A Scenario of Cooperation
The work of lunar habitat designers was studied in order to learn about the work
process of innovative cooperative design in a complex domain. Lunar habitat
design seems to call for computer support because of the volume of technical
information and governmental requirements, as well as because of the other-
worldly setting in which the designers’ tacit skills may be unreliable. It seemed
wise to explore how lunar habitat designers work now without substantial
computer support in order to envision new ways to support the old goals and to
imagine how computer support would transform the tasks involved.21

The episode transcribed in Chapter 3 showed an important turning point in a design
process: the application of the concept of privacy to the task at hand. The tacit
notion of privacy was eventually operationalized with the idea of defining a
privacy gradient, according to which public and private areas of a habitat are
distributed based on their privacy ratings. The concept of privacy then provided a
paradigmatic example for investigating the design rationale issue-base provided to
lunar habitat designers by NASA: the Manned Systems Integration Standards
(NASA, 1989a). Here it was seen that this important concept of privacy had largely
eluded NASA’s extensive efforts to provide propositional rules for the design of
space-based habitation. Although privacy was acknowledged to be an important
issue, NASA failed to provide support for designers to take privacy into account.

The present section will build on the discussion in the transcript and the critic
definitions to show how HERMES can respond to the challenge of providing
computer support for considerations of privacy. A scenario will show how lunar
habitat designers could use the HERMES system to define a powerful set of privacy

21 This “dialectic of tradition and transcendence” in work-oriented design of

computer support systems is a central theme of Ehn (1988). The transformation
of tasks as a result of computer support is also emphasized by, for instance,
Hutchins (1990) and Norman (1993).

 Tacit and Explicit Understanding in Computer Support 238

critics using the hypermedia links, perspectives, and language of HERMES. The
detailed explanation of how the critics are evaluated by the system will be saved
for Chapter 10.

Desi’s perspective. Suppose that instead of sitting down together with pencil and
paper, Desi and Archie had been part of a team that worked in a design
environment built on the HERMES substrate. Desi, Archie, and two other team
members (Phyllis and Sophia) are asked to design a lunar habitat for four
astronauts to live in for 45 days. They decide to take turns working on the design
in HERMES, starting with Desi.

Desi begins creating a perspective for his new work, which he names desi’s
habitat perspective. He defines this perspective to include (inherit) the
information collected in a number of specialties and domains that he considers
relevant to the design task. Then he selects two other lunar habitat perspectives and
copies individual items of graphics and design rationale out of them for the lunar
habitat shell, bunk-bed crew compartments, and a wardroom (dining and meeting
room) arrangement. He inserts these into design rationale and graphics in his
perspective. Then he adds some rectangles to represent the bathroom and galley
(kitchen). The resulting layout is shown in Figure 9-1 (reproduced from Figure 3-
2 of Section 3.2).

Figure 9-1. Desi’s lunar habitat design.
An initial sketch has been proposed for the design team to work on.

The main functional areas of the habitat have been laid out in this sketch. This is
an initial design concept. Because other team members will be reviewing this
design and wondering why things are arranged the way they are, Desi adds some

 Tacit and Explicit Understanding in Computer Support 239

design rationale, arguing that the bathroom and galley have all been placed
together in a “wet wall” configuration to minimize plumbing arrangements. Desi
feels his design provides a good start for the team and he goes off to work on other
projects.

Archie’s perspective. Archie is interested to see what Desi has designed and to
critique it from his own viewpoint. However, he does not want to destroy Desi’s
version. So Archie defines archie’s habitat perspective as a new
perspective and lists desi’s habitat perspective as its inherited
perspective. This means that Archie will start off with everything that is in Desi’s
perspective, but as he makes changes to it the changes will only be in effect within
Archie’s perspective and not within Desi’s. The inheritance is active in the sense
that if Desi subsequently modifies something in his perspective that Archie has not
changed in his then the modification will show up in Archie’s perspective as well
(unlike if Archie had simply made his own copy of Desi’s design at some given
time).

Archie also inherits a number of additional perspectives with useful technical
information. The hierarchy of perspectives incorporated in Archie’s perspective—
including those he inherits via Desi’s perspective—are pictured in Figure 9-2.

 Tacit and Explicit Understanding in Computer Support 240

Figure 9-2. The hierarchy of perspectives inherited by Archie.

Note that Archie has access via Desi’s perspective to information in the lunar,
space-based, habitats, noise, vibration, and dust perspectives, as well as
additional information related to housing and galleys.

Archie is concerned with spatial adjacencies. He likes the way the crew
compartments have been separated from the rest of the habitat to provide relief
from the daily activity. However, he dislikes the acoustic proximity of the toilet
(which flushes loudly) to the beds. Even worse, he finds the opening of the
bathroom into the eating and gathering area potentially offensive. Archie is unsure
of how to handle the bathroom, so he switches to a perspective that he has not
inherited, the perspective for residential (terrestrial) bathrooms and browses the
issue-base section on the design and placement of bathrooms. This perspective
inherits from several other cultural and domain perspectives, including European
perspectives. Here he finds the idea that showers and toilets have rather different
location and adjacency considerations in the European tradition.

Applying these ideas in his mind to how he projects life in the habitat, Archie
concludes that the shower should be near the sleep areas, but the toilet should be
near the other end of the habitat, by the entrance. Moving the shower gives him the
idea of elaborating the separation of the sleeping and working areas by forming a
dressing area incorporating personal stowage. He redesigns the galley based on
other ideas he finds and feels he has reached a stopping point. (See Figure 9-3.) He
copies the rationale from the bathroom perspective concerning the separate
location of the shower and toilet, revising the rationale to apply to the lunar habitat.

Figure 9-3. Archie’s lunar habitat design.

The toilet and shower functions have been separated using the European
perspective on bathroom design.

 Tacit and Explicit Understanding in Computer Support 241

Archie revises the design rationale for the habitat. Within his perspective, he can
modify or add to (annotate or author) anything in the issue bases he has inherited
from Desi or from the other domains. He does this in preparation for the up-coming
team meeting. Before the meeting, the team members each review Archie’s design
and its rationale by displaying it in HERMES. First, they discuss the over-all design.
They like the creation of the dressing area between the shower and the personal
stowage but argue that it blocks traffic flow. A consensus is reached when Phyllis
drags the dressing area to the other side of the crew compartments in the HERMES
construction area.

As a group they deliberate about the issues in Archie’s rationale section and agree
that habitation issues must be the primary focus of their designing on this project.
In particular, privacy is a key concept. In order to make the notion of privacy
operational for evaluation by interpretive critics, they decide to label the parts of
the habitat with privacy ratings. They agree on the following scale with values
from 1 to 9:

very public: 1
quite public: 2
public: 3
somewhat public: 4
neutral: 5
somewhat private: 6
private: 7
quite private: 8
very private: 9

They define a link type, privacy rating, and use this type to link each area
of the habitat to a node with one of the above numeric values (or their equivalent
label). This process is facilitated by the HERMES interface: clicking on an area like
the shower in the habitat brings up the same Navigating the Hypertext dialog seen
in Figure 8-3 (in Section 8.3). Selecting the Author or Annotate option allows them
to define a new numeric node with the value 8 or quite private and to
connect it to the shower with a privacy rating link automatically. Figure 9-
4 below shows the lunar habitat design the team has come up with, labeled with
the agreed upon privacy ratings.

At the end of the meeting, Sophia and Phyllis agree to develop a suite of privacy
critics that can be used for this and future lunar habitat design assignments.

Sophia’s perspective. Sophia sets up her perspective to inherit all of Archie’s
work (and, indirectly, Desi’s). Now Sophia must define the terminology to be used
in her critics. She is interested in determining problem areas in which private areas

 Tacit and Explicit Understanding in Computer Support 242

are too near to public areas. By “too near,” Sophia decides she means less than five
feet. So she defines a “Measure” in the HERMES language named too near as:

closest distance is less than 5 feet

Figure 9-4. Archie’s lunar habitat with its privacy ratings.

Then, she defines public and private areas in terms of the ends of the privacy scale:

public area: parts that have privacy ratings that are less
than somewhat public

private areas: parts that have privacy ratings that are
more than somewhat private

Next, she defines the problem areas she is concerned with using these terms:

problem areas: private areas with public areas of that
(last subject) that are too near those items

Then, Sophia defines a message for her critic to display if no problem areas are
found:

privacy message: “Public and private areas are separated.”

Finally, she can define her privacy check critic:

name with either name of problem areas or privacy message

This critic, privacy check, is a predicate that can be applied to any node or
list of nodes in the database. When Sophia applies it to her lunar habitat design, it

 Tacit and Explicit Understanding in Computer Support 243

lists the name of the design and then lists all the problem areas in the habitat
by their names; if no problem areas are found, it displays the privacy
message. Figure 9-5 shows the output from applying privacy check to the
design of archie’s lunar habitat shown in Figure 9-4:

Figure 9-5. Output from the privacy check critic.

Note that all private areas are listed by name. Under each of them are the
public areas that are too near to them. The way this critic is defined it
supports the designer’s review of the information. Sophia gets a complete listing
of private areas from which she can check just what problematic
adjacencies each has so she can also make sure the critic is doing exactly the
computation she wants it to.

Debugging of critics is an important process, particularly since much of the
computation is implicit in the language expressions. The privacy check is a
fairly complex critic that Sophia has developed and debugged gradually. Once she
is sure it is working, she can use it as a basis for more complicated evaluations.
For instance, the display of the lunar habitat design in HERMES does not actually
include the privacy ratings that were shown in Figure 9-4. So Sophia
decides she wants to print these values out along with the listing of areas. To do
this, she defines a new critic that prints out both the name and the privacy
rating of each listed area:

privacy display: name and privacy ratings of problem areas

The result of applying this critic to archie’s lunar habitat is shown in
Figure 9-6. (The names of the privacy ratings are shown in bold.)

!"#$#%CDEFGE+DI#-.

!/0N0O

!"#$%&'()*+,!")$!-%.!.
($/0&"
-+,1)2

3!**&4
./%*&.

3!**&4
(#%&,#&)0/"1)!"&!

-+,1)5
0!"6"//7).!-*&

8"%9!#4)#$)/:)!"#$%&'(
*+,!")$!-%.!.

 Tacit and Explicit Understanding in Computer Support 244

Figure 9-6. Output from the privacy display critic.

Now that Sophia has gotten her critics working the way she wants them to, she
decides to make them general enough to apply to lists of objects. Then, as more
habitats are developed in the HERMES database and are labeled with privacy values,
designers can use Sophia’s privacy critics to display catalogs of interesting
habitats. This is illustrated in Figure 9-7. This way Sophia can quickly find
examples of problem areas in past habitat designs to help her deliberate about when
such adjacencies might in fact be acceptable.

Figure 9-7. The privacy check critic applied to a list of all lunar habitats

!"#$#%CDEFGE+DI#-.

!/0N0O

!"#$%&

'()*+,

-.//%0

1#2/%1

-.//%0

!""!""!""!

#$%&'"()%*+&'

()%*+&'

*'),"($-.%/

'),"()%+&'

*'),"($-.%/

3&24.50+62!3/.0+#7+.&5"2%8!
/().&+".'21.1

!"#$#%CDEFGE+DI#-.

!/0N0O

!"#$%&'()*+,!")$!-%.!.
($/0&"
-+,1)2

P!**&4
./%*&.

P!**&4
(#%&,#&)0/"1)!"&!

(!,5"!'()*+,!")$!-%.!.
6+-*%#)!,5)7"%8!.&)!"&!()!"&)(&7!"!.&59

6+-*%#)!,5)7"%8!.&)!"&!()!"&)(&7!"!.&59
(!,5"!'()"&8%(&5)*+,!")$!-%.!.

7"%8!#4)#$)/:)*+,!")$!-%.!.(

 Tacit and Explicit Understanding in Computer Support 245

Phyllis’ perspective. Phyllis is a super-user of the HERMES language. To test its
power, she tries to define a critic that involves a complex series of computations.
By using an advanced feature of the language (explained in Section 10.3 below),
she succeeds. Phyllis recalls previous discussions between Desi and Archie (from
Chapter 3) that proposed the concept of a privacy gradient. That meant that the
arrangement of the habitat should gradually change from private areas to public
areas. To operationalize this notion, Phyllis introduces a test to see if any two areas
of the habitat that are near each other differ in their privacy values by more than
two.

Phyllis defines the following set of definitions to compute problem parts in
her sense:

are incompatible: have privacy ratings that are more than
privacy ratings of that (last subject) + 2 or are less
than privacy ratings of that (last subject) -2

too near: closest distance is less than 3 feet
other parts: parts of inverse parts that do not equal that

(last subject)
problem parts: name and privacy ratings of other parts that

are too near that (last subject) and that are
incompatible

These definitions illustrate the limits of the HERMES language, calling upon
advanced features of the language that only experienced users of HERMES would
feel comfortable using to create new expressions. The wording of some of Phyllis’
expressions are no longer intuitive because their computations refer outside of the
expressions used to define them. In fact, the wording in such cases is designed to
interrupt tacit understanding and to stimulate reflection on the explicit
computational relations. Fortunately, this complexity is generally encapsulated in
the names of the expressions so future users need not always be concerned with it.

Note that Phyllis has defined a measure with the same name (too near) as one
of Sophia’s, but with a different value. This is not a problem since they are working
in independent perspectives (even though they inherit much of the same
information from other perspectives.)

 Tacit and Explicit Understanding in Computer Support 246

Figure 9-8. Output from the privacy gradient catalog expression.

To complete the privacy gradient critique, Phyllis defines a format for
listing problem parts, and she specifies a message for the case in which no problem
parts are found in a habitat:

privacy gradient listing: name and privacy ratings with
problem parts

privacy gradient message: “The parts of this design are
arranged along a privacy gradient.”

privacy gradient critique: either privacy gradient listing
of parts or privacy gradient message

Like Sophia, Phyllis wants to apply her critique to all habitats in the database.
Note that in the following definition for this procedure Phyllis first filters the list
of habitats to just those for which privacy ratings have been defined.
This produces a list of habitats for which issues of designing for privacy are most
likely to have been thought through and to provide relevant ideas and rationale.

!"#$#%CDEFGE+DI#-.

!/0N0O

!"#$%&

'()*+,

-.//%0

1#2/%1

-.//%0

!32%)3%+$#&*+.&%.

!"#$%&'(#)*$%

'(#)*$%

)%(+&'",-#.

)%(+&'(#)*$%

)%(+&'",-#.

!.)4&.5!+/().&+".'21.1
6"%+T.&1!+#8+1"2!+.&%+.&&.)-%4+./#)-+.+T&29.30+-&.42%)1:

6"%+T.&1!+#8+1"2!+.&%+.&&.)-%4+./#)-+.+T&29.30+-&.42%)1:
!.)4&.5!+&%92!%4+/().&+".'21.1

.&3"2%5!+/().&+".'21.1

T&29.30+-&.42%)1+3.1./#-

'",-#.
-.//%0

 Tacit and Explicit Understanding in Computer Support 247

For these habitats, it is indicated which meet the criteria of following a privacy
gradient and where the problem areas are in those that do not. A sample result is
shown in Figure 9-8. Here is Phyllis’ final critic rule or display expression,
privacy gradient catalog:

name with privacy gradient critique of habitats that have
parts that have privacy ratings

The team perspective. When the team comes back together, they are enthusiastic
about the power of the privacy critics to automate some complex analysis of
habitats for them. Desi says, “I never tried to define anything in the HERMES
language; I just make little adjustments to the display definitions and critics that I
find already in the system. They usually meet my needs. But these new critics do
things I could never do before. And I think I understand them well enough to use
them and maybe even tweak them.” “Yeah,” chimed in Archie, “I never used the
advanced syntax options for dealing with graphics and distances. Maybe I can learn
how to do that by playing around with these privacy critics. Can you put them all
in a perspective where we can experiment with them?”

Sophia was happy to oblige: “Sure. The thing we need to be careful about is the
definition of too near, because Phyllis and I disagree on that. Let’s make the
default for that 5 feet, okay?” She created a perspective called lunar habitat
design team that anyone could inherit from to experiment with the critics or
to pursue their design work further. She had the new perspective inherit from both
the sophia perspective and the phyllis perspective, making sure
she listed the sophia perspective first so that its definitions would override
in case of conflicts, as with the definition of the expression too near.

Figure 9-9 shows the dialog box for creating the new perspective. Figure 9-10
shows the new hierarchy of defined perspectives.

 Tacit and Explicit Understanding in Computer Support 248

Figure 9-9. Creating a new perspective.

9.2. A Hypermedia Implementation of
Perspectives
This section discusses the implementation of the HERMES perspectives
mechanism. The ten methods discussed below are used by the HERMES substrate
internally. The user never needs to know how they work. Even people who build
design environment components on top of the HERMES substrate do not need to be
concerned with the details but can simply call the methods. The purpose of this
section is to describe some of the computation that takes place behind the scenes
every time a designer retrieves, displays, navigates, modifies, critiques, or analyzes
information in the system. It is an example of the active computation that supports
the user’s tacit design work.

As suggested in Chapter 7, the perspectives (or, equivalently, contexts) mechanism
in HERMES is loosely based on the virtual copying of networks approach proposed
by Mittal, et al. (1986) and the general copy-on-write technique discussed by
Fitzgerald and Rashid (1986). More particularly, it was proposed by McCall
(1991/92) for application to hierarchical networks of domain rationale in PHIDIAS.
In HERMES, the perspectives mechanism has been expanded and generalized so

 Tacit and Explicit Understanding in Computer Support 249

that all information (e.g., graphics and other media, as well as definitions of
language expressions) is accessible relative to the perspectives.

There are two parts to the perspectives mechanism. First, there is a hierarchy of
defined perspectives that is maintained as a network of (context) nodes and
(context) links. Second, every link in the hypermedia database contains lists
specifying which perspectives may or may not be active for the link to be traversed.
The question as to what perspective is the “active” one at any given time is
answered by reference to a value maintained by the HERMES application.

Figure 9-10. Hierarchy of perspectives inherited by the team.

The hierarchy of perspectives is quite simple. It looks much like the nodes and
links pictured in Figure 9-10. When a new perspective is defined by a user through
a dialog box like that in Figure 9-9, a new context node is created. It is linked to
the context nodes it inherits from by a simple context link. As discussed in Chapter
8, context nodes and links are like regular nodes and links except that they have no
node kinds or link types. Context nodes have just their names and their links to
other contexts. Like any node in HERMES, they can be time-stamped and they can
be linked to annotations or other attributes. This linking can be used for

 Tacit and Explicit Understanding in Computer Support 250

documentation or to implement security systems that restrict movement from one
perspective to another. However, in the normal HERMES system all information
can be accessed by all users; it is organized in perspectives to support timely
access. Traversal of the context hierarchy is similar to normal hypermedia
traversal, but it has been optimized for efficiency.

Links in HERMES consist of multiple sublinks between a given pair of nodes. Each
sublink maintains four items related to the perspectives mechanism: (1) the original
context in which the link was created, (2) a list of added contexts in which the link
can also be traversed, (3) a list of deleted contexts in which the link should not be
traversed, and (4) a “switch” context to which the active perspective should be
changed when the link is traversed. This information supports ten methods for the
virtual copying of nodes, links, or hypermedia networks, as discussed in this
section.

When the system wants to traverse a link, it tests to see if any of the link’s sublinks
can be traversed. The test proceeds as follows: (a) If the currently active
perspective or any of its inherited ancestors matches a context on the deleted list
(3), then the sublink cannot be traversed. (b) If the currently active perspective or
any of its inherited ancestors matches the original context (1) or a context on the
added list (2), then the sublink can be traversed. If there is a switch context (4),
then when the link is traversed the active perspective must be changed to the
switched context. The inherited ancestors are checked through a breadth-first
recursive search with a check for cycles in the inheritance network. Conflicts from
multiple inheritance have no consequence since there is no content to the context
nodes, the first match halts the search, and alternative paths are equivalent.

Recall from Chapter 8 that named nodes are separated from their contents. So,
links connect pairs of named nodes and they also connect named nodes with their
content. Because the contexts are checked during link traversal, they control both
which named nodes are connected in the active perspective and what contents go
with a given named node in that perspective. This is why it is possible for a given
named node (e.g., the language expression named “too near”) to have different
contents (different definitions) in different perspectives.

The following suite of ten methods implement the creation, deletion, and
modification of links, nodes, and contents relative to perspectives. They are
defined as object methods for VCopy nodes (see Section 8.2). They provide the
following functions:

1. Copy the information from one context (perspective) into another.

2. Delete one node in a context that descends from another context.

3. Modify one node in a context that descends from another context.

 Tacit and Explicit Understanding in Computer Support 251

4. Delete one link in a context that descends from another context.

5. Modify one link in a context that descends from another context.

6. Physically copy one node from one context into another context.

7. Virtually copy one node from one context into another context.

8. Reuse a subnetwork from one context in another context.

9. Virtual copy a subnetwork from one context into another context.

10. Lazy virtual copy a subnetwork from one context into another context.

Method 1: copy an entire context. Given the foregoing apparatus, the ten virtual
copying methods can be explained. The simplest is to just copy all the contents of
one perspective into a new perspective. For instance, Archie wanted to make his
own copy of everything that was visible in Desi’s perspective. This is done by
defining the new perspective and having it inherit from the old one. Then, when
the system checks a link to a node or to a node’s contents when the new context is
the active one, it will start by trying to match the new context and then will try to
match its ancestors. The old context is its ancestor, so a match will be found when
the new context is active if and only if it would have been found when the old
context was active. Therefore, the same nodes and contents will be visible to
Archie as to Desi. Of course, once Archie starts adding, modifying, or deleting
nodes or links in his perspective, sublinks will start being labeled with Archie’s
new context and this will introduce changes between the two perspectives.

This approach is called virtual copying because the effect is to make it seem that
all the information from one perspective has been copied into the other perspective.
However, nothing has in fact been physically copied in the database. In fact, no
nodes or links have been changed at all, except the addition of the new context
node and its links in the perspectives inheritance hierarchy. Physical changes to
the nodes and links only take place when there are changes made to the virtual
copies. That is, if Archie deletes or modifies a node or link that was originally
created by Desi, then changes must be made to ensure that the modifications or
deletions show up in Archie’s perspective but not in Desi’s. On the other hand, if
Desi changes something that has not been altered by Archie, then these changes
should show up in both perspectives. Under many circumstances, his last point is
an advantage of virtual copying over physical copies—in addition to the great
savings of memory and time.

The next four methods are for handling deletions or modifications to virtual copies
in a descendant perspective.

Method 2: delete a node in a descendant context. To delete a node, simply add
the name of the current perspective to the delete list of the sublink. For instance,

 Tacit and Explicit Understanding in Computer Support 252

to delete in Archie’s perspective a named node or a content node that was virtual
copied from Desi’s perspective, leave its original context (Desi’s) alone and add
Archie’s perspective to the delete list of the sublink of the link leading to the node.
Then when traversal of that link is attempted in Archie’s perspective, the delete
list will prohibit the traversal, although it will still be permitted in Desi’s
perspective.

Method 3: modify a node in a descendant context. To modify a node, first create
a physical copy of it in the new perspective and link it with a new link labeled with
the current perspective as its original context. Then delete the old node in the
perspective using method 2. Suppose Desi had defined too near as closest
distance is less then 5 feet and Archie modified it to closest
distance is less then 3 feet; the result is shown in Figure 9-11.

Figure 9-11. The result of modifying the virtual copy of a node.

Method 4: delete a link in a descendant context. This is identical to method 2.
To make it so that a link will not be traversed in the descendent context is to make
the linked node effectively deleted in that context.

Method 5: modify a link in a descendant context. This is similar to method 3,
although no changes to nodes are made. Rather a new sublink of the original link
is created. The original sublink and the new sublink are labeled as were the two
links in method 3 (and Figure 9-11). Now there are two routes through the link to
the node. One will be crossed in the ancestor context(s) the other in the descendent
context.

Recall that display attributes and spatial transforms are stored in the sublinks, so
which sublink gets traversed can make a significant difference in how the node at
the end of the link is displayed. For instance, the node could be the graphics for a
brick in a wall. If the wall consists of thousands of identical bricks, it could be
made up of thousands of virtual copies of the one graphic node, each reached by a
different sublink having different spatial transforms to locate that copy in the wall.
Such efficient vector graphics is a major benefit of the virtual copying scheme,
although it is not a central concern of this dissertation.

 Tacit and Explicit Understanding in Computer Support 253

The remaining methods handle cases in which one does not wish to copy an entire
perspective, but rather just a single node of a linked network of nodes.

Method 6: physical copy one node into another context. One can always simply
make a physical copy of a node from one context to another. The old node is not
changed. The link from the new copy of the named node to the new copy of its
content is labeled with the new perspective. This option can be used in place of
virtual copying in cases where one does not wish the copy to change if its original
prototype is changed in its old perspective.

Method 7: virtual copy one node into another context. This method uses the list
of added contexts in the sublist. To copy a node from, say, Phyllis’ perspective to
an independent perspective, like Sophia’s, simply add Sophia’s perspective to the
add list of the link between the node and its content. (The perspective hierarchy in
Figure 9-12 is assumed in this and the following methods.)

Figure 9-12. An illustrative perspectives hierarchy.

Method 8: reuse a subnetwork in another context. This method uses the switch
context in the sublist. To virtual copy a network of nodes in, say, Phyllis’
perspective so they can be traversed in an independent perspective like Sophia’s,
first create a new context and have it inherit from Phyllis’ context. This context
need not even have a name; since it is used internally, it can always be referenced
directly by its internal object id. Although the number of such internally defined
contexts may proliferate with extensive virtual copying, they will never appear to
the system users. Then create a link from where you want to enter this subnetwork
in Sophia’s perspective to the first node you want to traverse to in Phyllis’
perspective. This link will have Sophia’s perspective as its original context. Define
its switch context to be the new internal context as in Figure 9-13. Then, what
happens when you traverse this link from Sophia’s perspective is that your
currently active perspective changes to the internal context. Since this context is a
descendant of Phyllis’ perspective, you can now freely traverse the subnetwork.

 Tacit and Explicit Understanding in Computer Support 254

Figure 9-13. Switching contexts to traverse a subnetwork.

The network of nodes on the left is visible in Sophia’s perspective; that on the
right in Phyllis.’ The link between them can be traversed in Sophia’s perspective,
but it switches the active perspective to an internally defined descendent of
Phyllis’ perspective so that the right-hand network will be visible.

Method 9: virtual copy a subnetwork into another context. This method is an
extension of method 7 and an alternative to method 8. The disadvantage of this
method is that it is more computationally intensive to set up. Whereas method 8
involves just adding an internal context to the perspectives hierarchy and creating
a single new link with the switch context, method 9 involves inserting the current
context into the add list of a sublist in every link of the subnetwork. If the
subnetwork has thousands of nodes linked together, this can be an expensive
operation, involving many disk accesses.

Method 10: lazy virtual copy a subnetwork into another context. This is a
variation on method 9. Instead of traversing the entire subnetwork and inserting
the current perspective into all the sublink add lists at once, only the link to the
first node is treated. All links coming out of this node are then marked for future
treatment. As each of these links is traversed in the future during normal
operations, those links are treated and the links further down in the subnetwork
coming out of their nodes are then marked for future treatment. This spreads out
the costs and delays them until they are unavoidable. A further advantage is that
prior to virtual copying each of the nodes as they are encountered, the user can be
queried if the node should actually be included in the new perspective. This allows
the user to browse through the network and selectively include just those nodes
that are really desirable in the new perspective.

Method 10 uses the procedural attachment technique mentioned in Chapter 8.
Every node in the system is capable of having an arbitrary procedure attached to
it. The nodes to be treated in the future by method 10 are marked by having the
lazy virtual copying procedure attached to them. Then when they are traversed, the
procedure is executed, and it treats them and their further links appropriately. This
is a form of delayed recursion.

 Tacit and Explicit Understanding in Computer Support 255

The ten methods reviewed here (along with the context hierarchy and the
procedure for checking links during attempted traversal) suffice for implementing
the HERMES perspectives mechanism. They provide an efficient means for
organizing information in over-lapping categories, such as hierarchies of personal
and group viewpoints, of technical aspects, and of domain traditions. The virtual
copying is also useful for efficient versioning schemes, CAD graphics, and
information security systems. The following section will touch on some ways this
mechanism can be used to support interpretation in collaborative design.

9.3. Evolving Perspectives
Supporting knowledge evolution. As knowledge in the database grows and
changes, it must often be reorganized. The evolution of knowledge means that
different designers are adding, deleting, and changing information in different
perspectives. In a design environment without perspectives all the growth of
knowledge would take place within a single, homogeneous knowledge base. When
the organization of this knowledge became disorganized and contradictory it might
be necessary for a reseeding process to take place. This could involve specialist
programmers or knowledge engineers (that is, people other than the designers who
normally use the system) to step in and impose order and consistency. They might
extend some of the system functionality as well, but their main task would be to
straighten out the organization of knowledge.

In HERMES, the perspectives mechanism can be used by the designers themselves
to do some of the reseeding process in an on-going way. They can also use the
language to extend the functionality of the system, defining, for instance, new
analytic computations.

A paradigmatic task for supporting the evolution of perspectives and their
knowledge is the merging of two unrelated perspectives. This was also identified
as a critical task by the authors of the perspectives mechanism in the PIE system,
reviewed in Chapter 7. In Section 9.1, above, the design team decided to merge the
privacy critic work in phyllis’ perspective with that in sophia’s
perspective, creating a new lunar habitat design team perspective.
This is an example of reorganizing evolved knowledge. The new perspective might
also be designated the privacy perspective. The point is that multiple
independent efforts had created new knowledge in separate perspectives. Because
the designers decided that this knowledge belonged together, they created a new
category (perspective) for it and reorganized the knowledge accordingly.

 Tacit and Explicit Understanding in Computer Support 256

Figure 9-14 shows the HERMES interface for doing this. It is similar to the
schematic in Figure 9-9. Here, the new perspective is created by assigning it a
name. Then existing perspectives are chosen from a pick list (either as a sorted list
or a hierarchical tree) to specify what information should be inherited. The
inheritance takes place using Method 1 described in Section 9.2. In the particular
scenario of Section 9.1, there was a multiple inheritance conflict in the definition
of the expression, too near. Such conflicts are resolved through a breadth-first
search of the inheritance tree. So the version of information in the most immediate
ancestor perspective takes precedence. In case of two ancestors at the same level,
the one named first in the dialog takes precedence. Note that this dialog allows one
to review and modify the inheritance tree of existing perspectives as well as
perspectives being newly created in the dialog.

Once the new perspective is set up, designers can browse through the information
visible in the perspective and modify it. Information can be added, deleted or
modified using the methods described in Section 9.2. This process of adding,
deleting, and modifying applies to both named nodes and to their contents. It also
applies to both individual nodes and to whole subnetworks of nodes. For instance,
an issue in the design rationale could be wholly deleted or it could merely have its
content changed in the new perspective. Furthermore, the networks of subissues,
answers, and arguments underneath a given issue could be copied in from another
perspective by one of several alternative methods already described in Section 9.2.

 Tacit and Explicit Understanding in Computer Support 257

Figure 9-14. Interface for merging existing information into a new perspective.

Of particular interest in merging design rationale and other information from
different perspectives is the fact that multiple opinions can be preserved or
suppressed at will. Figure 9-15 shows the same segment of design rationale as
viewed in three perspectives, which inherit from each other sequentially (right to
left). Two kinds of changes have been made in the subsequent perspectives:

 Tacit and Explicit Understanding in Computer Support 258

changes that overwrite the previous opinions and changes that add to the previous
opinions.

In each perspective, the same three issues are raised. For the answer to the second
issue— “What should be the access to the bunks?”—the middle perspective has
added an additional answer to the original one and the perspective on the left has
added a third answer to those two answers. So in the final perspective, which
inherits from the other two, the three competing answers are all visible. However,
the answers to the third issue— “What should be the arrangement of the bunks?”—
replace each other. Here, the issue is answered differently in each perspective
because the inherited answers were deleted or modified to the new answers. This
shows how support for evolution of information can equally support the
accumulation and deliberation of historical versions of information or the replacing
and modification of information.

Figure 9-15. Three perspectives on a segment of design rationale.

Another important concern for the evolution of knowledge is the need to support
the demotion and promotion of items of information from a given perspective to

 Tacit and Explicit Understanding in Computer Support 259

one that is higher or lower in the perspective hierarchy. Assume that there is a
hierarchy of domain traditions such as that on the right-hand side of Figure 9-10.
From most general to most specific there are the perspectives: habitats, space-
based habitats, and Mars or lunar habitats. Suppose that a particular network of
design rationale had been formulated by a designer working in the space-based
habitat perspective at some point in the past. In reviewing this
information within the lunar habitat design team perspective the
design team members use the language constructs discussed below to determine
which context this rationale is defined in, and they decide as a group that the
rationale is general enough to be placed in the habitats perspective.
Alternatively, they might decide that some other rationale is too specific to the
moon and should be located in the lunar habitat perspective. By
clicking on the top node of the subnetwork of rationale, they can bring up an
interface dialog box (see Figure 9-16) that suggests a number of options for
reorganizing the location within the perspectives hierarchy of the node and/or the
network of nodes connected to it. These options are implemented with the methods
described in Section 9.2.

Figure 9-16. Interface for demoting or promoting a node or subnetwork of nodes.

 Tacit and Explicit Understanding in Computer Support 260

Browsing perspectives. The perspectives mechanism simplifies the task of
locating information in the rich knowledge base of an evolving design environment
by partitioning the knowledge into useful categories. However, it also adds to the
complexity of finding information because the knowledge being sought may not
be visible in the current perspective even though it exists in the system. It may not
be obvious what perspective to look in. Support must be provided for searching
the network of perspectives and for browsing the knowledge available in the
different perspectives.

 LHDE provides a simple browser with an indented outline representation of the
hierarchy of perspectives or a sorted list of the perspectives names as part of the
interface for perspectives selection and new perspective creation. This may be
adequate for people who are only interested in a handful of perspectives whose
names they recognize. It may also suffice as long as the hierarchy makes intuitive
sense, perspectives have descriptive names, and knowledge is distributed among
the perspectives in a clear and systematic manner. As the knowledge base evolves,
extended by multiple users, these conditions will likely not persist. Of course, users
can switch to different perspectives and explore the information there with display
queries and hypermedia navigation. Also, more sophisticated graphical browsers
can be added to the system interface to better represent the network of perspectives.

The HERMES language also offers a more flexible and expressive solution to the
problem of browsing the perspectives hierarchy and the knowledge bases in the
various perspectives. As discussed in the next chapter, the language syntax falls
into three primary classes: DataLists, Associations, and Filters. Each of these
classes supports the formulation of expressions providing information about
perspectives or contexts. (a) One can produce DataLists of objects that are visible
in some arbitrary context other than the current active perspective. (b) One can list
context information associated with a given object in the database. (c) One can
filter a list of contexts in terms of their inheritance relations to other contexts or in
terms of what objects are visible within them. This provides a useful suite of
language functions for browsing the perspectives and exploring how they partition
knowledge. Examples of these functions will now be given.

(a) The first function allows one to, in effect, switch perspectives within the
evaluation of a language expression. For instance, if Phyllis wants to see what
habitats are visible from Sophia’s perspective, then she can request a display of the
following DataList:

habitats in sophia’s perspective

 Tacit and Explicit Understanding in Computer Support 261

This produces the same effect as if she had first switched contexts and then
evaluated the expression, habitats. The same function allows Phyllis to apply
her privacy critic to the habitats in Sophia’s perspective rather than in her own:

privacy gradient catalog of habitats in sophia’s
perspective

By including this capability in the language, it can be used as part of a complex
computation that may involve several context switches. Once defined, such a
computation can be given a name and subsequent users of the expression do not
have to worry about doing all the switching or remember what nodes are in which
contexts.

(b) The second language function related to perspectives provides a special report
on the context information associated with an item or a list of items. For each item,
it provides the original context that it was defined in, the list of all added contexts
in which it also appears, the list of all deleted contexts in which it does not appear,
and the optional switch context. (Only named—user-defined—contexts are listed,
not internally defined ones.) This way, one can find all the perspectives in which
a given item is visible. In the following example, the contexts Association is
applied to the result of a query:

contexts of habitats in hermes_universal_context

This example uses the function discussed in the previous paragraph to first switch
to the special perspective, hermes_universal_context. This special
perspective allows all knowledge in the database to be visible: it by-passes the
context checking. So first all the habitats in the system are found, and then their
context information is displayed.

(c) The third language function defines three Filters for lists of contexts. These
filters allow only the contexts to be listed that inherit from a given context, are
inherited by a given context, or allow a given item to be viewed. The following
expressions illustrate the use of these three Filters:

contexts that inherit from desi’s perspective
contexts that are inherited by archie’s perspective
contexts that view more than five habitats

These expressions allow one to explore the structure of the perspectives hierarchy
and of the way it organizes knowledge.

Perspectives fill in the layered architecture. Users of a design environment with
a perspectives mechanism can build new structures for partitioning the knowledge
base as it evolves. Thereby, the inheritance network of perspectives provides a
mechanism for end-users to extend the effective structure of the layered

 Tacit and Explicit Understanding in Computer Support 262

architecture of the system. As discussed in Chapter 7, there is a gap (transformation
distance-2) in the traditional design environment architecture (e.g., in JANUS and
PHIDIAS) between the seeded representations of situations and the concrete task
that is addressed during a given use of the system.

As shown in Figure 9-17, this gap is much smaller than that between the
implementation programming language and the actual task domain, but it is not
negligible.

Figure 9-17. The layered architecture of design environments and HERMES.

This figure extends Figure 7-2 in Chapter 7.

In addition to providing palette items, catalog examples, and design rationale for
the general problem domain, the seeded knowledge base in HERMES can partition
this knowledge in a hierarchy of perspectives. Some of these perspectives can
include knowledge that is specific to certain concrete tasks. This mediates between
the general domain knowledge and specific tasks. In addition, end-users can extend
the hierarchy to close the gap between the generic domain knowledge and novel
tasks that arise. The extensibility of the perspectives hierarchy allows the gap to
be narrowed as much as is needed to support interpretation in design by eliminating
gaps in understanding that cause problems. As problems and knowledge evolve,
the perspectives hierarchy can evolve under end-user control to meet the new
demands and fill the shifting gaps.

In Chapter 10 it will be argued that the HERMES language can also be used as an
extensible mechanism for end-users to progressively fill in the gap in the layered

 Tacit and Explicit Understanding in Computer Support 263

architecture. Definitions in the language exist within perspectives, so these two
solutions work in tandem. Together, the HERMES substrate, its perspectives, and
its language allow the major gaps in the layered architecture to be filled in to an
arbitrarily fine degree and in an end-user extensible manner. Figure 9-17 illustrates
this. From left to right in the figure are the original transformation distance
between a general-purpose programming language and a task, the two problematic
gaps in the traditional layered architecture of a design environment, and the fully
layered architecture supported by HERMES.

Many of the features discussed in this section were originally suggested by lunar
habitat designers and other NASA employees who have reviewed versions of
HERMES. They have responded very favorably to the potential of the perspectives
mechanism—as well as the hypermedia and language—to meet their everyday
needs as designers facing complex, innovative, collaborative, knowledge-based
tasks. To really know the extent to which the perspectives mechanisms can be used
tacitly under realistic conditions will require extensive interface refinement and
workplace testing. However, it seems plausible that the perspectives mechanisms
can be effective in letting the computer manage a significant amount of the
complexity of knowledge organization behind the scenes of the task at hand in
which the designer is immersed.

CHAPTER 10. A LANGUAGE FOR
SUPPORTING INTERPRETATION

The language presented in this chapter is designed as an integral part of the active
computer support of human interpretation in design. It is structured for maximal
plasticity so that designers can create and modify terms that express their ideas and
their interpretations of their developing designs. At the same time, it must serve as
a programming language used to instruct the computer in what computations to
make. As part of a hypermedia substrate for design environments, it needs to
provide expressive functionality useful for building user interface components and
for exploring the hypermedia database.

If one thinks of a computationally active medium for design as incorporating a
variety of “agents” that respond to events by computing information for messages
and displays, then the HERMES language must serve as a language of agents. It
must be able to analyze information in the database—using the customized
terminology that particular designers defined within their perspectives—and
format the results of computations on that information for display to the designers
using the system. In the people-centered HERMES system, the agents do not change
stored information, because such changes are left to the direct control of the human
designers.

A central question addressed during the development of the HERMES language was
how to make the language appropriate to the nature of the human-computer
interaction that should take place in a design environment. The HERMES language
grew out of the query language of the PHIDIAS design environment, discussed in
Chapter 7. The PHIDIAS language was an attempt to provide a language that was
“English-like” in appearance in the hope that it could be used by designers who
had only a tacit understanding of what expressions in the language meant (i.e.,
what the expressions accomplished computationally). However, Part II argued that
tacit understanding by itself was often insufficient; that interpretation required
making some things explicit. That was one reason a language is needed at all.
Designers cannot rely exclusively on pre-linguistic “human problem-domain
communication” as illustrated by the JANUS system but must sometimes be able to

 Tacit and Explicit Understanding in Computer Support 265

articulate their understanding in words. Language and explicit understanding are
required to discover innovative interpretations, to share ideas with collaborators,
and to create computer representations. On the other hand, explicit knowledge
must be founded on tacit understanding, and it is only required during creative
interpretive acts, not when tacit understandings meet the needs. So PHIDIAS’
approach to a tacitly understood language provides a promising alternative to
traditional programming languages that require a sustained high degree of explicit
awareness; but it is not sufficient by itself.

Of course, the scope of the original PHIDIAS query language was quite limited. The
HERMES language extended that functionality to meet more of the expressive needs
of design environments and of the designers who use them. During this process,
the evolving language was subjected to a series of programming walkthroughs
(Bell, et al., 1991) to evaluate its usability for writing programs. A primary result
of these walkthroughs—which are documented in detail in Appendix A—was the
conclusion that significantly more support was needed for explicit understanding
of computational issues. However, previous evaluations of the MODIFIER system
summarized in Chapter 7 had shown that a purely explicit approach—even with
significant support mechanisms in the interface—was not the answer either.

The theory of computer support from Chapter 6 suggests that an adequate
language must support a dynamic movement between tacit and explicit
understanding. (1) Routine reuse of expressions can be largely tacit. (2) Innovative
modification requires a certain amount of explicit analysis. But even here, only the
domain relationships and certain features of the representations need to be made
explicit. Much of the computational “doctrine”22 associated with general purpose
programming languages does not need to be made explicit because it would only
distract from the problem-domain concerns. Much of this can be kept tacit. The
HERMES language represents an attempt to relieve the end-user of such
programming doctrine as much as possible.

Relieving the end-user of technical doctrine of programming does not mean that
designers using HERMES never need to worry about the explicit structure of the
knowledge they are taking advantage of. On the contrary, the analysis of
interpretation in this dissertation stresses the necessary role of explication in
furthering normally tacit understanding. Rather, the attempt is merely made to

22 The term doctrine refers to guiding knowledge that must be understood in order

to use a programming language. For instance, most general purpose
programming languages require that programmers know doctrine about when
and how to use iteration control structures. The programming walkthrough
methodology is designed to assess what doctrine is required for a given task in a
language.

 Tacit and Explicit Understanding in Computer Support 266

minimize the amount of doctrine that must be learned that is unrelated to design.
Designers are often predominantly visual, holistic, intuitive thinkers; the symbolic,
detail-oriented, precise, mathematical character of programming language doctrine
is particularly burdensome for many skilled designers.

Section 10.1 elaborates on the principles that have gone into the development of
the HERMES language, including the necessity of supporting both tacit and explicit
understanding. The uniqueness of the HERMES language is the way in which it
strives to combine the problem-domain centered communicative goals of domain-
specific design environments like PHIDIAS and JANUS with the computationally
expressive goals of general-purpose programming languages like PASCAL and LISP
through this mix of tacit and explicit understanding.

Section 10.2 shows at an in-depth level how a number of the basic mechanisms of
programming languages are available in the HERMES language in ways that require
minimal explicit understanding of technical doctrine by system users: Abstraction
is accomplished by ordinary naming, with no assignment statements. Iteration
takes place automatically without control structures. Typing is maintained by the
implicit organization of the syntax options. Recursion is defined without explicit
concern for halting conditions. Variables are generally avoided in favor of the
application of successive operators; where necessary, deictic pronouns can be used
to reference computational elements. Quantification operators can be applied
directly to lists without use of explicitly bound variables. Other examples of the
encapsulation of explicit mechanisms of computation in tacitly understandable
forms are developed in Appendix B, where sample applications using them are
also described. Of course, users of the HERMES language need to learn doctrine
specific to the use of this language, but that is at a higher level of representation
(closer to concerns of the problem domain) than doctrine for a general-purpose
programming language. Appendix C defines the complete syntax and semantics of
the HERMES language.

Section 10.3 illustrates the use of the HERMES language for defining interpretive
critics. Interpretive critics provide a final example of the synergy of HERMES’
support for interpretation, exploiting the combination of the integrated substrate,
perspectives, and the language. First, the critics from JANUS are redefined in the
HERMES language. Then, the privacy critics from Chapter 9 are analyzed
computationally. A number of the mechanisms discussed in Section 10.2 are
shown at work here. This spells out in some detail one way in which HERMES can
respond to the challenge from back in Chapter 3, to represent in a computer system
Desi and Archie’s concerns about privacy. The advantages of the HERMES
approach are: definitions are made at a higher level of representation, the
definitions can be more expressive, and alternative definitions can be organized in
different perspectives.

 Tacit and Explicit Understanding in Computer Support 267

10.1. An Approach to Language Design
The HERMES language is the result of following several principles arising from the
theory of computer support and the review of design environment needs in Part II.
These principles are:

1. Support a mix of tacit and explicit understanding.

2. Provide a people-centered approach.

3. Meet the needs of design environments.

4. Offer an end-user language for non-programmers.

 This section will discuss how the HERMES language adheres to these principles.

1. Support a mix of tacit and explicit understanding. The HERMES language
stresses different priorities than traditional computation-centered language
designs, resulting in a different set of design decisions and a different character to
the language. The contrast between the HERMES language and the FP functional
programming language proposed by Backus (1978), on which the HERMES
language is formally modeled, or the PASCAL procedural language in which it is
implemented makes this point graphically.

Here is a task like that posed for the programming walkthroughs reported in
Appendix A: Suppose you have a hypertext database with issues in nodes of two
types: question and problem; answers to the issues in answer nodes
connected by answer links; and arguments for the answers in argument nodes
connected by argument links. (See Figure 10-1.) Now, you want to know: which
issues have four or more arguments associated with them (via their answers).

 Tacit and Explicit Understanding in Computer Support 268

Figure 10-1. A database of design rationale.

This could be accomplished by first defining issues as questions and
problems and defining rationale as arguments of answers. Then
you could define the query using these newly defined terms as:

issues that have more than 3 rationale

Notice how this “program” in the HERMES language is a simple statement in
domain terms of the desired results. All the computations that the computer must
carry out to produce the query results are implicit: iterating through all the
questions and problems in the database, following each of their answer
links (if any) and their argument links (if any), accumulating and counting their
rationale nodes, filtering out all the issues that do not fit the condition.

The statement of the query in the HERMES language contrasts with its formulation
in other programming languages. First, it has an appearance that seems easier for
non-programmers to understand tacitly than its equivalent in FP, even though the
HERMES language is formally close to FP:

a(have-Q-R [>3, rationale]) ° issues

In this FP declarative statement, much of the computation has been explicitly
symbolized in abstract mathematical formalisms of application, composition, and
comparison. Even so, the functional approach of FP using successive composition
of operators—which HERMES borrows from FP—avoids the step-by-step detail of
a procedural language. The following procedural pseudo-code shows what this
query would require in a procedural language, and in fact how it is computed
(behind the scenes) even in the HERMES system:
begin

list0 := empty list;

list1 := all nodes with Kind = question;

list2 := all nodes with Kind = problem;

list3 := list1 append list2;

for i = 1 to size of list3 do

 list4 := empty list;

 for each link type from node do

 if link type = answer

 Tacit and Explicit Understanding in Computer Support 269

 then for each linked node do

 for each link type from node do

 if link type = argument

 then add node to list4;

 if count of list4 > 3

 then add node to list0;

return list0;

end;

Traditional general purpose programming languages are based largely on
mathematical models of fully explicit expressions. To name some of the most
popular historical languages, FORTRAN is based on algebraic formulas, COBOL on
business arithmetic, APL on matrix algebra, and LISP on symbolic logic. Assembly
languages are necessarily closely modeled on the architecture of computer CPUs.
Most recent languages are derived from combinations of these prototypes. Even
Backus’ FP language, which is an attempt to break away from the von Neumann
and lambda-calculus models, is strongly influenced by APL—particularly in its
outward appearance to the human programmer. All these languages have been
developed under severe pressure to optimize usage of computer resources
(memory locations and cycle time). This has led to the following problem:
programming languages are necessary for empowering people to communicate
with and through computers; however, the way in which the predominant
languages are closely based on mathematical models make them difficult for many
people in many situations to use to express themselves.

Natural languages that societies have historically developed for their own
expression and interpersonal communication needs have very different
characteristics from these programming languages. They tend to support informal,
tacit, contextual, situated expression. Thus, they are very dependent on human
intentional comprehension of semantics and communicative intent. They feature a
highly generative phrase structure and huge vocabularies that evolve historically.
They develop under the constraint of cognitive ease for the human speaker and
vocal brevity (Grice, 1975).

Now that computer resources are several orders of magnitude less scarce than in
the past while human cognitive resources are being overwhelmed with the
complexities of the information age, it seems time to consider designing
programming languages or end-user languages in which some of the burdens are
shifted to the computer. That is, while a mathematical basis for languages may be
important for theoretical reasons, practical considerations of supporting the needs

 Tacit and Explicit Understanding in Computer Support 270

of users without burdening them unnecessarily suggest that the logical
computational structure of the language should often be kept tacitly hidden in favor
of a higher-level structure close to the user’s explicit concerns. Computers
increasingly have the power to manage the translation between these levels to
relieve the user of that burden.

The goal of the HERMES language is to make communication with the computer
system cognitively and interpretively easier for people. It tries to do this by hiding
many computational details, leaving it up to the computer software to take care of
them. It allows designers to build their own vocabulary incrementally, using terms
familiar from their domain of work. The vocabulary can grow through a history of
use, with different people developing different meanings for terms (in their own
perspectives) and sharing these meanings (in common group perspectives). The
language starts out with a shared basic vocabulary, established as a seeded
vocabulary by the design environment builders. Terminology in the language can
be reused and modified by subsequent system users, just as natural language words
can take on new metaphorical meanings. The language is intended to support
interpretation, explication, and interpersonal communication, not just formulaic
statement. Section 10.2 will detail what is meant by hiding the computational
structure of expressions.

2. Provide a people-centered approach. The slogan of a “people-centered”
approach means that the computer system should be controlled by the people with
whom it interacts at the points where judgmental decisions must be made that
involve the exercise of intentionality. The HERMES language is designed to
empower people to express their interpretations and judgments in ways that can
affect the computer’s actions and that can also be communicated to other people.
By making the design environment programmable, the language lets designers
using the system determine how displays, analyses, and critics used in the active
computational environment are to be defined. Terms used in the definitions of
these displays, analyses, and critic rules can be defined and modified by designers
in accordance with their own interpretive perspectives.

“People-centered” also means that the system interacts with people in ways
appropriate to human cognitive (interpretive) styles. HERMES features a language
for designers (rather than trained programmers) to use. The language is defined as
a series of subset languages to facilitate learning by new users. This way, people
can work with the language at a level that is comfortable for them. When they need
more explicit control in defining revised expressions to capture their precise
interpretations, they will have a relatively easy path to exploring language features
that are new to them. They can simply move to the next stage of the language in a
particular area of the language. For instance, if they need a new definition of a
complex expression, they can expand the beginner’s dialog box of syntax options

 Tacit and Explicit Understanding in Computer Support 271

to see the additional intermediate options or they can view the definition of an
existing expression and modify it gradually. (An interface for doing this is
discussed under point 4, below.)

First it should be noted that previously defined terms and expressions are used by
designers most of the time. These can be simply selected from lists of relevant
terms, even by a novice. Then there is a beginner’s version of the language that is
similar to the PHIDIAS language, which proved easy to use for non-programmer
users. This level of the language suffices for defining or modifying most common
terms and queries. An intermediate level provides access to virtually all features
of the language except those related to graphics. Finally, an advanced level can be
used for graphics-related tasks, like defining interpretive critics. Most system
displays and component interfaces are defined in the language, so they can be
modified through use of the language. It would be possible to add a fully general
programming level to the language by providing a programming language
interpreter that could treat the syntax options of the HERMES language as
predefined functions. This has not been done because the research focus of the
HERMES language is to support interpretation in design and to make a language as
interpretable as possible for non-programmers. This goal probably does not require
a computationally complete language. So, the following levels of usage are
supported by the HERMES language:

Novice. Even without defining any new expressions in the language, a novice can
still use most of the HERMES system in a flexible way. It is, for instance, possible
to define new link Types and node Kinds, although one cannot yet define new
computed expressions that refer to them. One can also use all the previously
defined (seeded) expressions in the language: DataLists, Predicates23, conditions,
queries, critics, etc. Thus, it is possible to define conditional nodes, conditional
links, or virtual structures (queries embedded in nodes) without writing new
expressions in the language.

Beginner. This version corresponds roughly to the original PHIDIAS language. It
allows the user to define expressions, displays, and critics incorporating Filter
clauses. With only 15% of the number of options of the full language, the Beginner
syntax provides a good learning experience for most of the features and
conventions of the HERMES language. This version of the language features Input
Associations, a subset of Associations useful for eliciting design rationale or
argumentation. For instance, if an Input Association, deliberation, is
defined as issues with their answers with their arguments,

23 The definition and use of Predicates, conditional nodes, and virtual structures is

described in Appendix B. DataLists and other syntax categories are defined and
illustrated in Appendix C.

 Tacit and Explicit Understanding in Computer Support 272

then it can be used to control data entry. A special interface feature is designed to
create new nodes following the patterns of user-defined Input Associations. Using
the definition of deliberation, it will prompt for the text of an issue to be
entered; then it prompts for one or more answers to that issue; for each
answer it prompts for one or more arguments. Recursive Input Associations
can also be defined that prompt for whole trees of data to as much depth as the
respondent is willing to go.

Intermediate. The intermediate version of the language expands the
computational power of the beginner version, without, however, including the
complications introduced by graphics. This corresponds roughly to the level of
complexity implemented for the version of the language used in the programming
walkthrough (Appendix A) and in the academic advising application (Appendix
B). Here, the simple data-entry Input Associations become a subset of the more
powerful and complex Associations. Predicates are a modification of Associations
to hide some of their complexity when displayed.

Advanced. This version adds the multi-media capability and more sophisticated
programming options. Now all the computational capability of the language can
be applied to nodes of any medium (e.g., vector graphics, sound, video, and
bitmaps). This is necessary for implementing displays or critics that take into
account graphical information (distances, spatial relationships, adjacencies,
volumes, etc.). [This level of the language has been designed (see Appendix C),
but not yet fully implemented.]

Programmer. Ultimately, one might want to give a user full programming power.
In a research prototyping environment, one could simply hand over the source
code. In a LISP environment, one can allow the user to enter programs as data that
are then interpreted. However, in realistic cases where the source code is not made
available and where speed is too much of a concern to use an interpreted language
for building the system itself, other mechanisms must be developed. HERMES
provides a form of procedural attachment implemented via dynamic link libraries
(DLLs) in WINDOWS. This lets the user define a certain number of pre-named
functions, using the full power of object-oriented PASCAL or C++. These functions
can then be attached to nodes or links in the hypermedia database (see active
objects in Section 8.2) and referred to by expressions in the HERMES language.
[This level of the language has not been explored extensively but is meant to be
suggestive as a response to the limits of programming complex algorithms in the
HERMES language.]

These levels of the language extend the idea from JANUS of a layered architecture,
as discussed in Chapter 7. The layers of the language fill in the two gaps that
appeared in Figure 7-2: the transformation distance-3 between the system building

 Tacit and Explicit Understanding in Computer Support 273

environment (LISP) and the design environment (JANUS), and the transformation
distance-2 between the seeded design environment and the actual task domain
(laying out a particular kitchen). The first of these gaps is filled primarily for
system builders who are constructing a new design environment or adding new
components to an existing one. When a design environment is built on top of the
HERMES substrate, new components take advantage of the substrate functionality,
including the language. As shown in Chapter 8, many functions are implemented
as windows or buttons that evaluate expressions defined in the HERMES language.
That means first of all that functionality can be defined using higher level terms in
the HERMES language without the system builder needing to work at the lower-
level implementation language. It also means that future end-users can revise the
way those functions work by modifying the definitions of the terms used in the
HERMES language, which is available to them at run-time as well. The second gap
is filled primarily for designers using a design environment built on HERMES. They
can simply use the terms, displays, and critics that have already been defined. If
they need to modify something, the Beginner version of the language is available.
If this is not sufficient, they can successively try more advanced versions of the
language. This provides almost a continuity of layers to support a range of
understanding from tacit work in the problem domain to explicit software
programming in the underlying programming environment. (See Figure 9-17 in
Section 9.3.)

3. Meet the needs of design environments. Chapter 7 cited the idea of
programmable design environments proposed by Eisenberg and Fischer (1992). It
was claimed there that HERMES could be viewed as the first implementation of this
notion. In fact, the design and development of HERMES was driven by the desire
to include programmability as a central feature of a design environment in order to
empower designers to define, control, and extend the computational power of the
software system in which they carry out their design work.

The desire to have the language refer to, analyze, critique, and display all the
varieties of knowledge and representations in a design environment—including
information from previous designs in a catalog, palette items for use in new
designs, specification decisions, design rationale, domain distinctions, critic rules,
etc.—forced the system to become more and more integrated. As the power of the
language was extended from its original restriction to design rationale (in the
original PHIDIAS query language), more of the knowledge was represented as
hypermedia nodes that could be linked in one integrated knowledge base. New
forms of knowledge were also added. For instance, conditional expressions could
be defined to implement conditional links, conditional nodes, and critics. The
increased generality of the system made it easy to add new media, like bitmaps,
voice, and video as well.

 Tacit and Explicit Understanding in Computer Support 274

As the language grew in range and power, the number of its syntax options in the
language increased rapidly, despite extensive efforts to generalize and simplify the
syntactic structure. In the end, the number of options increased by an order of
magnitude. Most of these syntax options (those called “simple” options) directly
reflect elements of the multimedia knowledge representation substrate. Many other
syntax options (called “computed” options) define combinations of the primitives
that are needed for useful computations. The appearance of expressions in the
language is dominated by user-defined terms: names of objects, link types, node
kinds, names of defined sub-expressions. Otherwise, there are just a few “helper”
words that remind people of the functionality of the options. Little is left in its
external appearance of the language’s computational internal nature. Thus, the
HERMES language appears to be a “new” language, although it is really basically
the result of adapting a stripped-down functional programming approach to meet
the needs of a design environment.

Despite its adherence to the notion of a programmable design environment, the
HERMES language is very different from a programmable application like
SCHEMEPAINT (Eisenberg, 1992). In SCHEMEPAINT, the language is used for
creation of new objects. In contrast, the HERMES language is “non-imperative”
(Schmidt, 1986). Evaluation of expressions in the HERMES language do not change
state: they do not create anything new. They navigate through the hypermedia
database and collect lists of existing objects. Of course, by means of user interface
features, these lists can themselves be saved as new objects. Also, interface
features can be designed that use language expressions to organize, modify, or
even create objects. For instance, a design rationale prompting component in the
interface can elicit and store new argumentation using the Input Association syntax
options as explained in Appendix C. The language is primarily geared to the
diverse information retrieval needs of designers.

Design environments have a variety of data retrieval, manipulation, and display
needs. In a hypermedia-based system like HERMES, these needs can generally be
categorized into three groups: (a) to generate lists of information, (b) to selectively
choose items from lists, and (c) to navigate through the inter-connected network
of the database. This corresponds to the three categories of operations that Abelson
& Sussman (1985) emphasize for functional computer programs: to enumerate,
map, and filter lists or streams of information.24 The HERMES language syntax
provides three primary classes of terms to operationalize these functions:
DataLists, Filters, and Associations, as indicated in Table 10-1:

24 The suggestion to interpret operations in the HERMES language as the processing

of streams of information in this sense was suggested by both C. Lewis and M.
Eisenberg, independently.

 Tacit and Explicit Understanding in Computer Support 275

Table 10-1. Correspondence of language uses, operations and classes of terms.

 uses operations HERMES language

(a) generate lists enumerate DataList

(b) selectively choose filter Filter

(c) navigate network map Association

(a) Many forms of lists must be generated (enumerated) in a design environment.
In a system built on top of the HERMES substrate, virtually all displays in the user
interface are constructed dynamically from such lists. The HERMES language is
designed above all to provide a flexible means for defining lists of items stored in
the database and useful for interpretive tasks in the represented domain. In this
sense, the HERMES language is a database query language. The HERMES language
is optimized for expressing queries in this environment and for retrieving the
requested information efficiently in useful formats. Unlike SQL (a general-purpose
query language for relational databases), it is designed for an object-oriented,
multimedia database in which items are linked together in hypertext style. It differs
from SQL in being non-relational and hypermedia specific. Among the
information listings available through the HERMES language are general queries
and the basic displays used in design environments, such as design rationale issue-
base views, catalogs of past designs, palettes of design components. An example
of a DataList that computes the items for a display of some rationale created by
Archie is:

issues that have creator archie

(b) Filtering functions of the language are important for implementing critics and
for making all displays relative to design decisions encoded in specifications,
constructions, or design rationale. For instance, using the language one can define
a display of all catalog items that pass a Filter referring to the existence of specific
palette items in a certain construction, answers resolved in the design rationale,
or selections made in a specification listing. Perspectives provide another filtering
mechanism in HERMES, allowing only nodes that are defined in the currently active
perspective to be processed by the language. The two filtering mechanisms can be
combined in expressions in the language like:

issues in context desi’s habitat perspective that have
creator archie

 Tacit and Explicit Understanding in Computer Support 276

(c) Navigation through the hypermedia database (mapping) is also accomplished
with the HERMES language. A good example of such navigation is shown in Figure
10-1 with the expression:

issues that have more than 3 rationale

Here, the expression rationale, defined as arguments of answers,
navigates from each issue node across its answer links to new nodes and across
their argument links.

The three major syntax categories of the HERMES language (DataLists, Filters,
Associations) provide the three primary functions required for design
environments: (a) definitions of lists of nodes, (b) expressions for filtering out
nodes not meeting stated criteria, and (c) operations to traverse various kinds of
associations. These support the situated, perspectival, and linguistic character of
interpretation by naming representations of things in the design situation, filtering
out objects for display based on viewing criteria, and providing expressions for
exploring semantic associations. Objects in each of these three categories can be
either (1) reused or (2) refined by combining expressions in useful ways. This
defines the six primary syntactic classes; four other classes provide auxiliary terms
and features. The syntactic classes are listed with brief descriptions in Table 10-2.

 Tacit and Explicit Understanding in Computer Support 277

Table 10-2. Major syntactic classes of the HERMES language.

 syntactic class description

a-1 Datalists options for identifying hypermedia nodes.

a-2 Computed Datalists permitted combinations of language elements
that determine sets of nodes

b-1 Filters operations characterizing nodes for selection

b-2 Computed Filters permitted combinations of language elements
that define filter conditions

c-1 Associations links and other associations of nodes

c-2 Computed
Associations

permitted combinations of language elements
that determine non-primitive Associations

d-1 Media Elements nodes of various media: text, numbers,
booleans, graphics, sound, video, etc.

d-2 Computed Media
Elements

permitted combinations of media elements,
e.g., arithmetic or boolean computations

e-1 Pre-defined
Terminology

connective terms, measurement primitives,
fixed values for attributes and types

e-2 Computed
Terminology

namable quantifiers and numerical
comparisons

The central syntax classes of the HERMES language are (a) DataLists, (b) Filters,
and (c) Associations. In addition, (d) the Media elements define several syntax
classes, one for each kind of allowable multimedia content in the hypermedia
database that is traversed by the language: Character, Number, Boolean, Graphic,
Image, Pen, Sound, Video, Animation, and ComputedView. (e) The Terminology
options provide the connective terms for joining multiple items together and for
counting items, as well as certain definitions useful for graphical computations;
these include three syntax classes for user-definable options: Count, Quantifier,
Measure; and eight syntax classes that are system-defined: Connective,
Combination, Distance, Units, Dimension, Attribute, Value, and LanguageType.

 Tacit and Explicit Understanding in Computer Support 278

In addition there are three hypermedia classes that are part of the syntax: Contexts,
NodeKinds and LinkTypes. The syntax classes are divided into Simple and
Computed options. The Simple options define a single operation for producing a
result. The Composite options define legal combinations of applying one operation
to another. This defines the operator algebra that is at the heart of the HERMES
language. It is discussed below. Table 10-3 (below) provides sample options from
each of the classes listed in Table 10-2 (above).

Table 10-3. Examples of syntactic options for the HERMES language.

 syntactic class example

a-1 Datalists all database items of a specified
NodeKind

a-2 Computed Datalists items of a DataList that pass a specified
Filter

b-1 Filters items that are of a specified NodeKind

b-2 Computed Filters items that pass Filter1 and also pass
Filter2

c-1 Associations a Link Type (e.g., children)

c-2 Computed Associations Association1 with their Association2

d-1 Media Elements a real number (e.g., 3.14)

d-2 Computed Media Elements the total of all numbers in a specified
DataList

e-1 Pre-defined Terminology closest distance between two graphic
items

e-2 Computed Terminology a Distance is greater than a specified
Number

(e.g., too near: closest distance is less
than 5 feet)

 Tacit and Explicit Understanding in Computer Support 279

The DataList, Filter, and Association options constitute the majority of the syntax
options. The Simple options are all defined as primitive operators. For instance,
Simple DataLists return a node or list of nodes as their result. DataList, Filter, and
Association (both Simple and Computed) evaluation functions all take a DataList
as input and return a new DataList as a result. This DataList result format acts as a
stream of data items that passes through the operators to generate new items, filter
out items that were there, or map from the old items to associated new items.
Because of this uniform format, any of the operators can be applied successively
to the results of any other operators. This allows the unlimited nesting of phrases
and application of operators that makes the HERMES language highly generative.

In HERMES, only certain combinations of applications are permitted, as defined by
the Computed options. If the Simple options were incorporated as predefined
functions in a general programming language like FP or SCHEME, then any
combinations of operators could be evaluated. However, a judgment has been
made in designing HERMES to limit the combinations to semantically meaningful
and useful options. That accounts for the seeming proliferation of options. In fact,
however, the majority of options are nothing but combinations of other options
applied to each other. For these combination options, the semantics are trivially
defined, as shown in Appendix C in which the denotational semantics and the
corresponding implementation code for the evaluation function of one such
combination option is shown. The HERMES language is a carefully constrained
language, designed to promote relatively tacit usage by structuring the choice of
operation combinations to avoid many problematic expression definitions and to
guide the language user.

4. Offer an end-user language for non-programmers. The use of the language
in HERMES can be made appropriate for non-programmers in many ways through
interface features. Some examples were already given in Chapter 8. Consider how
navigation through the hypermedia database (mapping) is accomplished with the
HERMES language. An example of such navigation is shown in Figure 10-2. A
textual node has been selected in a Design Rationale window by clicking on it.
This brings up the Navigating the Hypertext window. The selected node has been
displayed in the top of this window and the default option of “Navigate out-going
links” has been chosen. The list of “Out-going Links” displays “issue,” indicating
that the selected node is associated with out-going links of type issue to other
nodes. The list of Predicates25 displays three terms that have previously been
defined in the HERMES language; these terms are all defined with expressions that
include issue as their initial traversal, so they are relevant to the selected node

25 Predicates are a special form of computed Association. They are explained in

Appendix B.

 Tacit and Explicit Understanding in Computer Support 280

that has issue links. If the user had selected “issue” under “Out-going Links,”
then a new Design Rationale window would have been displayed listing all the
nodes navigated to by following issue links from the original selected node. In
the case shown in the figure, the user has instead selected the Predicate
discussion. Discussion is defined in the HERMES language (either in the
seed or by a previous user) as a series of link navigations beginning with issue
links. So the display produced in the new window is an indented list resulting from
the navigations defined by the language expression named discussion.

Figure 10-2. An example of hypermedia navigation.

The example just given illustrates a number of points about language usage in
HERMES. First, expressions (like discussion) can be reused without explicit
concern for their detailed definition, particularly if their name indicates their
function adequately. Second, rather complex displays can be defined relatively
easily. If one wanted to, one could modify the definition of discussion or
define a new term based on it. The new term could use Filter conditions to
eliminate items selectively as well. For instance, one could define a new Predicate

!?#$%##?&'(&)(?##%*+
,-./(.0*(/-*(!*#?1'($&'#?!*0./?&'#()&0(2%'3#4

)&0(2%'3#4

 Tacit and Explicit Understanding in Computer Support 281

bunk discussion as: discussion that contains ‘bunk.’ Then
the list of Predicates displayed in the Navigating the Hypertext window would
include bunk discussion and selection of this option would result in a display
that only listed items including the word “bunk.” Third, language usage can be
integrated into the user interface so that it feels like tacit navigation through
hypermedia rather than explicit querying with a language. The use of this language
need not have the look and feel of programming, even when new expressions are
being defined for accomplishing arbitrarily complex computations.

When an expression must be explicitly programmed, interface support is available
to reduce the cognitive burden of recalling syntax options, strict formats,
expression names, or terminology spellings. As part of the attempt to reduce
programming errors that would frustrate a non-programmer, a direct manipulation
interface is provided for use, reuse, modification, and creation of expressions in
the HERMES language. Strictly speaking, this is not part of the HERMES substrate,
but belongs to the interface of a design environment built on top of the substrate.
It is presented here simply to suggest one solution to the problem of supporting
people to use the HERMES language with minimal cognitive overload.

* By presenting all relevant options on the computer screen at each stage and
requiring expressions to be built up by choosing from these dialog options, the
user is relieved of having to remember the various legal options.

* Similarly the problem of entering the precise proper format and spelling is
solved. Novice programmers are particularly frustrated by punctuation and
spelling errors during program input.

* The interface presents definitions of terms in a readable format. Given that
expressions in the HERMES language often read much like English, it is
important to avoid the impression that the system can understand arbitrary
English formulations. The restriction to a visible menu of choices makes the
restrictions clear and unavoidable.

* The same dialog boxes that are used for defining new expressions encourage
the reuse of previously defined expressions. Old definitions can be reviewed
with the dialogs to see their internal structure, and the definitions can then be
modified and reused.

Figure 10-3 shows the three dialog boxes for defining a DataList expression. This
is typically the starting point for defining expressions in the language, such as
queries or critics. It is also possible to start with other dialogs to define conditional
expressions, numerical computations, and so on. The leftmost dialog, labeled
“DataList options,” is the first dialog to appear under conditions in which one
needs to define a new DataList. If one wants to select a previously defined DataList
expression—whether defined as part of the HERMES seed, by other system users

 Tacit and Explicit Understanding in Computer Support 282

or by the current user—then a pick-list of the names of all defined DataLists is
used instead.

Figure 10-3. Dialog boxes for defining DataList expressions.

This programming interface incorporates the breakdown of the language into a
series of levels for users with different degrees of experience in using the language.
This is an example of the mixture of support for tacit and explicit understanding.
Even when the system user needs to make interpretations explicit and state them
in the programming language, this burden is softened by providing a direct
manipulation, construction kit interface for defining expressions and by providing
a layered architecture of many levels of successive complexity.

The leftmost dialog presents the Beginner’s version of the syntax. The heart of this
dialog is the list of seven small circles, the radio buttons for selecting one of the
three Simple DataList options or one of the four Composite DataList options. The

 Tacit and Explicit Understanding in Computer Support 283

first of these options allows the user to simply select a node from a pick-list, which
will be displayed when this option is chosen. The second option defines a DataList
consisting of all nodes in the database that are of a specified NodeKind. If this
option is selected (by clicking the mouse on its NodeKind button), a pick-list of
the names of all defined NodeKinds is displayed. The third option retrieves a
DataList expression that has been previously defined and saved.

The Composite DataList options lead to other dialog boxes to define constituent
parts of the composite expression. The first of these, for instance, has three buttons:
“DataList,” “Combination,” “DataList.” If this option is selected, then each of
these buttons must be pressed with the mouse before the new expression can be
saved. Pressing the first (or the third) of these buttons brings up another copy of
the same dialog box so that the constituent DataLists may be selected. For instance,
to define a DataList named issues as questions and problems, use this
option and press the first button. When the new DataList dialog appears, select the
first Simple DataList option and choose questions from the pick-list that
appears. Then click the “ok” button at the bottom of the new dialog to confirm this
choice. The new dialog will disappear. Then press the “Combination” button. This
will bring up a dialog listing the five Combination options. Simply select the and
option and click the “ok” button. Then define the DataList for the third button as
problems. Now the expression questions and problems will show in
the small window near the bottom of the DataList dialog box. Press the “save
DataList” button below there. A small dialog will ask for the name of the new
DataList that has just been defined. Type the word issues and the new
expression will be part of the HERMES system.

Below the list of options in the DataList dialog are buttons labeled “more
DataLists” and “graphic DataLists.” These bring up the dialogs with the
Intermediate and Advanced DataList options, respectively. They are also shown
in Figure 10-3. They work the same way as the options in the first dialog, which
remains on the screen and controls the overall expression definition process. This
is how a user advances from the Beginner to the Intermediate or Advanced levels
of the language based on their specific needs.

One more button should be mentioned in the basic “DataList options” dialog box.
That is the uppermost button: “reuse a DataList.” Pressing this button brings up a
pick-list of defined DataLists. When one is selected from this list, the list
disappears and the definition of the selected DataList appears in the dialog. First it
appears in the display window in its narrative format. But it also appears in the
options in the sense that the option that was used for defining it is now selected in
the dialog. Pressing the buttons for that option will bring up dialogs that are also
already displaying the constituent parts. This provides a way of exploring the
structure of a defined expression. If anything is changed on the subsidiary dialogs

 Tacit and Explicit Understanding in Computer Support 284

and confirmed and saved, then the definition of that expression will be modified
accordingly (within the currently selected perspective).

While the foregoing description and its accompanying figure may seem
complicated, that is partly because it is harder to describe this process explicitly in
words, covering most of the various possible actions, then it is to use the direct
manipulation interface to make selections needed to accomplish a specific task.

 The HERMES language represents an attempt to push a particular approach to
language design as far as possible. This is what makes the HERMES language
distinctive. The approach is motivated by the theory of computer support of
interpretation. It includes an effort to balance support for tacit and explicit
understanding, promoting tacit activity whenever possible, even during the
accomplishment of explicit programming tasks. It tries to develop an expressive
and extensible programming language for people like designers who may not be
experienced at computer programming. To do this, it hides many of the
computational mechanisms (as described in the following section) and constrains
the syntax of the language. Of course, there are trade-offs involved in keeping
mechanisms hidden and in limiting options to enforce meaningfulness of
expressions. The HERMES language has great flexibility and expressivity. It is
infinitely generative and arbitrarily complex. But it is far from being Turing
complete. There are many definitions of lists that cannot be expressed in it, but that
are relatively straight-forward to program in PASCAL or LISP, for instance.
Subsequent examples and analysis in the remainder of this chapter and in the
Appendices should show the language’s ability to formulate easily and tacitly the
expressions most useful for design environments, as well as pointing out the
limitations that can arise in more complex circumstances.

10.2 Encapsulating Explicit Mechanisms in Tacit
Forms
The HERMES language has been designed to minimize the amount of programming
language doctrine required as explicit knowledge by people writing and reading
expressions in the language. This has been accomplished by hiding a number of
programming language mechanisms in the syntax options of the HERMES language
so they can be used with only a tacit understanding of their functioning. This
section illustrates what is meant by this approach. A number of important areas of
programming language doctrine that require explicit understanding for the use of
languages like LISP or PASCAL are incorporated in the syntax options, evaluation

 Tacit and Explicit Understanding in Computer Support 285

processes, and user interfaces of the HERMES language in ways that can be used
without explicit understanding.

1. Abstraction in HERMES takes place by simply giving a name to an expression
that has been defined; there is no explicit assignment statement. All
expressions in the HERMES language can be named and the names may be used
wherever the corresponding expression could be used.

2. Iteration is implicit in HERMES. For instance, in the example of displaying the
discussion of an item from the Design Rationale window, all the issue
links from the item’s node were followed. Normally, this would be expressed
in a traditional programming language as some form of iteration (a for-loop
or a recursion). However, in the HERMES language it is not expressed at all,
but merely assumed in the declaration calling for a list of the issues.

3. Typing of expressions is enforced by restrictions on the allowable syntax
options, without the user needing to be aware of this.

4. Recursion is an important technique for navigating successive links in
hypermedia networks using the HERMES language, but users need not be aware
of it or worry about halting conditions.

5. Variable binding occurs as a natural result of the syntax of expressions, but
explicit variables are not used.

6. The syntax allows one to quantify expressions by asking for all items, checking
for at least one item, and so on, but the computational implementation of these
is hidden from the user.

7. Conditionals can be stated in explicit if / then format or implied through more
tacit formats.

1. Abstraction. The importance of abstraction has been emphasized by many
leading language designers (e.g., Liskov, et al., 1977; Cardelli & Wegner, 1985;
Abelson & Sussman, 1985; Wirth, 1988). From a people-centered perspective, the
importance of abstraction in definition of expressions in a programming language
is that a complex expression can be hidden under an easy-to-use name that
corresponds to terminology in the application domain. That means that the name
can be used in a relatively tacit way once it has been defined explicitly.

To use an example from Chapter 3, it may be quite difficult to define an operational
definition of privacy for lunar habitats. Such a definition must be spelled out in
complete and explicit detail (see Section 10.3 below for such a definition) so that
the computer system can use it. However, once defined, the definition can be stored
under the name privacy. From then on, designers using the system can make
use of the term privacy without being concerned about all the computational

 Tacit and Explicit Understanding in Computer Support 286

details. In fact, the term may have been defined as part of the system’s knowledge
seed by the software developers or by some intermediate knowledge engineer, so
that the lunar habitat designers never need to be concerned with (or develop the
skills to understand) the technical details of implementation. This is a case in which
the analysis of interpretation provides a new argument about the role of abstraction,
an old technique. Based on this argument, HERMES in fact places considerable
emphasis on this form of abstraction in the design of the HERMES language,
allowing every object stored in the computer memory—including all defined
expressions and sub-expressions in the language—to be referred to by user-defined
names.

The use of abstraction in HERMES supports extensibility of the language. Not only
can link Types and node Kinds be user-defined (as they already were in PHIDIAS),
but so can the language’s namable terminology elements: Count, Quantifier, and
Measure. For instance, a new Count term, several, could be defined as: more
than 2 and less than 7. By naming the expression “several,” a user
can then make use of this term without worrying about its precise definition. Of
course, if another user interprets the term several differently, the definition can
always be explored and modified through the interface to the language. Similarly,
Measure terms can be added to the language, like “set off from”: central
distance is less than 24 inches and closest distance is
more than 4 inches

In Section 9.1’s scenario in which the notion of privacy is made operational, the
scale of privacy values from 1 to 9 was abstracted by the definition of the following
Number terms:

very public: 1
quite public: 2
public: 3
somewhat public: 4
neutral: 5
somewhat private: 6
private: 7
quite private: 8
very private: 9

These definitions allow designers to think in tacit problem domain terms rather
than in the explicit quantitative terms required by the computer. The abstractions
are constructed tacitly by simply supplying a name when an expression is defined;
there are no explicit assignment statements in the language.

2. Iteration. Much traditional programming language doctrine has to do with
iteration: for loops versus while control statements, recursive list processing,

 Tacit and Explicit Understanding in Computer Support 287

sequential comparisons, etc. In HERMES, there are no explicit control structures for
iteration. Yet, iterating through lists (e.g., all the nodes of such and such a
description, or all the links of a certain Type from a node) is ubiquitous in its
central task of navigating through hypermedia. In the HERMES language, the
various iterative tasks of the design environment and of its hypermedia substrate
are encapsulated in primitive syntax options.

A Simple DataList can be defined by a NodeKind or LanguageType; these options
iterate through the database index to retrieve all nodes of the specified category. A
Simple Association can be defined by a Link Type; this option iterates through all
the links of the specified Type from a given starting node. The option, all
associations, iterates through all of a node’s out-going links; inverse
Association iterates in-coming links; parts iterates content links. Each of these
options returns the list of all nodes at the other end of these links. The options are
implemented with iteration control structures, but the user need not be aware of
this.

Simple Filters also iterate through lists of nodes. They test each node successively
to see whether it meets some condition. The nodes that meet the condition are
returned. For instance, the expression, arguments of answers of the
bunk locations issue that are of kind pro-argument, will
be evaluated by iterating through all the nodes at the ends of the specified argument
links and testing which of them are of node Kind pro-argument.

Several of the Number options are also implicitly iterative, returning a count of
elements in a list, a minimum, maximum, total, or product of the values. One
Number option even iterates through all combinations of two or three graphical
objects to return a list of the distances between them. To test for an acceptable
work triangle in a kitchen, a designer can simply take the minimum value of this
list of distances, without needing to worry about the details of iterating through all
the combinatorial possibilities if there are multiple stoves, sinks, or refrigerators in
the kitchen.

3. Typing. The constrained syntax of the HERMES language provides an implicit
typing system. Like the strong typing system of languages like PASCAL, it avoids
syntactic combinations that would be meaningless or cause conflicts. However, it
is enforced “behind the scenes” so users do not have to be aware of it as a typing
system. Types are not declared explicitly by the user.

The Simple syntax options are categorized in the syntax classes discussed in the
previous section, such as DataList, Filter, and Association. These 25 classes are
the types of the HERMES language. A typical Computed syntax option combines
terms from several of these classes. For instance, one Computed DataList option

 Tacit and Explicit Understanding in Computer Support 288

is: DataList Combination DataList. This joins any two expressions of type DataList
with any expression of type Combination, like and or or.

Notice that each of the computed syntax options listed in Appendix C refers to one
or more syntax classes (or types). Legal combinations of these types are defined
by the options of the syntax. This is a convention of the language; it would be
possible to define combinations of individual options or to distinguish between
categories of options like Simple and Computed—but that would be a different
language. For instance, example a-2 in Table 10-3 allows a DataList to be defined
as a Filter applied to a DataList. This means that any expression of type Filter can
be applied to any expression of type DataList and the result will be a legal
expression of type DataList. The DataList used as a component in this definition
may itself be a Computed DataList composed of several components. By applying
these rules repeatedly, one can build up well-defined expressions of arbitrary
nested complexity.

The set of defined legal options has been carefully designed to permit the
construction of a broad range of expressions to meet the needs of people using a
hypermedia-based design environment. While generality of expression has been a
priority, an attempt has also been made to exclude combinations that would lead
to problems for the users. Another constraint has been to keep the sheer number of
options as small as possible. Of the 110 options defined, only a small number will
be used most of the time; many are for advanced techniques primarily necessary
for internal use building interface functionality or for complex graphical
computations.

4. Recursion. Recursion was already available in the PHIDIAS query language. A
simple example is the definition of issue trees as: issues with their
issue trees. Here, the definition recursively incorporates its own name. This
is useful for navigating hypermedia networks to arbitrary depth. The evaluation
proceeds from a node across all its issue links to new nodes, across their issue
links, etc. The recursion terminates at nodes that have no issue links. This
graceful termination condition is built into the implementation of the Simple
Association option, Link Type. Therefore, users of the language do not need to be
concerned about explicitly stating a halting condition for the recursion, a step that
frequently causes bugs for novice programmers. The implementation supports
what a naive user would tacitly expect, or at least what one would come to expect
after having been exposed to some sample recursive definitions in the language.

5. Variables. The HERMES language experiments with how far a programming
language can go without the use of explicit variables. Variables are perhaps the
first serious barrier that most programming poses for people who are not
mathematically inclined or experienced. Lack of explicit variables differentiates

 Tacit and Explicit Understanding in Computer Support 289

the HERMES language clearly from procedural languages (that use variables for
iteration counters, subroutine parameters, array indices, etc.), functional languages
(that use variables for lambda parameters), and logic languages (that use variables
for quantification).

HERMES makes use of operator application, applying successive operations
directly to the results of previous operations without need for abstract variables to
relate the operations to the operands. This works smoothly in simple cases and
supports tacit expectations. When expressions are nested several levels deep, the
relations of what operations are to be applied to which operands can become
confusing. (Several examples of this are given in Section 10.3 and in Appendix B,
in which moderately complex applications in the HERMES language are discussed.)
For these cases, three special “deictic variables” have been defined. These are not
abstract variables, but terms that perform much the same concrete role as deictic
pronouns in natural languages.

The deictic variables of HERMES are the following Simple DataList options: that
(last subject), this (expression), and those items. They are
used within an expression to refer to a node or list of nodes that has been previously
computed. They disambiguate the application of Predicates and allow intermediate
results of computations to be displayed or reused without recomputing them.
Examples of the use of the it and them deictic variables will be seen in the
analysis of the privacy critics in the following section. The this
(expression) variable can be useful in defining recursive terms; issue
trees can be defined as: issues with their this (expression),
where this (expression) refers to the term issue trees that is itself
being defined.

It should be noted that the lack of variables is a trade-off in the design of the
HERMES language. It is intended to reduce the cognitive overhead of the use of
explicit variables. However, it probably introduces the most severe restriction in
the expressibility of the language for relatively complex computations, making
critics like the privacy gradient critique in Section 10.3 and the
advice critic in the academic advising application in Appendix B difficult to
construct and comprehend. However, the language is not meant primarily to be
used for building computationally complex systems, but rather for supporting the
incessant reuse and modification of relatively simple definitions of terms needed
for displaying, analyzing, and critiquing hypermedia representations of designs.

6. Quantification. The HERMES Quantifier type is provided to support
quantification. As just discussed, it does not use the explicit bound variables of
predicate calculus or PROLOG. Three examples show how it is used:

 Tacit and Explicit Understanding in Computer Support 290

chairs that are near to at least one table in archie’s
habitat

issues that have no answers that include “bunk”
if all privacy ratings of parts of archie’s habitat are

more than quite private

As should be clear from these expressions, the computation of a quantity like all
is carried out internally by the implementation of this syntax option and need not
be an explicit concern of the user.

7. Conditionals. Conditionals are important in a design environment. They are,
for instance, used for critic rules, conditional links, and conditional nodes. In
addition to the standard syntax form for conditionals, if Boolean then
DataList1, else DataList2, HERMES offers the following form:
either DataList1 or DataList2. The second format is more supportive
of a tacit approach. Its evaluation first computes DataList1. If it returns something,
that is returned as the result of the whole conditional expression; if it returns no
nodes, then DataList2 is computed, and its results are returned for the conditional.
For instance, if one wants to list the answers to an issue if there are any and give a
warning message otherwise, one can define the following conditional expression:

either answers of my issue or “There are no answers to my
issue.”

The implementation of this option takes care of the checking of whether there are
any results of the first part and deciding whether or not to compute and return the
results of the second part.

10.3 Defining Interpretive Critics
Interpretive critics. Interpretive critics in the Lunar Habitat Design Environment
(LHDE) built on HERMES play much the same role as critics in JANUS and triggers
in PHIDIAS, as discussed in Chapter 7. In LHDE the critics are not active the way
that JANUS’ critics were, although a different design environment built on the
HERMES substrate could make use of the same mechanisms as JANUS to activate
critics associated with a design unit whenever an instance of that unit is created or
moved in a design construction. In LHDE and PHIDIAS II (which is also built on
HERMES), critics are tied to user interface buttons to provide PHIDIAS-style
triggers. Interpretive critics can be used whenever a user has them evaluated by
means of any interface mechanism. That is, designers can define and evaluate
interpretive critics very freely, without necessarily having them tied to design units

 Tacit and Explicit Understanding in Computer Support 291

in a palette component or to predefined buttons in a construction interface.
Interpretive critics are, thus, more general than the critics and triggers of the related
systems they were inspired by.

Interpretive critics are defined using the HERMES language. They can take
advantage of all of the expressive power of the language. Basically, a critic is any
expression in the language that analyzes the state of the hypermedia database.
Typically, a critic looks for certain features in a graphical construction and displays
a message or takes some other action depending on whether the feature is found or
not. The message can include design rationale or examples explaining the
reasoning behind the critic definition. It might, for instance, include a selection of
items from the design rationale, through which the designer can browse, e.g.:

privacy check of habitats and deliberation of privacy issue

By using the HERMES language, interpretive critics can be more general, more
expressive, and more complex than JANUS critics. They are not restricted to spatial
relations of individual design units in the palette or to a single construction area.
They can analyze, for instance, multiple habitats in the database, evaluate global
characteristics of designs (like number of parts or absence of particular parts), and
make their analysis dependent on other conditions in the database. Examples of
complex critics are the privacy critics described in Chapter 9 and the academic
advising critic discussed in Appendix B.

Because the whole language can be used and the whole database accessed, critics
can be made dependent upon information in other designs, in an issue base, or in a
distinct specification component (as indicated in Chapter 8). The critics can play
an important role in integrating diverse pieces of information in the system.

Critics in HERMES are called interpretive because of the synergy which they
engender between the HERMES language and the mechanism of interpretive
perspectives. This is best explained with an example. Suppose Desi defined a critic
named refrigerator access as:

if refrigerators are too near doors then refrigerator
access message

Now, if Desi had defined too near as closest distance is less
than 5 feet but Archie had modified too near to be closest distance
is less than 3 feet, then the refrigerator access critic will be
“interpreted” differently in Archie’s perspective then in Desi’s. Since the language
allows critics to be built up to arbitrary levels of complexity, a critic like the
academic advising critic (in Appendix B) may be dependent upon the
definition of many sub-expression, which may be defined differently in different
perspectives. The point in the example is that Desi and Archie have different

 Tacit and Explicit Understanding in Computer Support 292

interpretations of what it means for something in the kitchen to be too close to
something else. In another domain (e.g., molecular chemistry or astronomy) the
term too near might need to be redefined more drastically. The perspectives
mechanism assures that the evaluation of an interpretive critic will always interpret
the terms and sub-expressions of the critic’s definition within the context of the
current active perspective.

Comparison with JANUS critics. HERMES critics are defined in the high-level
representations made available through the language. That is, they can be defined
using vocabulary that is close to the problem domain, without needing to think in
the explicit functional manner of the LISP syntax used by MODIFIER. All of the
critics used in systems like JANUS and MODIFIER can be concisely stated in the
HERMES language. Following are definitions of terms used for defining these
critics:
next to: closest distance is less than 4 inches

far from: closest distance is more than 30 inches

close to: central distance is less than 60 inches

near: closest distance is less than 12 inches

set off from: close to and not next to

work triangle distances: list of closest distance in
feet among sink, stove, refrigerator

Using these terms, the equivalent of JANUS’ critic rules can be concisely and
readably defined as follows in the HERMES language:
all stoves are set off from sinks

no stoves are next to refrigerators

all stoves are far from all doors and windows

all dishwashers are next to sinks

all refrigerators are far from all windows

refrigerators are close to doors

sinks are near windows

the minimum work triangle distances are less than 23

In MODIFIER, the critic rules are meant to be available to and modifiable by the
end-user. However, they are written in LISP. Thus, a designer wishing to modify a
critic rule in MODIFIER must be at least somewhat familiar with the complexities
of LISP doctrine, including its non-intuitive Polish notation. In addition,

 Tacit and Explicit Understanding in Computer Support 293

conventions of MODIFIER’s property sheets must be understood and used to make
explicit computational decisions. For instance, the HERMES critic,

all stoves are set off from sinks

appears in MODIFIER’s property sheets as:

not_next_to (stove , sink) apply to: all
near (stove, sink) apply to: one

The parentheses of LISP in MODIFIER’s critics are replaced in HERMES by an
implicit nested phrase structure that is familiar to people from natural language.
This nesting is unambiguously determined at definition time through the tacit use
of the interface to the language discussed above. Figure 10-4 shows the explicit
phrase structure for the critic rule just discussed. Note that this diagram not only
expands the definition of set off from (which has been abstracted in the rule
statement), but also indicates the clauses at least one and in kitchen,
which are computationally important but are implicit in the expression that the user
sees and manipulates. That is to say, both the structure of the critic and substantial
contents of it are kept implicit and are hidden from the user’s explicit
understanding, in much the sense that the explicit phrase structure of normal
speech is not usually an object during ordinary communication.

 Tacit and Explicit Understanding in Computer Support 294

Figure 10-4. Phrase structure of a HERMES critic rule.

The critic rule can be read from the leaves of the tree: all stoves are set
off from [at least one] sinks [in kitchen]. Phrases in brackets
are implicit. The phrase set off from can be expanded as: central
distance is less than 60 inches and not closest distance
is more than 4 inches.

The point of this diagram is not to show how complex interpretive critics are
internally, but on the contrary to show how rules that are inherently quite complex
can be expressed in apparently relatively simple expressions (like, all stoves
are set off from sinks), which hide much of the complexity that the user
ordinarily does not need to be concerned with.

Analysis of the privacy critics. The privacy critics developed in the scenario of
Chapter 9 provide a good example of a complex definition in the HERMES
language. A close look can reveal both some of the advantages of using the
language and also some of the difficulties.

 Tacit and Explicit Understanding in Computer Support 295

The task of the privacy critic is to determine if public areas of a lunar habitat are
too near to private areas. So first the notions of privacy and nearness must be
operationalized and applied to areas within habitats. A privacy values scale
from 1 to 9 is established and these Number values are given names from very
public (1) to very private (9). Links of type privacy rating are
attached to various parts of the habitats and connected to nodes with appropriate
privacy values. The Measure term too near is defined as:

closest distance is less than 5 feet

Now it is possible to define public and private areas:

public area: parts that have privacy ratings that are less
than somewhat public

private areas: parts that have privacy ratings that are
more than somewhat private

These are Computed Associations or Predicates. They look at all the parts of
whatever DataList they are applied to. These parts are then Filtered by checking if
they have privacy ratings links and furthermore if the nodes connected by
such links lead to values greater or less than the values named somewhat
private or somewhat public. Any parts found that have at least one such
link will be returned by these expressions.

It would be more efficient to make these definitions for immediate parts (i.e.,
top level parts of the habitats) rather than all parts (including subparts, all the
way down to primitive graphical polygons). That would save considerable
traversal of the hierarchies of graphical objects making up the habitats. However,
that would require that the person defining the expression knew that all the relevant
public and private parts were defined as top level parts of the habitats. If the
designer defining this expression had also constructed the habitat graphic this
would be possible. For the sake of generality that has not been assumed in this
discussion.

Note that a given part might have multiple privacy rating links (even in the
same perspective). The definitions above only require one such link meeting the
Filter condition. Thus, a given part could be returned as both a public area
and a private area. Such an anomaly would quickly show up as a problem
area in the critic results. In general, the ability of the definitions to deal
reasonably with such multiple definitions is an aspect of robustness in the HERMES
language. It is discussed in Appendix B under the topic of defeasible reasoning.

 Tacit and Explicit Understanding in Computer Support 296

The next step is to create a display of problem areas, that is, private
areas that are too near to public areas. This can be accomplished with the
following definition of problem areas:

private areas that are too near public areas of that (last
subject) with those items

The idea here is to select one private area of a habitat at a time and for each
one to then iterate through all the public areas of the same habitat and list the
public areas that are too near to the selected private area. Both
private areas and public areas are Associations that operate on the
same habitat (DataList) when the overall problem areas Association is applied
to a habitat or a list of habitats.

The Filter syntax option used in the definition of problem areas has the
following form: Measure [Quantifier] DataList [in Graphic]. The Measure has
already been defined and stored with the name too near. The optional
[Quantifier] defaults to an implicit “at least one.” The DataList that the
private area is to be measured to is each public area of whichever
habitat is currently being operated on by the problem areas Association. To
define a DataList consisting of these public areas, the deictic variable, that
(last subject), is used to refer to the habitat to which the problem areas
Association is applied. This deictic refers to the most recently defined “subject” to
which operators are being applied, namely the “subject” of the problem areas
Association. Here the term “subject” refers to the DataList that is the input to the
evaluation of an expression. A stack of recent subjects is maintained in order to
implement this deictic variable. The parenthetical explanatory phrase, “(last
subject),” departs from the tacit feel of the language in order to alert the reader
to think explicitly about the computational structure of operator application in this
case because a reference is being made to some term outside the immediate
expression—namely to the subject to which this expression will be applied.

The optional [in Graphic] phrase defaults to in that (last subject),
which, again, refers to the “subject” of the problem areas Association. That
means that the measurement of distance between the private area and the
public area is computed within the graphical habitat. Unless a graphical
object is explicitly named as the context for distance measurements, the
assumption is made that the last explicitly named subject should serve this role.
The necessity of naming (tacitly or explicitly) a graphical context for
measurements arises from the generality of the HERMES language, which can be
referring to any object in the database, rather than to the content of a unique
construction area as assumed in JANUS and PHIDIAS.

 Tacit and Explicit Understanding in Computer Support 297

 Finally, in the definition of problem areas the deictic variable those
items refers to the most recently enumerated items, namely the public areas
that are enumerated for each private area and that satisfy the Filter condition.
During the testing of the Filter condition, the successful enumerated items are
stored on a special list that can be referenced by the special deictic variable
“those items.” Thus, the with those items phrase following the Filter
phrase retrieves the list of public areas that are too near a given private
area and adds them to the result list of the critic following that private area
and indented under it.

Now that the computational heart of the privacy check critic has been defined,
the critic can be assembled. First, a privacy message is defined to be displayed in
the case that no problem areas are found for a given habitat. This is simply a
Character node with the contents:

“Public and private areas are separated.”

This node can be named privacy message or it can be linked to the privacy
check critic itself. If it is named, the critic is defined as:

name with either name of problem areas or privacy message

If it is linked with a link of type message, then the critic is defined as:

name with either name of problem areas or message of this
(expression)

In the latter case, the reference to the privacy message is replaced by a
computation, message of this (expression), using the deictic variable
this. The variable this (expression) refers to the current object itself, so
message of this (expression) follows the message link from the
definition of this critic to the Character node whose content is the required
message. Again, the use of parentheses signals the need for some explicit reflection
by the reader.

The privacy check critic uses the implicit if / then construction, either /
or, in which the first phrase is used if it produces any results, otherwise the second
phrase (in this case, simply displaying the message) is used. The principal work
done by the definition of privacy check is to display the names of graphical
objects, rather than displaying them as graphics. Privacy check is a Computed
Association that is applied to a DataList of one or more habitats. So it first displays
the name to the habitat to which it is being applied, then (indented under that name,
because of the with conjunction) it computes the list of problem areas of
that habitat and displays the names of all the items in the resultant list (including

 Tacit and Explicit Understanding in Computer Support 298

the names of the public areas that are indented in the list under the private
areas). If the resultant list was empty for a given habitat, the privacy
message is displayed instead.

In the scenario, a variation on privacy check named privacy display
was defined:

name and privacy ratings of problem areas

This critic displays the privacy ratings as well as the names of all items in
the list computed by the problem areas Association.

Recall from Chapter 3 that the lunar habitat designers eventually settled on a
concept of privacy gradient in the transcribed session. That meant that they wanted
the arrangement of the habitat to change gradually from private areas to public
areas. To operationalize this notion, one could introduce a test to see if any two
areas that are near each other differ by more than a value of, say, plus or minus
two. This introduces explicit arithmetic computations into the definitions of a
critic. It also introduces a complicated comparison of each habitat part with all the
other parts of the habitat. The following set of definitions can be used to compute
habitat parts that are incompatible in this sense of a privacy gradient.

In the Chapter 9 scenario, the designers ended up with a critic called privacy
gradient catalog. It goes through all habitats in the database, selecting those
for which privacy ratings links are attached to some parts. For those
habitats, it displays their name and an analysis of how they meet the defined
privacy gradient considerations:

name with privacy gradient critique of habitats that have
parts that have privacy ratings

For each habitat that has privacy ratings, the privacy gradient critique
is displayed. This is similar to the privacy display, above, in that it computes
problem parts using a privacy gradient listing Association, or
else displays a privacy gradient message. Here are the definitions to
handle this:

privacy gradient critique: either privacy gradient listing
or privacy gradient message

privacy gradient listing: name and privacy ratings of parts
that have privacy ratings with their problem parts

privacy gradient message: “The parts of this design are
arranged along a privacy gradient.”

 Tacit and Explicit Understanding in Computer Support 299

The privacy gradient listing Association iterates through the parts of
a habitat and for each part lists (indented) their problem parts. The definition
of problem parts is the tricky part. It uses three further definitions: too
near, other parts, and are incompatible. The Measure, too near,
is the same as it was in the privacy check critic, except that in the current
perspective it has been modified from 5 feet to 3 feet:

problem parts: name and privacy ratings of other parts that
are too near that (last subject) and that are
incompatible

too near: closest distance is less than 3 feet
other parts: parts of inverse parts that do not equal that

(last subject)
are incompatible: have privacy ratings that are more than

privacy ratings of that (last subject) + 2 or are less
than privacy ratings of that (last subject) -2

The definition of other parts requires some explanation. Within the
privacy gradient listing expression, the Association problem
parts must be applied to parts (of a habitat). The definition of problem
parts centers on the definition of other parts. However, what is wanted is
“other parts” of the habitat, not other parts of the selected part of the habitat, which
is what would result from the application of problem parts to parts.
Therefore, within the definition of other parts, the computation must get back
to the habitat by tracing backwards the part link between the habitat and its part.
This is accomplished by the construction, inverse parts. Once the
computation is back at the habitat, it can find the other parts by navigating all the
parts (i.e., graphical content) links of the habitat. Of course, the computation of
“other parts” should exclude the part from which the computation began in order
to avoid comparing that part with itself. This is accomplished with the Filter, that
do not equal that (last subject), in which the deictic variable
that (last subject) refers to the last “subject” of application, namely the
original part iterated in the privacy gradient listing expression.

The definition of the Filter, are incompatible, uses the same that (last
subject) variable in order to compare each of the other parts with the
original part. This Filter also introduces explicit arithmetic in order to judge
whether the privacy ratings of these two parts differ by more than 2 on the
privacy scale. This comparison completes the operationalization of the idea of a
privacy gradient as it occurred in the lunar habitat design transcript.

 Tacit and Explicit Understanding in Computer Support 300

The definition of privacy gradient catalog with all its preliminary
definitions is a relatively formidable task. If one undertakes figuring it out from
scratch, it might well seem that the task is easier to do in a traditional programming
language. This seems especially true to people who are experienced in
programming. It may well be that such a task pushes the HERMES language to near
its limits. On the other hand, a design environment built on the HERMES substrate
might support reuse and modification sufficiently to make the HERMES alternative
preferable. First, much of the defining could have been done in the seeded set of
language definitions, providing a well-thought-out collection of building blocks
for complex tasks involving privacy. If this was not available in the original seed,
a reseeding process could take place when the privacy issue is raised as an
important concern. Then an experienced programmer or a HERMES local developer
could step in and provide a set of privacy-related definitions for everyone to use.

As stated at the outset of this chapter, the HERMES language has been developed
to push its approach to supporting a mix of tacit and explicit understanding as far
as possible and to explore its limits. The privacy gradient critique
expression provides an important test of these limits. On the one hand, it shows
that the task that appeared extremely challenging back in Chapter 3 can in fact be
accomplished using the HERMES language. On the other hand, it shows that such a
task may strain the limits of the language. The limits of the language are explored
further by examples in Appendix B. More thorough experience will have to await
the building of robust design environments on the HERMES substrate and their use
by a community of designers.

Conclusion

 “I propose that men and women be returned to work

 as controllers of machines, and that the control of people

 by machines be curtailed. I propose, further, that the effects

 of changes in technology and organization on life patterns

 be taken into careful consideration, and that the changes

 be withheld or introduced on the basis of this consideration.”

 Kurt Vonnegut, Jr.

 Player Piano

 (1952, p. 285)

CHAPTER 11. CONTRIBUTIONS

The topic of this dissertation has been the problem of providing computer support
for cooperative design given the nature of tacit and explicit understanding. But at
a meta-level, an important theme has been the role of theory in software design.
Often, work in cognitive science and artificial intelligence proceeds with little
reference to philosophy, which is given lip service as one constituent of these
interdisciplinary endeavors. Of course, preconceptions abound in such work, but
they are either treated as self-evident common sense or addressed through
discussions of individual concepts whose inner coherence remains outside the
investigation.

This dissertation is an attempt to take theory seriously in computer science. Rather
than first creating a software artifact whose theory is at best only tacitly available
retrospectively,26 and then subjecting the artifact to controlled user testing to
determine its effectiveness, the approach followed here is to formulate a set of
explicit theoretical principles to motivate an approach to computer support of
design and then to present a package of prototyped functionality to illustrate that
approach. Together, the theory and the examples are meant to provide cogent
arguments for the deliberation of central issues in software design of systems to
support innovative, collaborative design work in exploratory domains.

26Carroll and associates have made a case for considering artifacts as themselves

implicit expressions of theories, as though guiding philosophies were
unnecessary. This case has been made specifically in terms of software artifacts
in the realm of human-computer interaction, and has even been related to
hermeneutics (Carroll & Campbell, 1989; Carroll & Kellogg, 1989). While they
persuasively point out problems with the traditional assumptions about the
relation of psychological theory to design practice, they overlook the spiral
character of understanding, in particular the guiding role of (often tacit)
philosophical beliefs and conceptual frameworks.

 Tacit and Explicit Understanding in Computer Support 303

Of course, several preconceptions have been at work here, too. However, the major
assumptions have been systematically reflected upon in the process and explicated
or modified as need be. It has been assumed, for instance, that software to support
professional designers should be based on an understanding of the structure of their
work processes. As a guiding idea, the design process was viewed (or pre-viewed)
as a process of interpretation (Chapter 1). Two approaches were then taken to
explore this work process: one by looking at some of the best available descriptions
of the way designers work (by Alexander, Rittel, and Schön in Chapter 2), and the
other by looking at a concrete example of designers working (on lunar habitat
design in Chapter 3). To make this theory even more explicit and general, it was
then put into the framework of a philosophy (Heidegger’s hermeneutics in Chapter
4). An explicit theory of computer support for interpretation in design was built on
top of the results of the preceding investigations (Chapter 5 and 6). The theory
developed in this way was then used to evaluate related software systems meant to
support design (Chapter 7). Finally, the theory served to motivate and justify
design decisions in the HERMES software (Chapters 8, 9, and 10).

While this approach stresses theory, it does not ignore the need for empirical
grounding or iterative testing. The design methodologies reviewed all grew out of
either reflection on professional practice or consideration of experimental findings.
The study of lunar habitat design pursued as part of the dissertation took on the
flavor of participatory design (Ehn, 1988; Greenbaum & Kyng, 1991) by having
the software designers and the design professionals working together on a lunar
habitat design, and by involving the two groups in dialogue about the design work
and about possibilities for computer-based support of this work. Although it was
never reflected in the Chapter 3 transcripts, the lunar habitat designers have been
involved in on-going evaluation of the HERMES system and its functionality as part
of their role as corporate sponsors of the funded research. In addition, the design
of HERMES is a response to empirical experience with the related design
environments on which it is based, as well as on a series of programming
walkthroughs to evaluate the HERMES language design (reported in Appendix A).

Evaluation and refinement of the Lunar Habitat Design Environment (LHDE) and
PHIDIAS II built on top of the HERMES substrate are expected to continue
indefinitely. Clearly, the greatest need for future work is to build a robust design
environment that exercises all of the functionality of the HERMES substrate and to
gain experience in the utility of this functionality through use by professional
designers. Unfortunately, that is beyond the scope of the present effort. For one
thing, it will involve identifying real-world projects in which a system like LHDE
makes commercial sense in order to get professionals to invest significant time in
using preliminary versions. The support of lunar habitat design has served as a
fruitful application domain in developing HERMES, but a specific project must now

 Tacit and Explicit Understanding in Computer Support 304

provide a practical context for further participatory development and workplace
evaluation.

It is useful to view the unfolding of this dissertation as a hermeneutic process, in
which a vague preconception of interpretation in design becomes increasingly
clearer through precisely the kind of interpretive process that has been analyzed in
the dissertation. The concept of interpretation has been elaborated through an
investigation of the role of interpretation in design. The guiding perspective was
the intuition that interpretation is the central category for founding a theory of
computer support. This perspective was tied through a process of reflection to its
explicit roots in Heidegger's philosophy, but also to the almost forgotten role of
interpretation in the related systems that HERMES grew out of. In a sense, the
dissertation embodies a moment of reflection in which the effort to build systems
of computer support ran up against the limits of multi-faceted, domain-oriented,
knowledge-based systems; made explicit the role of interpretation in design; and
then, using this, proposed a system that integrates the facets in a hypermedia
substrate, extends the notion of domain-orientation with perspectives, and
uncovers the basis of explicit computer knowledge representations in the
expressing of tacit human preunderstanding in language.

In looking back over what has been accomplished in this dissertation, it is clear
that no final answers have been given. The analysis of interpretation remains
unclear and incomplete in many ways. The theory of computer support is no more
than a beginning in an attempt to provide rationale for a new direction in artificial
intelligence. The design of HERMES is suggestive of promising functionality, but
this promise remains largely untested. Nevertheless, whatever the limits of this
work, it does seem to have made significant contributions on three primary levels:
on a philosophical level (11.1), on a theoretical level (11.2), and on a system
building level (11.3).

11.1 Contributions to a Philosophy of
Interpretation
At least since Dreyfus (1966; 1972; & Dreyfus, 1986), the relevance of
Heidegger’s philosophy to AI has been debated. Unfortunately, most of the
discussion by computer scientists has relied on secondary sources, especially pre-
publication drafts of Dreyfus’ (1991) commentary on Heidegger. So one
contribution of this dissertation has been to return to the original text of Heidegger
(1927) and to systematically apply that text to the context of computer support for

 Tacit and Explicit Understanding in Computer Support 305

interpretation in design. The result has been an analysis of interpretation that is
frequently more detailed and rigorous than alternative presentations. This
represents a contribution to Heideggerian scholarship as such, not just from a
computer science perspective.

Of course, according to the philosophy there is no “correct” interpretation of a text
unrelated to a background of concerns. The confrontation of the Heideggerian text
with the problematic of design and computer support for design had important
consequences. Examples from design methodology and from lunar habitat design
provided not only a concreteness to Heidegger’s abstractions, but a more realistic
context than Heidegger’s own craft-oriented glimpses of the lonely carpenter
absorbed in his hammering. Design shifted the emphasis to collaborative work. It
also moved (thanks largely to Schön’s insights) from use of the physical artifact to
the more conceptual design of artifacts. In particular, this brought to the fore the
role of discovery over that of laying out what was implicitly disclosed. This
clarified and extended the analysis of interpretation, removing certain ambiguities
that Heidegger glossed over.

Perhaps most importantly, the effort to apply Heidegger’s philosophy to computer
system building not only forced a precision of concept but resulted in the
operationalizing of many of the ideas. This is, of course, a common benefit to
philosophy of mind when it is applied in AI. In this case, the result was a computer
model of human interpretation as situated, perspectival, and linguistic. However,
in addition to the model, there is an extensive recognition of the limits of the model
and the need to involve people in the operation of the model. These limits are
shown to be consequences of the Heideggerian analysis. So philosophy benefited
from its meeting with computer science.

11.2 Contributions to a Theory of Computer
Support
The central contribution was to identify the key concept for a theory of computer
support: interpretation. Although Winograd & Flores (1986), for instance, talked a
lot about interpretation, they ranged across Heidegger’s (1927) framework and
focused on its critique of technical rationality. Ironically, their proposed software
example, the COORDINATOR program, suffered from a lack of respect for the
importance of interpretative control by the users. They failed to take seriously the
fact that there is no objective structure to a domain and that people should be
supported in defining their own analyses, interpretations, and terminologies from

 Tacit and Explicit Understanding in Computer Support 306

their own perspectives. Support for interpretation is the ingredient missing from
most traditional AI programs. This dissertation contributes the antidote: a
recognition of the central role of interpretation and the impossibility of fully
automating it. It is difficult to convey the potential importance of this contribution;
that is why so many pages of the dissertation have been devoted to this theme.

The proposed theory of computer support is built squarely on the analysis of
interpretation. This gives the theory a coherence and consistency missing from
other theoretical frameworks in computer science (other than those based on
strictly formal logical grounds). It demonstrates how philosophy (again, other than
logic) can be put in the service of computer science.

Knowledge-based system design inevitably raises the question of the nature of
knowledge. Some contributions have been made here. First, the varieties of
knowledge or information have been categorized in terms of their origins in
various phases of the process of interpretation. This includes not only tacit and
explicit understanding, but also shared understanding and captured computer
representations. Second, the idea of domain knowledge has been critiqued. Not
only does knowledge in a design domain change as the related technologies and
styles change and as the expertise of the field matures and grows, but every
designer and every design team have their own domain knowledge. It is not simply
that they each have different pieces of an underlying knowledge. Rather, to know
is to know from a perspective, so there is no objective body of domain knowledge
independent of what people know in their own ways, within their many
perspectives. Third, the role of language in expressing knowledge has been
emphasized. The emergence of interpersonal or operationalized knowledge from
tacit experience takes place through discourse and assertion within situated
interpretation. Correspondingly, an end-user language has an important role to play
in computer support.

11.3 Contributions to a System for Innovative
Design
The effort to illustrate the functionality called for by the theory resulted in three
major contributions to building computer support for innovative design: (a) a
hypermedia knowledge representation substrate, incorporating: (b) a system of
perspectives and (c) an end-user language. The design of each of these features has
been thought through, both in terms of the functionality required by the theory and
in terms of their usability in a practical computer system for design professionals.

 Tacit and Explicit Understanding in Computer Support 307

Each has also been prototyped in executable code and subjected to testing to
confirm the implementability of the ideas. Various versions of these features, along
with auxiliary functionality have also been incorporated in a series of design
environments that have been shown to lunar habitat designers for feedback.

(a) The hypermedia substrate incorporates the power of the fine-grained hypertext
in the original PHIDIAS system, provides an efficient and scalable object-oriented
database for persistence, incorporates multi-media nodes, and integrates the
perspectives and language into the fundamental node and link structure. This
hypermedia offers an extremely powerful and flexible knowledge representation
system, whose control by the user is limited primarily by the lack of a fuller user
interface. Adaptability by the user—or plasticity of representation—is critical
according to the theory. The HERMES hypermedia contributes an example of a
substrate for supporting such adaptability.

(b) The perspectives mechanism is a contribution to Computer Supported
Cooperative Work. It allows individuals to organize their own versions of
knowledge representations and to share them. This provides a tool for supporting
the evolution of knowledge by starting with systematically organized domains and
allowing users to inherit and modify these and to organize meaningful new
domains. The virtual copying approach is an inherently efficient mechanism,
which encourages consistency by eliminating unnecessary duplication of
representations in multiple copies.

(c) The HERMES language is a contribution to end-user programming languages
and programmable design environments. It suggests ways of reducing the
programming doctrine that users have to learn or keep in mind. Much of the
traditional programming language doctrine is suppressed by keeping the
corresponding features tacit in the HERMES language. Also, the appearance of
expressions in the language supports tacit understanding by making heavy use of
user-defined domain terminology and by following several syntactic conventions
of natural language. At the same time, when the computational structure of an
expression must be made more explicit to be understood or modified, this can be
done to some extent through interface displays and to some extent by exploratory
execution. A programming language paradigm that was implicit in PHIDIAS’ query
language has been pushed forward, extended, and modified to the point of a
powerful end-user language that can play key roles in a system to support
interpretation.

Computer technology can contribute to human emancipation. By providing
computationally active media of external memory, it can significantly extend
cognitive capabilities within an increasingly complex world. However, that

 Tacit and Explicit Understanding in Computer Support 308

requires a people-centered approach in which machine computations are at the
service of human judgments and interpretation. Mainstream software approaches
have developed within a social context dominated by the interests of military,
government, and multinational corporations, resulting in computer applications
that replace people or that dictate how they think and work. This dissertation has
tried to present design rationale to oppose the bureaucratic interests, a theory to
guide people-centered software development, and example mechanisms for giving
people innovative, shared control over software computations.

BIBLIOGRAPHY

Abelson H, Sussman G (1985) Structure and Interpretation of Computer
Programs. Cambridge: MIT Press.

Adorno TW (1964). Jargon der Eigentlichkeit: Zur deutschen Ideologie. [The
Jargon of Authenticity]. Frankfurt am Main: Suhrkamp.

Adorno TW (1966). Negative Dialektik [Negative Dialectics]. Frankfurt am
Main: Suhrkamp.

Alexander C (1964) Notes on the Synthesis of Form. Cambridge: Harvard
University Press.

Alexander C (1971) The State of the Art in Design Methods. In Cross N (1984).
309-316.

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, Angel S
(1977) A Pattern Language: Towns, Buildings, Construction. New York:
Oxford University Press.

Alexander C, Poyner B (1966) The Atoms of Environmental Structure. In Cross
N (1984). 123-133.

Backus J (1978) Can Programming be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications of the ACM.
21. (8). 613-641.

Bell B, Citrin W, Lewis C, Rieman J, Weaver R, Wilde N, Zorn B (1992).The
Programming Walkthrough: A Structured Method for Assessing the
Writability of Programming Languages. Technical Report CU-CS-577-92
January 1992. Department of Computer Science. University of Colorado.

Bernstein B (1992) Euclid: Supporting Collaborative Argumentation with
Hypertext. Technical Report CU-CS-596-92 January 1992. Department of
Computer Science. University of Colorado.

Bluth BJ (1984) Space Station/Antarctic Analogs. Washington, D.C.: NASA.
Bluth BJ (1986) Lunar Settlements—A Socio-economic Outlook. 37th Congress

of the International Astronautical Federation, Innsbruck, Austria, October
4-11. Oxford: Persimmon Press.

Boborow DG, Goldstein IP (1980a) An Experimental Description-Based
Programming Environment: Four Reports. Technical Report CSL-81-3.
Palo Alto, CA: Xerox Palo Alto Research Center.

 Tacit and Explicit Understanding in Computer Support 310

Boborow DG, Goldstein IP (1980b) Representing Design Alternatives. In
Boborow & Goldstein 1980a. 19-29.

Boborow DG, Winograd T (1977) An Overview of KRL, A Knowledge
Representation Language. Cognitive Science 1 (1), 3-46. In Brachman &
Levesque (1985).

Boeing Aerospace Company (1983) Space Station/Nuclear Submarine Analogs.
Granada Hills, CA: National Behavior Systems.

Boland RJ Jr., Maheshwari AK, Te’eni D, Schwartz DG, Tenkasi RV (1992)
Sharing Perspectives in Distributed Decision Making. CSCW ‘92
Proceedings.

Bourdieu P (1977) Outline of a Theory of Practice. Oxford: Oxford University
Press.

Bourdieu P (1991) The Political Ontology of Martin Heidegger. Stanford:
Stanford University Press.

Brachman R, Levesque H (1985) Readings in Knowledge Representation. San
Mateo: Morgan Kaufmann.

Buchanan BG, Shortliffe EH (1984) Human Engineering of Medical Expert
Systems. In Buchanan BG, Shortliffe EH (Eds.) (1984) Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project. Reading, MA: Addison-Wesley. 599-612.

Budde R, Züllighoven H (1990) Software-Werkzeuge in einer
Programmierwerkstatt: Ansätze eines hermeneutisch fundierten Werkzeug-
und Maschinenbegriffs. [Software Tools in a Programming Workshop:
Approaches to an Hermeneutically-based Concept of Tools and Machines].
München: Oldenbourg Verlag.

Bush V (1945) As We May Think. Atlantic Monthly. 176 (1), 101-108. Reprinted
in Greif I (1988) Computer-Supported Cooperative Work. San Mateo, CA:
Morgan Kaufmann.

Cardelli L, Wenger P (1985) On Understanding Types, Data Abstraction, and
Polymorphism. ACM Computing Surveys. 17. (7). 471-522.

Carroll JM, Campbell RL (1989) Artifacts as Psychological Theories: The Case
of Human-Computer Interaction. Behavior and Information Technology.
Vol. 8, no. 4, 247-256.

Carroll JM & Kellogg WA (1989). Artifact as theory-nexus: hermeneutics meets
theory-based design, Proceedings of the Conference of Human Factors in
Computing Systems, Austin, 7-14.

Compton WD, Benson CD (1983) Living and Working in Space: A History of
Skylab. Washington, DC: NASA.

Conklin J, Begeman M (1988) gIBIS: A Hypertext Tool for Exploratory Policy
Discussion. Proceedings of the Conference on Computer Supported
Cooperative Work. New York: ACM. 140-152.

 Tacit and Explicit Understanding in Computer Support 311

Coyne R (1991). Inconspicuous Architecture, Gadamer Action & Reason:
Conference Proceedings. Australia: University of Sydney. 62-70.

Coyne R, Snodgrass A (1991) What Is the Philosophical Basis of AI in Design?
Working paper. Faculty of Architecture, University of Sydney.

Cross N (1984) Developments in Design Methodology. New York: Wiley.
Dayton T, et al. (1993) Skills Needed by User-centered Design Practitioners in

Real Software Development Environments: Report on the CHI ‘92
Workshop. SIGCHI Bulletin. 25 (3) 16-31.

Design Edge (1990) Initial Lunar Habitat Construction Shack. Design control
specification. Houston, TX.

Descartes R (1641) Meditations of First Philosophy. Indianapolis: Hackett. 1979
Donald M (1991) Origins of the Modern Mind: Three Stages in the Evolution of

Culture and Cognition. Cambridge: Harvard University Press.
Dreyfus H (1966) Alchemy and Artificial Intelligence. Rand paper P3244. The

Rand Corporation.
Dreyfus H (1967) Phenomenology and Artificial Intelligence. In Edie J (ed.)

(1967) Phenomenology in America. Chicago: Quadrangle. 31-47.
Dreyfus H (1972) What Computers Cannot Do. New York: Harper and Row.
Dreyfus H (ed.) (1982) Husserl, Intentionality, and Cognitive Science.

Cambridge: MIT Press.
Dreyfus H (1985) Holism and Hermeneutics. In Hollinger R (Ed.) (1985)

Hermeneutics and Praxis. Notre Dame, IN: University of Notre Dame Press.
227-247.

Dreyfus H (1990) Heidegger’s History of the Being of Equiptment. In Dreyfus H,
Hall H (eds.) (1991) Heidegger: A Critical Reader. Oxford: Basil
Blackwell. 173-185.

Dreyfus H (1991) Being-in-the-World: A Commentary on Heidegger's Being and
Time, Division I. Cambridge: MIT Press.

Dreyfus H, Dreyfus S (1986) Mind Over Machine. New York: Free Press.
Ehn P (1988) Work-Oriented Design of Computer Artifacts. Stockholm:

Arbetslivscentrum.
Eichold A (1992) Lunar Base Planning Criteria. NEA grant final report.

Washington, DC: NEA.
Eisenberg M (1992). SchemePaint: A Programmable Application for Graphics.

Technical Report CU-CS-587-92. Computer Science Department,
University of Colorado at Boulder.

Eisenberg M, Fischer G (1992) Programmable Design Environments and Design
Rationale. AAAI’92 Workshop on Design Rationale Capture and Use. San
Jose, CA. July 15, 1992. 81-90.

Engelbart D (1963) A Conceptual Framework for the Augmentation of Man's
Intellect. In Howerton, P (Ed.) (1963) Vistas of Information Handling. (Vol.
1). Washington, DC: Spartan Books. Reprinted in Greif I (Ed.) (1988)

 Tacit and Explicit Understanding in Computer Support 312

Computer-Supported Cooperative Work. San Mateo, CA: Morgan
Kaufmann.

Ericsson KA, Simon HA (1984) Protocol Analysis: Verbal Reports as Data.
Cambridge: MIT Press.

Fischer G (1989) Creativity Enhancing Design Environments. Proceedings of the
International Conference “Modeling Creativity and Knowledge-Based
Creative Design.” Heron Island, Australia. 127-132.

Fischer G (1991) Supporting Learning on Demand with Design Environments.
Proceedings of the International Conference on the Learning Sciences
August 1991. Evanston, IL. 127-132.

Fischer G, Girgensohn A (1990) End-User Modifiability in Design
Environments. Human Factors in Computing Systems, CHI '90 Conference
Proceedings (Seattle, WA). New York: ACM.

Fischer G, Grudin J, Lemke A, McCall R, Ostwald J, Reeves B, Shipman F
(1991a). Supporting Indirect, Collaborative Design with Integrated
Knowledge-Based Design Environments. Submitted to Human-Computer
Interaction.

Fischer G, Lemke A, McCall R, Morch A (1991b) Making Argumentation Serve
Design. Human-Computer Interaction (Special Issue on Design Rationale).
6, (3 & 4), 393-419.

Fischer G, McCall R, Morch A (1989) Janus: Integrating Hypertext with a
Knowledge-based Design Environment. Proceedings of Hypertext '89.
Pittsburgh, PA: ACM, 105-117.

Fischer G, McCall R, Ostwald J, Reeves B, Shipman F (1993c) Seeding,
Evolutionary Growth and Reseeding: Supporting Incremental Development
of Designs and Design Environments. Submitted to AAAI’93.

Fischer G, Nakakoji K (1992) Beyond the Macho Approach of Artificial
Intelligence: Empower Human Designers—Do Not Replace Them.
Knowledge-Based Systems Journal. 5, (1), 15-30.

Fischer G, Nakakoji K, Ostwald J, Stahl, G, Sumner T (1993a) Embedding
Computer-Based Critics in the Contexts of Design. Proceedings of InterCHI
‘93. Conference on Human Factors in Computing Systems. Amsterdam.
April 1993. 157-164.

Fischer G, Nakakoji K, Ostwald J, Stahl, G, Sumner T (1993b) Embedding
Critics in Design Environments. The Knowledge Engineering Review,
Special Issue on Expert Critiquing. Fall 1993.

Fitzgerald F, Rashid R (1986) The Integration of Virtual Memory Management
and Interprocess Communication in Accent. ACM Transactions on
Computer Systems, 4, (2), 147.

Floyd C, Züllighoven H, Budde R, Keil-Slawik (1992) Software Development
and Reality Construction. Heidelberg: Springer Verlag.

 Tacit and Explicit Understanding in Computer Support 313

Foley J, van Dam A, Feiner S, Hughes J (1990) Computer Graphics: Principles
and Practice. Reading, MA: Addison-Wesley.

Fodor J (1981) Methodological Solipsism Considered as a Research Strategy in
Cognitive Psychology. In Haugland (1981). 307-338.

Freud S (1917) A General Introduction to Psychoanalysis. New York:
Washington Square Press. 1952.

Gadamer H-G (1960) Wahrheit und Methode. Tübingen: Mohr. Translation:
Gadamer H-G (1988) Truth and Method. New York: Crossroad.

Gadamer HG (1966) Die Universalität des hermeneutischen Problems [The
universality of the hermeneutic problem]. In Gadamer HG (1967) Kleine
Schriften I Philosophie Hermeneutic. Tübingen: Mohr. 101-112.

Gadamer HG (1967) Rhetorik, Hermeneutik und Ideologiekritik [Rhetoric,
Hermeneutics and Ideology Critique]. In Gadamer HG (1967) Kleine
Schriften I Philosophie Hermeneutic. Tübingen: Mohr. 113-130.

Girgensohn A (1992) End-User Modifiability in Knowledge-Based Design
Environments. Ph.D. dissertation. Department of Computer Science.
University of Colorado at Boulder.

Goldstein IP, Boborow DG (1980) Descriptions for a Programming
Environment. Proceedings of the First Annual Conference of the National
Association for Artificial Intelligence, Stanford, CA. 1-6.

Greenbaum J, Kyng M (1991) Design at Work: Cooperative Design of Computer
Systems. Hillsdale, NJ: Lawrence Erlbaum.

Greif I (Ed.) (1988) Computer-Supported Cooperative Work. San Mateo, CA:
Morgan Kaufmann.

Grice HP (1975) Logic and Conversation. In Cole P, Morgan J (1975) Syntax and
Semantics 3: Speech Acts. New York: Academic Press. 41-58.

Habermas J (1967) Zur Logik der Sozialwissenschaften [On the Logic of the
Social Sciences]. Philosophiphische Rundschau. Beiheft 5, February 1967.

Habermas J (1968) Erkenntnis und Interesse [Knowledge and human interests].
Frankfurt a. M.: Suhrkamp Verlag.

Habermas J (1985) Der philosophische Diskurs der Moderne: Zwölf Vorlesungen
[The Philosophical Discourse of Modernity]. Frankfurt am Main: Suhrkamp.

Halasz F (1988) Reflections on Notecards: Seven Issues for the Next Generation
of Hypermedia Systems. Communications of the ACM. Vol. 31, No. 7. 836-
852.

Harnad S (1993) Grounding, Situatedness, and Meaning. In Proceedings of the
Fifteenth Annual Conference of the Cognitive Science Society. Boulder, CO.
169-174.

Haugland J (Ed.) (1981) Mind Design. Cambridge: MIT Press.
Hegel GWF (1807) Phänomenologie des Geistes. Translation: Hegel GWF

(1967) Phenomenology of Mind. New York: Harper & Row.

 Tacit and Explicit Understanding in Computer Support 314

Hegel GWF (1833) Grundlinien der Philosophie des Rechts [Principles of the
philosophy of right]. Leipzig.

Heidegger M (1927) Sein und Zeit. Tuebingen: Niemeyer. Translation:
Heidegger M (1962) Being and Time. New York: Harper & Row.

Heidegger M (1947) Brief Über den “Humanismus” [Letter on Humanism]. In
Heidegger M (1967) Wegmarken. Frankfurt a.M.: Klostermann.

Heidegger M (1950) Ursprung des Kunstwerks [The origin of the work of art]. In
Heidegger M (1950) Holzwege. Frankfurt a.M.: Klostermann.

Heidegger M (1951) Erläuterungen zu Hölderlins Dichtung. [Commentary on
Holderlin’s Poetry] Frankfurt a.M.: Klostermann.

Heidegger M (1953). Wissenschaft und Besinnung [Science and reflection]. In
Heidegger M (1954) Vorträge und Aufsätze. Pfullingen: Neske.

Heidegger, M. (1971) Poetry, Language, Thought. Trans. A. Hoftadter. New
York: Harper & Row.

Heidegger M (1975) Der Grundprobleme der Phänomenologie [Basic problems
of phenomenology]. Gesamtausgabe vol. 24. Frankfurt a.M.: Klostermann.

Heidegger M (1979) Prolegomena zur Geschichte des Zeitbegriffs [Introduction
to the history of the concept of time]. Gesamtausgabe vol. 20. Frankfurt
a.M.: Klostermann.

Hewitt C (1971) Description and Theoretical Analysis (Using Schemata) of
PLANNER: A Language for Proving Theorems and Manipulating Models in a
Robot. Ph.D. Thesis. June 1971. Reprinted in AI-TR-258 MIT-AI
Laboratory, April 1972.

Hinton G, Anderson J (1989) Parallel Models of Associative Memory. Hillsdale,
NJ: Lawrence Erlbaum.

Hutchins E (1990) The Technology of Team Navigation. In Galegher P, Kraut R,
Egido C (Eds.) (1990) Intellectual Teamwork. Hillsdale, NJ: Erlbaum. 191-
220.

Illich I (1973) Tools for Conviviality. New York: Harper & Row.
Johnson JA, Nardi BA, Zarmer CL, Miller JR (1993) ACE: Building Interactive

Graphical Applications. Communications of the ACM. 36 (4). 41-55.
Kant I (1787) Kritik der reinen Vernunft. Translation: Kant I (1929) Critique of

Pure Reason. New York: St. Martin's Press.
Kazmierski M, Spangler D (1992) Lunatechs II: A Kit of Parts for Lunar Habitat

Design. Unpublished project report, College of Environmental Design,
University of Colorado at Boulder.

Kolodner J (1984) Retrieval and Organizational Strategies in Conceptual
Memory. Hillsdale, NJ: Lawrence Erlbaum.

Kuhn T (1962) The Structure of Scientific Revolutions. Chicago: University of
Chicago Press.

 Tacit and Explicit Understanding in Computer Support 315

Kunz W, Rittel H (1970) Issues as Elements of Information Systems. Working
paper 131. Center for Planning and Development Research, University of
California, Berkeley.

Kunz W, Rittel H (1984) How to Know What is Known: Designing Crutches for
Communication. In Dietschmann, HJ (Ed) (1984) Representation and
Exchange of Knowledge as a Basis of Information Processes. North-
Holland: Elsevier. 51-60.

Lakoff G (1987) Women, Fire, and Dangerous Things. Chicago: Univ. of
Chicago Press.

Lee J (1990) SIBYL: A Tool for Managing Group Decision Rationale. Proc.
CSCW. LA: ACM Press.

Lee J, Lai K-Y (1991) What’s in Design Rationale? Human-Computer
Interaction. 6. 251-280.

Lefebvre H (1991) The Production of Space. Oxford: Blackwell.
Liskov B, Snyder A, Atkinson R, Shaffert C (1977) Abstraction Mechanisms in

CLU. Communications of the ACM. 20. (8). 564-576.
Marshall C, Halasz F, Rogers R, Jannsen W (1991) Aquanet: A Hypertext Tool

to Hold your Knowledge in Place. In Hypertext ‘91. 261-275.
Marx K (1844) Texte zu Methode und Praxis II. Germany: Rowohlt. 1966.
Marx K (1867) Das Kapital. Hamburg: Meissner. Translation: Marx K (1977)

Capital. New York: Vintage.
Mead GH (1934) Mind, Self, and Society. Chicago: University of Chicago Press.
Merriam-Webster (1991) Webster’s Ninth New Collegiate Dictionary.

Springfield: Merriam-Webster.
Merleau-Ponty M (1945) Phenomenologie de la Perception. Paris: Gallimard.

Translation: Merleau-Ponty M (1962) Phenomenology of Perception.
London: Routledge & Kegan Paul.

McCall R (1986) Issue-Serve Systems: A Descriptive Theory of Design. Design
Methods and Theories. Vol.20, no. 3, 443-458.

McCall R (1987) PHIBIS: Procedurally Hierarchical Issue-Based Information
Systems. Proceedings of the Conference on Architecture at the International
Congress on Planning and Design Theory. New York: American Society of
Mechanical Engineers. 17-22.

McCall R (1989) Mikroplis: A Hypertext System for Design. Design Studies, 10
(4), 228-238.

McCall R (1991) PHI: A Conceptual Foundation for Design Hypermedia. Design
Studies. 12 (1), 30-41.

McCall R, Bennett P, d'Oronzio P, Ostwald J, Shipman F, Wallace N (1990a)
Phidias: Integrating CAD Graphics into Dynamic Hypertext. In Rizk A,
Streitz N, Andre J (eds) (1990) Hypertext: Concepts, Systems and
Applications (Proceedings of ECHT ‘90). Cambridge: Cambridge
University Press. 152-165.

 Tacit and Explicit Understanding in Computer Support 316

McCall R, Morch A, Fischer G (1990b) Supporting Reflection-in-action in the
Janus Design Environment. In Mitchell W, McCullough M, Purcell P (eds)
(1990b) The Electronic Design Studio. Cambridge: MIT Press. 247-260.

McCall R, Schaab B, Schuler W, Mistrik I (1983) Mikroplis User Manual.
Heidelberg.

McCall R (1989/90) Development of a Design Environment Integrating Dynamic
Hypertext with CAD. Funded proposal to Colorado Institute for Artificial
Intelligence.

McCall R (1990/91) Intelligent Hypertext as an Alternative to Expert Systems.
Funded proposal to Colorado Institute for Artificial Intelligence.

McCall R (1991/92) Virtual Copies of Hypermedia Networks in a System for
Design of Space-based Habitats. Funded proposal to Colorado Institute for
Artificial Intelligence.

McCall R (1992/93) Intelligent Hypermedia Graphics in the Design of Space-
based Habitats. Funded proposal to Colorado Advanced Software Institute.

McCall R (1993/95) Computer-Supported Knowledge Capture for the Design of
Space-based Habitats. Proposal to Colorado Advanced Software Institute.

Minsky M (1985) The Society of Mind. New York: Simon and Schuster.
Mittal S, Boborow DG, Kahn KM (1986) Virtual Copies At the Boundary

Between Classes and Instances. OOPSLA ‘86 Proceedings. 159-166.
Miyake N (1986) Constructive Interaction and the Iterative Process of

Understanding. Cognitive Science. 10. 151-177.
Moore GT, Fieber JP, Moths JH, Paruleski KL (1991) Genesis Advanced Lunar

Outpost II: A Progress Report. In Blackledge RC Redfield CL Seida SB
(Eds.), Space—A Call for Action: Proceedings of the Tenth Annual
International Space Development Conference. San Diego, CA: Univelt, 55.

Nakakoji K (1993) The Role of a Specification Component. Ph.D. dissertation.
Department of Computer Science. University of Colorado at Boulder.

Nardi B, Miller J (1990) The Spreadsheet Interface: A Basis for End User
Programming. Proceedings of Interact ‘90. 977-983.

NASA (1989) Space Station Freedom Man-Systems Integration Standards.
NASA-STD-3000 Volume I. Revision A. December 14, 1989. NASA.

NASA (1989) Space Station Freedom Man-Systems Integration Standards.
NASA-STD-3000 Volume IV. Revision A. December 14, 1989. NASA.

Nielsen J, Frehr I, Nymand NO (1991) The Learnability of HyperCard as an
Object-oriented Programming System. Behavioral Information Technology.
10 (2) 111-120.

Nilsson N (1980) Principles of Artificial Intelligence. Palo Alto: Morgan
Kaufmann.

Nobel DF (1984) Forces of Production: A Social History of Industrial
Automation. New York: Knopf.

 Tacit and Explicit Understanding in Computer Support 317

Norman D (1993) Things That Make Us Smart. Reading, MA: Addison-Wesley.
In preparation.

Norman D, Draper S (1986) User Centered System Design: New Perspectives on
Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Palmer R (1969) Hermeneutics: Interpretation Theory in Schliermacher, Dilthey,
Heidegger and Gadamer. Evanston: Northwestern University Press.

Papert S (1980) Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books.

Plato (348 BC) The Collected Dialogues of Plato. E Hamilton & H Cairns (Eds.).
New York: Pantheon. 1961.

Polanyi M (1962) Personal Knowledge. London: Routledge & Kegan Paul.
Putnam H (1967) The Nature of Mental States. In Block N (Ed.) (1980) Readings

in Philosophy of Psychology (Vol. 1). Cambridge: Harvard University Press.
First published as Psychological Predicates. In Capitan WH,. Merrill DD
(Eds.) (1967) Art, Mind and Religion. Pittsburgh: University of Pittsburgh
Press.

Putnam H (1988) Representation and Reality. Cambridge: MIT Press.
Quillian MR (1967) Word Concepts: A Theory and Simulation of Some Basic

Semantic Capabilities. Behavioral Science 12, 410-430. In Brachman &
Levesque (1985).

Raybeck D (1991) Proxemics and Privacy: Managing the Problems of Life in
Confined Settings. In Harrison AA, Clearwater YA, McKay CP (Eds.)
(1991) From Antarctica to Outer Space: Life in Isolation and Confinement.
New York: Springer Verlag. 317-330.

Redmiles D (1992) From Programming Tasks to Solutions—Bridging the Gap
Through the Explanation of Examples. Ph.D. dissertation. Department of
Computer Science. University of Colorado at Boulder.

Reeves B (1993) The Role of Embedded Communication and Embedded History
in Collaborative Design. Ph.D. dissertation. Department of Computer
Science. University of Colorado at Boulder.

Resnick L (1991) Shared Cognition: Thinking as Social Practice. In Resnick L,
Levine J, Teasley S (Eds.) (1991) Perspectives on Socially Shared
Cognition. Washington, DC: APA. 1-22.

Richardson J (1991) Existential Epistemology: A Heideggerian Critique of the
Cartesian Project. Oxford: Claredon Paperbacks.

Rilke RM (1912) Duino Elegies. Translation: Boston: Shambala. 1992.
Rittel H (1972) Second-generation Design Methods. In Cross (1984). 317-327.
Rittel H, Webber M (1973) Dilemmas in a General Theory of Planning. Policy

Science. 4, 155-169. Alternative version as Rittel H, Webber M (1973)
Planning Problems are Wicked Problems. In Cross (1984). 135-144.

Rorty R (1977) Philosophy and the Mirror of Nature. Princeton: Princeton
University Press.

 Tacit and Explicit Understanding in Computer Support 318

Schaab B, McCall R, Schuler W (1984) Mikroplis -- ein Textbank-Management-
System. Nachrichten für Dokumentation. 35 (6). 254-259.

Schank R (1982) Dynamic Memory. Cambridge: Cambridge University Press.
Schön D (1983) The Reflective Practitioner. New York: Basic Books.
Schön D (1985) The Design Studio. London: RIBA Publications.
Schön D (1992) Designing as Reflective Conversation with the Materials of a

Design Situation. Knowledge-Based Systems, 5, (3). 3-14.
Schutz A (1970) Reflections on the Problem of Relevance. New Haven: Yale

University Press.
Searle J (1980) Minds, Brains, and Programs. The Behavioral and Brain

Sciences, 3.
Searle J (1983) Intentionality: An Essay in the Philosophy of Mind. Cambridge:

Cambridge University Press.
Shipman F (1993) Supporting Knowledge-Base Evolution Using Multiple

Degrees of Formality. Ph.D. dissertation. Department of Computer Science.
University of Colorado at Boulder.

Simon H (1973) The Structure of Ill-structured Problems. Artificial Intelligence.
4. 181-200.

Simon H (1981) The Sciences of the Artificial. Cambridge: MIT Press.
Smith, BC (1991) The Owl and the Electric Encyclopedia. Artificial Intelligence.

47. 251-288.
Smolensky P, Fox B, King R, Lewis C (1987) Computer-Aided Reasoned

Discourse, or How to Argue with a Computer. In Guindon R (Ed.) (1987)
Cognitive Science and its Implications for Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum.

Snodgrass A, Coyne R (1990) Is Designing Hermeneutical? Working paper.
Faculty of Architecture, University of Sydney.

Stahl G (1975a) Marxian Hermeneutics and Heideggerian Social Theory:
Interpreting and Transforming Our World. Ph.D. dissertation. Department
of Philosophy. Northwestern University.

Stahl G (1975b).The Jargon of Authenticity: An Introduction to a Marxist
Critique of Heidegger. Boundary 2, III, (2). 489-498.

Stahl G (1976) Attuned to Being: Heideggerian Music in Technological Society.
Boundary 2, IV, (2). 637-664.

Stahl G (1991) A Hypermedia Inference Language as an Alternative to Rule-
Based Expert Systems. Technical Report CU-CS-557-91. Computer Science
Department, University of Colorado at Boulder. 1-23.

Stahl G (1992) A Computational Medium for Supporting Interpretation in
Design. Technical Report CU-CS-598-92. Computer Science Department,
University of Colorado at Boulder. 1-39.

 Tacit and Explicit Understanding in Computer Support 319

Stahl G (1993a) Supporting Situated Interpretation. Proceedings of the Cognitive
Science Society: A Multidisciplinary Conference on Cognition. Boulder.
CO. June 18-21, 1993. 965-970.

Stahl G (1993b) Supporting Interpretation in Design. Submitted to Journal of
Architecture and Planning Research. Special issue on Computational
Representations of Knowledge.

Stahl G, McCall R, Peper, G (1992) Extending Hypermedia with an Inference
Language: An Alternative to Rule-Based Expert Systems. Proceedings of
the IBM ITL Conference: Expert Systems (October 19-21, 1992). 160-167.

Suchman L (1987) Plans and Situated Actions: The Problem of Human Machine
Communication. Cambridge: Cambridge University Press.

Suchman L (1993) Response to Vera and Simon’s Situated Action: A Symbolic
Interpretation. Cognitive Science. 17. (1). 77-86.

Suchman L, Trigg R (1991) Understanding Practice: Video as a Medium for
Reflection and Design. In Greenbaum & Kyng (1991). 65-90.

Sussman G, McDermott D (1972) From PLANNER to CONNIVER: A Genetic
Approach. Montvale, NJ: AFIPS Press.

Tafforin C (1990) Relationships Between Orientation, Movement and Posture in
Weightlessness: Preliminary Ethological Observations. Acta Astronautica.
21. 271-280.

Toulmin S (1958) The Uses of Argument. Cambridge: Cambridge University
Press.

Vonnegut K (1952) Player Piano. New York: Avon.
Vygotsky LS (1978) Mind in Society. Cambridge: Harvard University Press.
Weizenbaum J (1976) Computer Power and Human Reason: From Judgment to

Calculation. New York: Freeman & Co.
Winograd T, Flores F (1986) Understanding Computers and Cognition: A New

Foundation for Design. New York: Addison-Wesley.
Winston PH (1981) Artificial Intelligence. Reading, MA: Addison-Wesley.
Wirth N (1988) From Modula to Oberon. Software—Practice and Experience.

18. (7). 661-670.
Wittgenstein L (1953) Philosophical Investigations. New York: Macmillan.
Wixon D, Holzblatt K, Knox S (1990) Contextual Design: An Emergent View of

System Design. CHI '90 Proceedings.
Woods WA (1975) What's in a Link: Foundations for Semantic Networks. In:

Brachman RJ, Levesque HJ (1985) Readings in Knowledge Representation.
San Mateo, CA: Morgan Kaufmann. 217-242.

APPENDIX

A. Programming Walkthrough of the HERMES Language

B. Tacit Usage of the HERMES Language

C. Explicit Structure of the HERMES Language

A. Programming Walkthrough of the
Hermes Language

Two programming walkthroughs (Bell, et al., 1991) were conducted of the
HERMES language after an initial version of the language had been implemented
and its functionality tested. The purpose of the programming walkthrough method
is to evaluate the "writability" of a programming language during its design phase
by carefully considering the steps that a programmer must go through in order to
complete a programming task in the language. In particular, note is made of the
"doctrines" (or pieces of knowledge) that one must have mastered in order to use
the language. The method pinpoints factors in the design of the language that
require large amounts of background knowledge.

In a series of sessions during April 1992, the programming walkthrough
methodology was carefully followed for a sample task in the HERMES language.
The language designer defined the task, briefly described the language with several
simple examples and a copy of the BNF syntax, served as a resource about the
language, and indicated whether or not progress was being made with the task. A
professor of computer science who is particularly interested in end-user
programming languages worked through the task. A Ph.D. student in computer
science who had investigated the programming walkthrough methodology and had
conducted many sessions with it, assisted in carrying through the programming
walkthrough methodology.

In August 1992, the walkthrough was repeated with a similar set of participants.
This second walkthrough substantially confirmed the findings of the first one. For
the sake of logical presentation, results of the two sessions will be merged together
in the discussion here. First, the various steps in solving the task will be laid out
and the potential problem areas that were uncovered will be described. Then a list
of redesign decisions will be presented, describing the rationale of the version of
the language that emerged in response to these evaluations.

The task. The task for the programming walkthrough was to write a query
statement in the language to accomplish the following: list people with four or
more grandchildren. The participants in the first walkthrough were given a copy
of the BNF syntax of a simplified form of the language.27 Those in the second

27 A BNF of the current HERMES language can be found in Appendix C. The

version used for the Walkthrough had a similar structure, but many of the terms
used in that language and discussed in the present Appendix have been changed,

 Tacit and Explicit Understanding in Computer Support 322

walkthrough were given a screen image of the interface to the language (similar to
Figure 10-3 in Chapter 10). Both groups were told that the database consisted of
six kinds of hypertext nodes (cats, dogs, boys, girls, men, women)
connected by four types of links (parents, owners, likes, dislikes).

Step 1. Construct a Query. The language being evaluated still retained PHIDIAS'
query language structure. It had a syntactic category named “Query” (which no
longer exists in the revised language). Thus, the first step when working in the
language used in the Walkthrough is to realize that a Query must be constructed.
This is the first piece of doctrine about the HERMES system and its language that
is needed to create the list of people. Non-programmers (for whom this language
is intended) may not be familiar with the term "query" as it is used in computer
database jargon. They might not know that queries are the mechanism to search a
database and return a list of the items specified by the query. In practical terms,
this issue means that the user of HERMES must know how to find the menu option
for constructing a query in the HERMES language. In the walkthrough, this
corresponds to focusing on the language options for a Query in the syntax.

The syntax for Query is the following (Capitalized terms here are non-terminals
further defined in the syntax. Note that this syntax included a number of operators
that no longer exist in the language or that have different names as defined in
Appendix C.):

disclose Article Relationship Preposition Article Subject
which Filter as How, with their Relationship, if Boolean,
else Query.

The walkthroughs emphasized several problems with this syntax. Interestingly, the
problems pointed to were very similar in both walkthroughs, even though in the
first sessions this syntax was displayed textually (as an explicit BNF formalism)
and in the other session it was displayed as a dialog box with buttons for each term
(for tacit direct manipulation). In both cases, the Query option was considered
visually confusing in its overall impact as well as in some of its details. Above all,
there were simply too many terms to deal with at once.

This complaint had several aspects. First, the number of terms was too great. It
turned out that these terms fell into three categories: operative syntax options, glue
words, and fillers. The syntax terms which represented computational mechanisms
were the terms: Relationship, Subject, Filter, How,
Relationship, Boolean, Query. The glue words were Article and

primarily as a result of the Walkthrough. These changes may cause some
confusion in reading the following discussion.

 Tacit and Explicit Understanding in Computer Support 323

Preposition, which could take on values of articles and prepositions to make
queries read more like flexible English without changing the computational
meaning—e.g., all arguments about those answers instead of just
arguments of answers. The filler words were disclose, which, as,
with their, if, else; they make the syntax more meaningful to the human
reader but play no role computationally. It was felt that the word "disclose" is
unnecessarily obscure and might best be replaced by something like "show" or
"list", or be eliminated.

The glue words seem to just get in the way. They add unnecessary work, looking
up their possible options, and they clutter the query statement. Operator options
like Article and Preposition require an extra level of look-up in addition
to the main language syntax options. While they add a marginal degree of
smoothness to the reading of the query, they are simply in the way during the
writing of the query. Moreover, they obscure the functional structure of the query,
making it difficult to determine what is operational in the query and what is not.
The other filler words are less of a problem because they do not require any action
by the query formulator and they make the structure and function of the query
clearer even during the writing stage. Nevertheless, it was suggested during both
walkthroughs that a radical rethinking of the language (e.g., in a LISP-style
functional notation or in a visual programming graphical notation) might well do
away with the fillers and lay the structure of the query bare. Here, the trade-off
between supporting tacit and explicit understanding was already clearly coming
into play.

Given the complex definition of the query, a programmer has little guidance on
where to begin and how to proceed. The terms in the syntax template appear
equally important. In fact, in this version of the language all of the terms are
optional. Any subset of them can be defined in any order, giving the one template
great generality and allowing it to stand for many possibilities. However, this gives
little guidance to the programmer. It is not clear to a novice user how the system
would compute a Query without a Subject, or one without an if Boolean but
with an else Query. A more general problem is that there is little support for
the person constructing a query step by step: where to start, what order to proceed
in, what has been defined so far, how to test partial queries, how to re-use existing
queries and already defined complex terms.

Step 2. Define the Subject. To build effective queries in a hypertext system like
HERMES, one must begin by defining a Subject of the query that corresponds to
the starting point of the search that is to be defined. For instance, in the query,
arguments of answers, the computer will start with a set of answers and
follow their argument links to the set of their arguments, which will be the result

 Tacit and Explicit Understanding in Computer Support 324

of the query. Similarly, in people that have more than 3
grandchildren, the system will start from a set of people and traverse links to
discover which of them have more than three grandchildren. However, this was
not obvious in either walkthrough. Both attempts went astray at this initial step. In
the April session, analysis began with the grandchildren and tried to compute their
grandparents (eventually getting stuck trying to trace back which of the
grandparents had more than three grandchildren). In the August walkthrough, the
idea that the Subject of a query like arguments of answers was answers
seemed counter-intuitive. In fact, it seemed counter English-like. In English, "of
answers" is a phrase modifying the noun (subject) "arguments".

Another way of putting the problem of choosing the Subject is that the user might
assume that the Subject is that which is to be disclosed or listed. So, in
arguments of answers, the Subject might be taken to be the arguments that
are sought. In fact, however, the Subject of the query must be the answers, from
which the search for arguments begins.

The walkthroughs fundamentally questioned the assumption that had been taken
over from the original PHIDIAS query language that the starting point of hypertext
navigation corresponded to what people would naturally name as the “subject” of
a query. The strategy of the PHIDIAS language had been to model the language as
much on the structure of English as possible. This strategy worked well for the
readability of the language. However, the walkthrough began to uncover problems
with the strategy when one wanted to write innovative expressions.

The people who originally used the PHIDIAS query language would formulate a
query like answers of issues with their arguments to instruct the
computer to start at each of the issues and then list its answers with sublists of
all the arguments of each of those answers. It was assumed that this was the
"English-like" phrasing, and the query language’s syntax corresponded to it nicely.
But consider the following equally natural requests for the same output:

* answers with their arguments of the issue.
* for each issue list its answers and for each of them

list the arguments.
* each issue's answers and their arguments.
* arguments for each answer of the issues.
* arguments for each issue's answers.

It seems that any of the three operative terms can come in any position in English
and that a variety of equally plausible alternatives are available for even the
simplest queries. The users of PHIDIAS had, perhaps, been accustomed to think in
the PHIDIAS programming language. The fact that this may have happened without
anyone realizing that learning of a new language was taking place may speak well

 Tacit and Explicit Understanding in Computer Support 325

for the readability of the language, but it covered up the writability issues. The
PHIDIAS queries seemed "English-like" not because they represented the obvious
way to formulate the queries, but because once formulated their meaning
(semantics) seemed intuitively clear. That is, a query that would procedurally
navigate the hypertext sounded like an English language description of the results
that would thereby be produced.

What worked for the original PHIDIAS language cannot work for the considerably
more complex HERMES language. The PHIDIAS language was syntactically limited
to simple query statements. In fact, most queries formulated in practice instantiated
a handful of patterns. Moreover, these patterns were part of a culture existing
among the people who worked together on PHIDIAS. The HERMES language, in
contrast, is highly generative, allowing an unbounded variety of expression forms.
While it is assumed that some training will be necessary for its use (in fact,
considerably more than was given to the walkthrough participants), the language
is supposed to be usable by designers in workplaces who have arbitrarily complex
and innovative information retrieval needs.

A serious confusion arose in determining the correspondence between nodes or
links and Subjects or Relationships. In the PHIDIAS culture, a phrase like answers
of issues corresponded to answer links coming out of issue nodes. The
nodes at the other end of the answer links would, it was assumed, be answer
nodes. In a standard PHI issue-base hierarchy this was a reasonable assumption.
However, in the general case, a link of Type x might point to a node of Kind y. So
the original assumptions of how node and link structures correspond to English
descriptions and query syntax no longer necessarily obtain.

An issue also arose in the step of defining the Subject having to do with
conjunctions. The Subject, people, had to be defined as a conjunction of boys, girls,
men, and women. In ordinary English, one might say "men and women who"
But the computer combines nodes using set operations, so one has to say, "men
or women who" Whereas a native English speaker would use "men and
women who" to group all the men and all the women together, the computer
would interpret this as people who are men and who also are women, i.e., the null
set. The first aspect of this problem is that the query writer must leave tacit
common English and think in explicit set terms; the second part is that the syntax
options redundantly included and and or along with the set operations for union
and intersection—and the relationships among them are unspecified.

A more general point that came up concerning the presentation of the syntax is that
the overall structure is not clear. The syntax looks like an arbitrary listing of many
possible syntactic templates. What are the important primitive (or first class)
elements here and what are the rules for combining or abstracting them? If Query

 Tacit and Explicit Understanding in Computer Support 326

is a primitive object, can one request: disclose queries that ...? Are
there general principles for combining Subject, Relationship, Filter,
etc. that underlie the definitions of the templates? Is so, could these principles be
given instead of the seemingly arbitrary proliferation of template options?

Again, the question of structure goes back to the tension between the English
language perspective and the hypertext navigation perspective. The underlying
structure of the language as a computer programming language for hypertext
querying has to do with the structure of nodes and links in the hypertext. However,
the appearance of the language is tuned to the rather different structure of English
language descriptions of results desired, as stated using terms of the domain
(grandchildren, answers, wardrooms). This tension became explicit in
Step 3.

The list of syntax templates arose from a series of trade-offs. The Operator options
allowed the collapsing of several language options into one: e.g., Subject and
Subject, Subject or Subject, ... into Subject SOperator
Subject. This reduced the overall number of options but added another layer of
options (SOperator) to go through. Another trade-off has to do with providing
templates that correspond to common queries versus maximizing the generality of
the options. Adding options increases the likelihood that a need can be met
immediately without the extra effort of building up from several options or
specializing from a complex, generalized option. The trade-off is that this
proliferates options, making it harder to locate the correct one.

Step 3. Think through the computation process. At some point early in the
formulation of a non-trivial query, one must focus on the computational process
needed to get the desired results starting from the given information. For instance,
given nodes for various kinds of people and links to parents, how can a list of
certain grandparents be defined? In the walkthrough task, one must first generate
a list of people by generating lists of men, women, etc., and then combining these
lists. Then one must perform a mapping from these people to their grandchildren
by crossing the parent links coming into them to get to their children and then
repeating this to get to the grandchildren. For each person, the number of their
grandchildren is computed and compared to 3. Those people who do not meet this
condition are filtered out of the list of people, and the remaining list is the desired
output. It may be useful to conceive of the sets or lists of nodes as "streams", and
the computational process as consisting of operations on this stream such as
generation, mapping, filtering, performing conjunctions, applying predicate tests,
etc. (see Abelson & Sussman, 1985). Such an abstract scheme would provide a
way of analyzing a task. If the language's syntax was organized this way, then the
procedure of formulating a query might be more straight-forward. It is even

 Tacit and Explicit Understanding in Computer Support 327

conceivable that a query formulated on the basis of this scheme could then be
translated into an English-like format to enhance future readability.

The point is that for any non-trivial query the writer will need to think through the
computational process in terms of operations on nodes and links. For each
operation, the writer will then have to select the proper syntax option. So the
selection of query terms will be made on the basis of a conceptualization in terms
of nodes and links, not directly in terms of domain concepts (answers,
grandchildren, etc.). The domain concepts have to be translated into system
concepts (i.e., into the terms according to which the hypertext database is
organized) before the structure of a query can be determined. This implies that the
syntax should correspond to the system view which the user must develop, rather
than to the user's native English formulation of the task.

This consequence applies to the writing of queries, not the reading of them. If a
query has already been stated in an English-like way so that it reads like a statement
of the general task that it indeed carries out, then the user may not need to think in
the system terms of nodes and links at all. This would relieve the user of a
considerable cognitive burden and justify the approach of supporting tacit
understanding.

However, even if one anticipates that the language will be used almost exclusively
in a read mode by most users, one should not underestimate the concern for the
language's writability. Both programming walkthroughs underlined the
inadequacy of the "English-like" approach for programming queries, and the
strongest implication of both was the necessity to redesign the syntax to reflect
more closely a system view of computations. That is, there are important times
when it is necessary to think in explicit computational terms and the language
should support this as well as tacit readability.

Step 4. Formulate the query based on the computation. Once the necessary
computation has been understood, the query can be formulated. A first step might
be to consider alternative starting points for the computation based on the structure
of the data. In the given task, for instance, both walkthroughs got side-tracked by
following parent links from people to their grandparents. To complete the task,
one must add up each person's grandchildren, which means following the links in
the other direction to each person's children and to their children, so that each
grandparent will be associated with the set of his or her grandchildren.

This raised a question about backwards links, called "converse" links in the syntax.
It may not be obvious to users that links can be traversed in both directions. In fact
in PHIDIAS they could not be. So this is intended as a new feature in HERMES, and
the converse Relationship option (along with its explanation in a User's
Manual or training session) is meant to point out this possibility. In fact, the given

 Tacit and Explicit Understanding in Computer Support 328

task could not be performed without the ability to traverse links in both directions.
However, even if one wants to retain this functionality, "converse" may not be the
best term to use.

Once alternative strategies for achieving the task have been worked out, the
programmer of the query might optionally try to estimate the relative
computational efficiency of the alternatives. For instance, in the given task one
might reason that only adults could have grandchildren. So, instead of starting from
a set of people that included boys and girls, one might start from a set of people
defined as men or women.

The analysis of the task in terms of defined nodes and links implies the selection
of Subjects and Relationships. These must be built from the given kinds of nodes
and types of links, using whichever syntax templates produce the desired results
from the primitives. Thus, the Subject option, Subject SOperator
Subject can be used to combine men and women with the appropriate
connective selected from the list of SOperator options. Similarly, the best Filter
option can be chosen by a pattern matching process: the option have
COperator Number Relationship ... allows a numeric comparison,
where COperator is matched to "more than", Number to "three", and
Relationship to "grandchildren". Unfortunately, another option, have
QOperator Relationship, also almost seems to match, necessitating extra
analysis.

The walkthroughs uncovered a technical problem with having the user always
choosing from lists of defined options. For instance, to choose a primitive link type
the user selects from a pick list containing all defined types. The advantage of this
is that spelling mistakes are avoided, and long names can be entered with a click
of the mouse. The problem is that the type must always be defined before it is used.
This creates a problem in two situations: top-down design and recursive
definitions. Suppose one wants to define a Relationship, issues and
discussion, before one has defined discussion. In top-down design it
makes sense to use a subcomponent before figuring out its definition in detail—as
long as it gets defined before actual program execution. With the HERMES
graphical user interface, one would at least have to define discussion with a
simple, nominal definition prior to referring to it in a higher-level definition. (Then
one could always come back later and refine the lower-level definition.) In the case
of recursive definitions, one could not define discussion as: issues with
discussion, because when one went to select the last term in this definition the
Relationship discussion would not yet be on the list. This is a problem arising
from the HERMES interface. In PHIDIAS, the user simply typed any character strings
into the command-line interface. Of course, one could work around this problem

 Tacit and Explicit Understanding in Computer Support 329

too by first defining a dummy discussion Relationship and then redefining it
with the recursive definition.

Step 5. Test and refine the query. Ideally, one should be able to build up complex
queries iteratively, testing as one goes. This was not possible during the
walkthroughs because the HERMES language and its interface were not completely
implemented. The interface should be designed to make the testing of query
components as easy as possible.

In addition, the construction of modular queries should be supported. One should
be able to define a Subject as men or women, save it with a name people and
then subsequently use it in queries. Similarly, one should be able to define a
Relationship converse parents of converse parents, save it with a
name grandchildren, and use it later in the final Query:

disclose people that have more than 3 grandchildren.

This kind of modularity promotes top-down and incremental design. It also hides
the complex details and provides building blocks for other queries in the future.

Finally, once the task is solved and the query has been shown to work properly,
the user may want to check the appearance of the query for readability. In the above
example, care has been taken to name terms like people and grandchildren
with descriptive names in the plural, so they make sense and sound reasonable in
the query syntax. Also note that the awkward and non-English-like phrases have
been hidden within secondary definitions that are represented by these carefully
chosen names.

The revised language. In response to the findings of the programming
walkthroughs, an extensive redesign effort was undertaken. In particular, many of
the “English-like” analogies of the original PHIDIAS query language were
eliminated in favor of a mixing of support for tacit and explicit understanding. The
primary redesign decisions resulting from the walkthroughs are discussed below:
28

Decision 1. Provide for multiple skill levels. The programming walkthroughs
highlighted the problematic nature of writing expressions in the HERMES language.
Experience using the language on more complicated tasks than that tried in the
walkthrough suggests that, in fact, it would sometimes be easier to use a general

28 It should be noted that the HERMES language continued to evolve after these

revisions, so that the syntax in Appendix C and the examples throughout the
dissertation do not correspond exactly to the revised version of the language
discussed here.

 Tacit and Explicit Understanding in Computer Support 330

programming language like PASCAL or LISP than to apply the HERMES language.
This suggestion is closely related to the difference between the natural language
model of the task and the node-and-link system model. That is, if one arranged
programming tasks along a spectrum from trivial examples like disclose
boys, through typical PHIDIAS queries like answers of issues with
their arguments, to more complex computations like display people
that have more than 3 grandchildren, and finally to small
applications like the academic advising example (Appendix B) used to test the
unrevised language, or to even more complex computations (like the privacy critics
in Part III), then they would progress from being easy in PHIDIAS to being do-able
in the HERMES language to being easier to do in a general programming language.
The advantages of the ties of the HERMES language to natural language become
less helpful and more of a burden the more one needs to concentrate on intricate
computations at the node and link level.

At the same time, an expression in the HERMES language has the great advantage
of being very easily understood by a reader (assuming it has been carefully
programmed with that in mind). For a design environment that is not restricted to
use by people trained in programming, this is a great advantage. Even for trained
programmers, use and re-use are promoted by having expressions be self-
documenting at the surface English level. Perhaps the best solution is to recognize
that people defining complex computations will need to think explicitly in system
terms and use programming skills, but to shield most users from these demands as
much as possible. With this in mind, the HERMES language has been divided into
a number of skill levels, defined in Chapter 10:

* novice: read-only

* beginner: entry and display of data trees

* intermediate: hypertext computations

* advanced: multi-media critiquing

* programmer: general programming language

Decision 2. Replace Queries and Subjects with DataLists. The biggest problem
uncovered by the walkthroughs was the complexity of the syntax. This complexity
was due primarily to two factors: the sheer number of syntactical options and the
lack of an apparent organizing principle based on the computational structure. The
first strategy for dealing with the complexity was to provide different levels of the
language for users of different skill levels. This should help users to adjust
incrementally to the language. The second strategy is to structure the syntax more
clearly along computational lines. This turns out to have the additional advantage
of reducing the number of options.

 Tacit and Explicit Understanding in Computer Support 331

The hardest part of completing the task in the walkthroughs was the start up. This
required the most knowledge of background doctrine. It was the most confusing;
once one was started along the right track, the rest was much clearer. The
determination of the computational starting point is the key—not an analysis of the
English description of the task or of the desired results. The starting point is always
a list of nodes (people, issues, etc.). Once this list is generated, the task is solved
by successively performing a series of operations on this list. If one looks carefully
at the syntax, one finds three inter-related terms for lists of nodes: Query, Subject,
and DataList. A Query consists of the resultant list of nodes returned by a
computation. A DataList is an arbitrary list of nodes, including Query results. A
Subject can be a list of one node, all nodes of a certain kind, all nodes in the
database, a DataList, a Query result (indirectly, as a DataList), or some
combination of such lists. This is unnecessarily redundant.

The revised language eliminates the terms Query and Subject—two terms that
caused considerable confusion in the walkthroughs—and consolidates their
functions under the term DataList—a term that more clearly represents a system
view of its role. The steps in solving a task are no longer to construct a "query" by
first defining a "subject", but to compute a desired data list starting from some
easily generated data list. The consolidation of these terms substantially lowers the
number of options as well as clarifying their structure.

Decision 3. Require all parameters to be defined. Part of the confusion in
defining Queries (and other terms) was that all their parts were optional and could
be defined in any order. In particular, the main option for a Query (and hence the
first one a user confronted) had ten terms, any combination of which could be
defined in any order. So this first step offered the user several million permutations.
The syntax had been structured with all terms optional in order to make each option
as general as possible. However, it turns out that the syntax can be defined with all
terms required, and the result is much greater structural clarity and simplicity with
only a few more options. Compare a slightly cleaned up version of the old
definition of Query (where the glue words have been eliminated and DataList
has been used for Subjects, Queries and DataLists, for the sake of comparison)
with part of the new definition of DataList:

DataList ::= Association of DataList that Filter as How,
with their Association , if Boolean, else DataList

DataList ::= Association of DataList | DataList that Filter
| DataList as How | DataList with their Association | if
Boolean then DataList , else DataList

In the old definition each capitalized term is optional, in the new they are each
required. The five options of the new definition allow one to build up a DataList
through the same five operations that are combined in the old definition. The two

 Tacit and Explicit Understanding in Computer Support 332

definitions are formally equivalent because the old one can be converted to any of
the new options by dropping optional terms, and the new options can be nested to
build the old definition. But look how much clearer the function of each of the new
options is. They each define a way of combining a DataList with another
syntactical term (Association , Filter, How, or Boolean). Once one of
the new options is chosen, there are only two choices: define the first term and then
the second or the second and then the first. This new format makes the structure
much clearer—for instance, it is now clear that the five operations can be
performed in any order, whereas the older format gave the misleading and
confusing impression that there was a required order. In fact, exactly the same
operations are generally needed regardless of the template formats: to define
people that have more than 3 grandchildren, one must press the
same number of interface buttons in either version.

Decision 4. Eliminate glue words. The articles and prepositions have been
eliminated from the syntax. They may have made sense in the simple, intuitive
days of the PHIDIAS query language, but they seemed to get in the way excessively
in the walkthroughs. Above all, they obscured the structure of the computations
being defined and added to the confusing appearance of the syntax. Too much
smoke and mirrors.

Decision 5. Retain filler words. The filler words (of, that, as, with
their, ...) have been retained in the syntax to aid in the comprehension of the
options as well as increasing the readability of the final expressions. "Converse"
has been replaced by "inverse", which is probably more colloquial.
Disclose, which used to start all Queries, has been deleted, along with the
troublesome terms Query and Subject. These decisions reflect a continued
commitment to maintaining the readability of the language. The suggested
alternatives of a Lisp syntax or a visual programming approach are not attractive.
Lisp requires enormous doctrinal knowledge and cognitive strain for the sake of a
somewhat more functional notation. It is not clear that a visual programming
approach could retain the functionality of the HERMES language syntax and still
improve its clarity or simplicity. One could easily change the appearance of the
options from their English-like format to a functional format, for instance:

DataList ::= Association(DataList) | Filter(DataList) |
How(DataList) | Association-sublist(DataList) |
Boolean(DataList1, DataList2) | UnionOp(DataList1,
DataList2)

instead of:

 Tacit and Explicit Understanding in Computer Support 333

DataList ::= Association of DataList | DataList that Filter
| DataList as How | DataList with their Association | if
Boolean then DataList, else DataList

However, for the non-programmer the filler words make the functional
relationships much clearer.

Decision 6. Compress syntax levels. The Operator options had been created to
consolidate options like DataList and DataList, DataList or
DataList, etc. into DataList UnionOp DataList, where UnionOp
::= and/or (unique sorted union) | and also
(intersection) | but not (difference) | or (append). This
makes sense where UnionOp is used in several places in the syntax. However, the
Operator options themselves proliferated, making it difficult to look them up, let
alone remember them. In the new syntax, a number of these Operator options have
been combined, eliminated or moved back to the higher level options in order to
lessen the number of steps involved. Note that the use of "and" and "or" has been
tied to the set operations in order to clarify the sense of their computation. The net
result of all the changes to the syntax is a significant decrease in the number of
options, despite an increase in the clarity of their computational structure, in their
ease of use, and even in their functionality. Compared to the previous language,
the revised language has only 12%, 55%, and 76% as many options in its Beginner,
Intermediate and Advanced versions respectively.

Decision 7. Clarify the computational structure. The Media options of the
revised language provide the primitive node contents. The Language options are
functions that take a DataList of nodes and return a DataList of nodes. In particular,
DataList options generate lists (streams) of nodes. Association options (and their
subsets, InputAssociation and Predicate options) provide mappings of each input
node to output nodes (based on navigation of links coming out of the nodes). Filter
options are conditions applied to filter nodes out of a stream. Most of the language
options define rules for combining options, the majority of which are forms of
application with different semantics, like Association of DataList and
DataList with their Association that both apply the Association to
the DataList but return the resultant lists structured differently. In this sense, the
new syntax is based on a computational structure, but is displayed in an English-
like format. The English-like format is arbitrary for the writing and internal
representation of the language (except that it may help the programmer remember
the semantics), and merely plays a role in the display (readability) of the language.

Note that many options in each category are defined in terms of options from other
categories. All options are stored in the hypermedia and can be referenced by the
language itself (see the definition of ObjectType). In many ways, the revised

 Tacit and Explicit Understanding in Computer Support 334

language has some of the characteristics that make LISP useful: it is functional, it
is interpreted, and it can treat data as programs.

Decision 8. Improve graphical computations. The treatment of graphics was
sketchy and awkward in the language. For instance, to test if a chair was near a
table, one could define a Boolean as: ((Measure) of Graphic) is
COperator Number, or: minimum distance to the table of the
chair is less than 3. In the new revised language, one can first define a
measure, closest distance is less than 3, and name that near.
Then one can use that term in the Boolean: Graphic is Measure Graphic,
yielding: the chair is near the table. One can then go on to define
the kind of Boolean required for graphical queries: most chairs are near
at least one table. This new syntax has several advantages: users can
define their own terms for Measures like near, the syntax for the graphical
Booleans is clean, and the expression is smoothly readable. By defining
measures in terms of either central distance or closest distance, using the full range
of quantity operators, and allowing quantification of both graphical terms, the
graphical booleans provide for considerable computational flexibility.

Decision 9. Retain safeguards against errors. The language used scrollable pick
lists for choosing Types, Kinds and defined terms. This protected the user from
typing errors and from entering undefined terms, as well as reminding the user
what terms or options were available. The only keyboarding allowed was to type
in names for new terms. This prevented a variety of kinds of user errors that would
have required debugging—perhaps the hardest skill to require of a non-
programmer. In order to allow recursive definitions of Associations and Input
Associations, a recursive self option was added to the syntax of these terms.
Now if one defines a Relationship as issues with their recursive
self and then names this discussion, the Relationship will automatically be
made to read issues with their discussion. Similarly, the syntax for
Input Associations is entirely designed to protect the user from error. Input
Associations are intended primarily for data entry; otherwise they are just instances
of Associations. The reason for distinguishing them is that not all Associations
make sense for data entry: i.e., it makes no sense to apply Filter operators to nodes
that have not yet been input. Only those options that are meaningful for input are
included in the syntax for Input Associations and only Input Associations can be
used by the interface mechanisms that prompt the user to elicit sequences of input.

Decision 10. Support the construction of language expressions. The new user
interface to the language provides dialog boxes in conformance with the WINDOWS
3.1 conventions. For instance, if one wants to create a DataList, one brings up a
dialog displaying all the syntactic options for DataLists. In a given option, each

 Tacit and Explicit Understanding in Computer Support 335

term that has to be defined is represented with a button. Clicking the mouse on that
button brings up a dialog with the relevant options for that term. Primitive terms
like link Types are chosen from a pick list of defined terms. Dialogs are modal, so
that work on a given dialog must be completed (or canceled) before reverting to
work on a previous stage. As an expression is built up, it is displayed at the bottom
of the dialog box in its English-like format. Control buttons are available on most
dialogs for naming and saving a constructed term, for bringing up and editing a
previously saved term, and for changing the interpretive context in which terms
and expressions are defined. The dialog for DataLists also includes buttons for
evaluating the DataList (testing it) and for saving the results to disk (for subsequent
processing or viewing).

The construction of expressions in the HERMES language could be supported with
a wide variety of other mechanisms beyond the scope of this research. One could
have graphical palettes of previously defined expressions, browsers of the
hypertext structure, intelligent assistants that suggest new constructions or critique
partial constructions, facilities for specifying desired results, checklists for steps to
be done, and context-sensitive help. Some of these have been tried in MODIFIER
(Girgensohn, 1992). It is hoped that defining expressions in the HERMES language
is generally not so difficult as to warrant such extensive support. As Girgensohn
implied, the supports he developed were largely required because of a non-intuitive
representation of critic definitions, etc. in terms of LISP expressions and property
sheets. Although it is likely that certain forms of support, carefully designed and
implemented would be extremely useful, Girgensohn (1992) probably turned to
providing such supports too early. The HERMES language is carefully designed to
provide representations of useful computations for design environments that
syntactically support designers tacit and explicit understandings.

Decision 11. Provide training in the use and extension of the language. The
walkthroughs made explicit the background doctrine that is required to write
expressions in the HERMES language. Clearly, some instruction is needed to
explain the purpose, format, implementation, and use of the language to new users.
This instruction must include some discussion of navigation and computation
across hypertext, as well as a description of the syntax, semantics, and pragmatics
of the language itself.

During the year since the development of the revised language, the HERMES
language has been further refined to clarify its structure, functionality, and
appearance. Its current design is reflected in Chapter 10 and Appendix C.

B. Tacit Usage of the Hermes Language
This Appendix is intended to give the flavor of the HERMES Language in use. It
describes two small applications that were programmed during the early
development of the language—and which actually drove the definition of much of
its functionality. It also discusses four computational mechanisms that can be used
within the language. In each example application or computational technique, there
is a mixture of support for tacit and explicit understanding:

* The example of family relations shows how a system of terminology can be
defined in the HERMES language for expressing common family relations.
However, while these terms may be easy to use once defined, even the
definition of a basic term like brother or sister (sibling) can require a
relatively high degree of explicit reflection.

* The attempt to build a mini-expert-system to automate the job of an academic
advisor using the HERMES language was instructive. On the one hand, building
the application strained the ability of the language to construct complex
procedures, requiring explicit programming strategies to be applied in an
environment whose only support for that is abstraction. On the other hand,
once defined, the application defined a micro-world in which users could
browse and pose queries in ways not possible in closed expert systems.

* The definition of Predicates as a subtle variation on Associations gives
substantial extended power to the language in practice and at the same time
nicely hides from the user some of the underlying complexity of definitions
that stretch across multiple hypermedia links.

* As programs in the language become more complex, issues of variable binding
arise that may be confusing to think through. HERMES solves these issues in
an intuitive way so that they ordinarily need not come to the attention of the
user.

* The use of recursive procedures to compute transitive closures—both breadth-
first and depth-first—generally requires cognitively burdensome abstract
thinking. The HERMES language can support recursion through simple
expressions. The problem of the recursive out is handled automatically by a
natural convention having to do with hypermedia navigation.

* Decision trees can be set up using hypertext links between nodes that contain
conditions expressed in the HERMES language. The links between the nodes

 Tacit and Explicit Understanding in Computer Support 337

model the decision tree in a clear way. This supports the explicit understanding
of the logic of the decision tree in an intuitive manner.

* The options of the HERMES language support defeasible reasoning flexibly.
They often eliminate the need to think through all the possibilities explicitly
and allow the user to state in an understandable way the critical condition.

Programming family relations. A textbook example from logic programming
like PROLOG provides a good illustration of how terms can be defined in the
HERMES language to break down and solve a typical inference problem. The
domain of family relations makes a nice test case because it is easy to compare the
use of the HERMES language with one’s tacit understanding of these relations and
with the need in ordinary conversation to occasionally make these tacit
understandings more explicit.

Figure A-1. Family relations.

The definition of cousin from son and daughter links.

Take the problem: given a network of people nodes linked by son and
daughter links, infer cousin relationships. Inference is defined as the

 Tacit and Explicit Understanding in Computer Support 338

combining of facts to derive new facts. In Figure A-1, facts about sons and
daughters are combined to produce facts about who is a cousin of whom. This is a
non-trivial task for humans, generally requiring people to consciously articulate
part of the computation (e.g., "Let's see, her mother is my father's sister. . . .")

In the HERMES language, the problem can be solved by the definition of the
following terms:

children: sons or daughters.
parents: inverse sons or inverse daughters.
siblings: children of parents that do not equal that (last

subject), without duplicates.
cousins: children of siblings of parents.

Of course, these definitions require some explanations about the language—
although probably less explanation than corresponding definitions in a traditional
programming language like LISP or PROLOG. The children predicate includes
nodes linked by both sons and daughters primitive links. Inverse links are
primitive links traced backwards, like from the son back to the person whose son
he is. The definition of siblings is inherently tricky. Most likely, the definer of
this predicate would discover an adequate definition through a series of successive
refinements. If one defines siblings as just children of parents, one
discovers upon first use of the predicate that the original people are always
included among their own siblings, because they are sons or daughters of their own
parents. Therefore, a condition must be added to exclude the original person (i.e.,
the last subject, to whom the expression is applied) from the result list. Similarly,
there will usually be duplicate names on the list of siblings because they are
children of both the mother and the father of the original child. The simplest way
of solving this problem while maintaining the ability to handle children of multiple
marriages is to simply eliminate duplicates from the final list of results.

The complexity of the definition of siblings is telling. Although the task of
determining cousins is difficult for people, the problem does not lie in the
definition of siblings but rather in the sequence of steps that must be put
together. People naturally exclude the extra results that pop up surprisingly when
the siblings term is incompletely defined. This is symptomatic of the fact that
programming in any language in any domain is going to require some explicit steps
of logical analysis and some efforts at debugging. No computer language can
entirely avoid that. The primary advantage of the readability of the HERMES
language is that once terms are successfully defined, it is clear what they mean,
even for someone with little training in the language. The definition of siblings is
about as obscure as any statement in the language need be.

Given the above definitions, the following computations can now be evaluated:

 Tacit and Explicit Understanding in Computer Support 339

cousins of sandra
people that have cousins and have less than 3 cousins, with

those items

Furthermore, these definitions have begun the creation of a domain language for
family relationships. It is an easy matter to add predicates for brothers, aunts,
grandparents, etc.

The academic advising application. To test an early version of the HERMES
language, an application was created using information about the curriculum of the
College of Environmental Design at the University of Colorado. This information
included not only lists of offered courses, but other facts and rules used by the
College's official student advisor. Courses were linked to their prerequisites and to
their categories, such as which curriculum they belonged to and which elective
breadth requirements they satisfied. Other, less formal factors were also included,
like which courses were particularly labor intensive.

Primitive nodes and links were defined to correspond to information that students
traditionally enter on forms prior to seeking counseling from the human academic
advisor. This includes the student’s name, curriculum option, semester number,
and courses taken in the past, taken currently, or proposed.

The centerpiece of this application was the definition of a term named advice.
The expression defining this term was built on a combination of several specific
kinds of advice, which in turn used specially defined terms to compute inferences
across the hypermedia. The idea was that a student, Sandra, could enter her name,
curriculum option, semester number, completed courses, current courses and
proposed courses into the hypermedia system (instead of onto a paper form). By
clicking on the Advice button, Sandra would initiate the query,

advice of sandra.

The query critiques Sandra's proposed list of courses. Figure A-2 displays a typical
result:

 Here is some advice on your choice of courses:
 The following courses each require a lot of work. It

would be wise not to take them in the same semester:
 ENVD 3220 Planning Studio 2
 MATH 1300 Calculus

 Tacit and Explicit Understanding in Computer Support 340

 The following courses are not designed for your
curriculum option:

 ENVD 3220 Planning Studio 2

 You have not taken the listed prerequisites for the

proposed courses:
 ENVD 3220 Planning Studio 2

 With your proposed courses you will not satisfy the

following elective breadth requirements:
 science
 It would be wise to take a course in one of these areas

rather than the following proposed courses in elective
areas for which you have already satisfied the breadth
requirements.

 FINE 1012 Art History

Figure A-2. Output from the academic advising application.

This Figure shows the actual system output for a sample student. Computations
have been performed to check, count, and list courses meeting or not meeting
certain conditions. In particular, for instance, the advice about breadth
requirements is only displayed if the proposed courses include an elective in an
area that has already been satisfied and do not include one in an unsatisfied area.
This kind of inferencing facilitates the offering of important information tailored
to a particular user in a way that is impossible in a purely navigational hypermedia
system. It begins to look like a rule-based expert system, but without many of the
problems of such systems.

To give a feel for the computations carried out by the language, the computation
of prerequisite_problems will be detailed. The query, advice of
sandra, makes use of a term, advice. This term is defined as follows:

advice: advice_intro and labor_intensive_advice and
option_advice and prerequisite_advice.

In this way, the one term combines the terms for the four major computations in
advice. The prerequisite_advice component is a term defined as follows:

prerequisite_advice: prerequisite_intro and prerequi-
site_problems if there are prerequisite_problems.

 Tacit and Explicit Understanding in Computer Support 341

This first checks to see if there are problems with prerequisites; if there are, it prints
out a message and then lists the problem courses. The checking and listing is done
with the following term:

prerequisite_problems: proposed_courses that have
prerequisites_not_taken.

This term checks each of the student’s proposed courses, using the following term
:

prerequisites_not_taken: prerequisites that are not
included in courses_taken.

For each of the student’s proposed courses, this term follows each prerequisite’s
link and then checks if the node for that prerequisite is in the set of nodes resulting
from the query, courses_taken [of sandra]. If it is not, then the proposed
course for which it is a prerequisite is returned. An example of this was seen in the
advice output above, where ENVD 3220 is listed.

Several problems can be noted in this implementation, if considered from a
traditional computer science perspective: (i) First, there is a serious efficiency
problem. (ii) Then, there is the complexity involved in setting up the application.
(i) The efficiency problem is a result of the operator nature of the language. Many
computations are done redundantly. For instance, in the
prerequisite_advice computation the term
prerequisite_problems is evaluated twice. Even worse, the subquery,
courses_taken is evaluated many times, although its result is the same each
time for a given student. While some cases of redundancy could be eliminated with
a more complex syntax, most are caused by the generality required by the design
of the language as successive application of modularized operators and the
conscious decision to disallow use of explicit variables in the language. The system
is also slowed by the fact that the language is interpreted dynamically, rather than
being compiled. Nevertheless, the delay encountered for an application of this
scale is scarcely noticeable—largely because the data involved is cached in RAM
after its first access from disk, so redundant computations require no disk accesses.

(ii) Developing an application of this level of complexity requires considerable
system designing expertise. One needs to know how to represent the knowledge in
hypermedia and how to build up a sequence of modular definitions. The way to
structure a program in the HERMES language is to define a hierarchy of terms with
descriptive names. In complex cases like the academic advising application, one
must explicitly design a manageable hierarchy and choose meaningful names that
will result in readable expressions. This is probably inevitable in any system. Once
well designed, however, the system can be significantly easier to understand,

 Tacit and Explicit Understanding in Computer Support 342

modify, and extend than alternative implementations would be. While the result of
the advice term looks like the output from a traditional expert system, the
hypermedia flexibility is still there to explore the underlying knowledge base by
navigation. Alternatively, one can reformulate the major query or execute a series
of simpler queries using components of the advice predicate.

Furthermore, the availability of all the information in hypertext makes it possible
for users to browse the database. For instance, information could be linked to each
course describing its content, hours, instructor, etc. The advantages of this
approach in terms of flexibility probably outweigh the problems in settings like
academic advising. The domain of academic advising is subject to frequent
changes in rules and to many occurrences of “special cases” in student situations.
Characteristics like these make the ability of end-users to revise and explore
information important considerations.

Predicates. In HERMES, the language can be integrated into the hypertext node
and link structure in a number of ways. The first approach tried relied heavily on
the idea of smart nodes, in which the inferencing power of the language is
embedded in the nodes of the hypermedia. This was conceived primarily in terms
of virtual structures, an extension of the fixed structures of textual or graphical
nodes in traditional hypermedia systems, suggested by Frank Halasz (1988). The
navigational (or hypertext) approach to query evaluation was used, as found in the
PHIDIAS query language, and the language was embedded in the hypermedia
nodes. This was done to avoid simply gluing together two different paradigms
(e.g., hypermedia and PROLOG, or hypermedia and SQL, or HYPERCARD and
HYPERTALK) and to develop the querying or inferencing capability out of the
hypermedia paradigm itself.

The content of a smart node is not limited to the text or graphic originally entered
into it. Instead the content is determined by the results of a query or conditional
phrase associated with the node. The embedded query traverses the hypermedia
network, so its result depends upon the current state of the network: the existence
of other nodes, their links and their current content. When smart nodes are
displayed, the appearance of the hyperdocument itself changes dynamically.

Two forms of smart nodes were explored: conditional nodes and virtual structures.
A conditional node contains a conditional phrase in the inference language and
normal text or graphics. If the condition evaluates to true, the text is displayed. If
the condition is false, nothing is displayed. For instance, in the academic advising
application a node with the text, "Are you interested in a studio
course?" might have the condition, if there are courses that have
studio_types. Then the text would be displayed only if there actually were
studio courses for the student to choose from.

 Tacit and Explicit Understanding in Computer Support 343

A virtual structure differs from a conditional node in that it contains only a query.
Instead of fixed text, the system displays the result of the query. So, in the previous
example, if there were studio courses and the user responded to the question with
a "yes," then the yes response might be implemented as a link to a virtual structure
node with the query, display all courses that have
studio_types. The user would not see the statement of the query, just the
results.

Conditional nodes and virtual structures add significant flexibility to hypermedia.
They allow specific nodes to be responsive to changing conditions in other nodes
of the hyperdocument. For instance, decision trees can be implemented using smart
nodes by basing new decisions on nodes that contain the results of previous
decisions (see discussion of decision trees below).

However, there is an important limitation to smart nodes. Suppose you had defined
an inference computation for a specific node, embedded it in that node, and found
that it worked fine. But now you wanted to apply the same computation to other
nodes without explicitly entering the condition or query in each of the other nodes.
More generally, suppose you wanted to apply the computation as an operation on
an arbitrary list of nodes. This turns out to be a critical concern because it is
important to be able to do this within the inferencing language itself.

Smart links—or predicates—solved the limitation of smart nodes. Predicates are
different from primitive links or defined link types. When a hypermedia system is
designed, a set of link types is defined. For instance, in the academic advising
application there are links of type proposed_courses from a student's node to
his or her chosen course nodes, and other links of type prerequisites from
course nodes to other course nodes. A smart link is a virtual link that is computed
based on the definition of a term. For instance, a predicate might be defined as:

required_prerequisites = proposed_courses that have
prerequisites, with their prerequisites.

Here, required_prerequisites would not be a primitive defined link type,
but a computation or an inference.

This is an example of a query using normal primitive links:

display the proposed_courses for sandra.

It would be evaluated by following the proposed_courses links from the
student node sandra and displaying the nodes reached:

*** PROPOSED_COURSES:
1. ENVD 2110 Architectural Studio

 Tacit and Explicit Understanding in Computer Support 344

. . . .

This is an example of a query using smart links:

 display the required_prerequisites for sandra.

It would be evaluated by substituting the definition for the computed link type into
the query and displaying the result:

***PROPOSED_COURSES:
1. ENVD 2110 Architectural Studio
 *** PREREQUISITES:
 1. ENVD 1000 Environmental Design Studio
 2. ENVD 1014 Intro to Environmental Design

The idea of substituting a definition for a term in a query is known as macro
expansion. The definition of smart links as macros turns out to be an extremely
powerful mechanism for the inferencing language. Because of the way the
substitution is implemented, recursive definitions of smart links are possible
(discussed below). This allows simply stated queries to evaluate tree structures and
easily display transitive closures, in both breadth-first and depth-first order—an
accomplishment not matched by relational query languages like SQL.

The HERMES language distinguishes between macros and predicates. A predicate
is like a macro; however, when its results are displayed, they are labeled to appear
as though the predicate were a primitive link type. This is critical for the tacit
understanding of the user. Now when the user says,

display the required_prerequisites for sandra.

the user does not need to know that required_prerequisites is anything
but an ordinary link type. The result is displayed without any indication of the
internal structure, like this:

*** REQUIRED_PREREQUISITES:
1. ENVD 2110 Architecture Studio
2. ENVD 1000 Environmental Design Studio
3. ENVD 1014 Intro to Environmental Design
. . . .

In HERMES there are three kinds of links:

* Primitive links, which are the traditional link types of hypermedia.

* Macros, which add significant inferencing power by encapsulating
computations across multiple links.

 Tacit and Explicit Understanding in Computer Support 345

* Predicates, which use the power of macros but hide the complexity from the
user.

Predicates like required_prerequisites had to be defined and the
differences between types, macros, and predicates had to be explicitly considered
during system development. However, the eventual end-user can take advantage
of this computational power without knowing that no primitive links actually exist
in the hypermedia between student nodes and their required prerequisites. The
predicates look like simple links to the user and can be tacitly used as though they
were simple primitive links.

Smart links overcome the limitation of conditional nodes and virtual structures.
Because macros and predicates are syntactically equivalent to primitive link types,
they can be bound to arbitrary nodes or lists of nodes as if they were actual links
coming out of those nodes. Smart links turned out to be so powerful and flexible
that the academic advising application was developed almost exclusively with
them.

Decision trees. Another important programming technique—particularly for
expert system applications—is decision trees. A typical example of using a
decision tree is categorization of fauna and flora. One proceeds through a sequence
of questions posing alternative choices. Based on one’s answers, the choices lead
down a path through the tree of decisions to the answer, e.g., the name of the animal
or plant corresponding to the choices. Here is an example from the domain of
academic advising, implemented with virtual structure nodes (nodes containing
queries to be evaluated).

Suppose we have the query, suggestion (this query consists simply of the name
of a node). And suppose the node named "suggestion" contains the following
DataList:

if envd_semester of student is less than 3 then beginner,
else advanced.

 Assuming that the proposition (envd_semester of student is less
than 3) turns out true, beginner is evaluated. It contains the DataList,

if there are envd_1000 that are contained in
completed_courses of student then completed, else
uncompleted.

 Tacit and Explicit Understanding in Computer Support 346

Figure A-3. A decision tree as virtual nodes.

The rectangles are virtual structures. Evaluating node Suggestion produces the
message, “Take ENVD_1000.”

Suppose we take the branch of the tree (shown in Figure A-3) to the simple
uncompleted, which contains the text, "Take ENVD 1000." Then this text
is displayed in response to the original query.

The virtual structure nodes have implemented a decision tree in a way that is
relatively easy to understand and to modify if necessary. The links through the
hypermedia defined by the embedded queries reflect in a very straight-forward way
the structure of the abstract tree of decisions. Here again, the system requires some
analysis to set up, but once defined in the HERMES Language it is rather self-
documenting.

Variable binding issues. While the above implementation of a decision tree is
appealing, it demonstrates the limitation of virtual structure nodes as well as their
power. Note that in the last two queries the node student was referred to by
name. If one next wants to evaluate the decision tree for another student, the new
student information must be substituted in the hypermedia network that contains
the virtual structures. The decision tree cannot be simply applied somehow to other
existing nodes, let alone to arbitrary lists of nodes (the way predicates can). This
is a form of the general binding problem, a consequence of avoiding the use of
variables in order to keep the language easy to understand. In the HERMES
Language one cannot say "If envd_semester of X is less than 3,"
except by defining a predicate to encapsulate that computation and applying the
predicate to an arbitrary subject. That is why predicates are used so extensively in
applications using the language.

 Tacit and Explicit Understanding in Computer Support 347

However, predicates have their own binding problem. Predicates are a form of
Association. They must ultimately be applied to (operate on) a DataList in order
to produce a DataList result. The input DataList is referred to as the “binding
subject.” A predicate is like a function, f(x); eventually, its parameter, x, must
be bound to a variable value in order to be evaluated. When it is used in the
evaluation of a query, a predicate is implicitly (automatically) bound to whatever
subject it is applied to. Therefore, any unbound relationship in the predicate
definition is implicitly bound to that subject as well. However, predicates can have
whole queries embedded in them and so a question arises concerning the subjects
of these embedded queries. If there is an explicit subject node named in the
embedded query, then there is no problem. However, predicates draw much of their
power from binding to implicit subjects, as explained in the previous paragraph.
Therefore, the HERMES language permits leaving the subject unnamed in an
embedded query. In such a case, the implicit subject of the embedded query is
bound to the last explicit subject of a query (i.e., to the subject of the query in
which the embedded query is embedded, or if that query has no explicit subject
then the subject to which its subject is bound). This procedure is based on the usual
assumptions of the English language, so that language expressions behave the way
English-speaking users would expect them to, without the user having to think in
programming terms.

For an example of the two binding mechanisms presented in the previous
paragraph, consider the problem of determining what problems a student has with
missing prerequisite courses. The query for this (prerequisite_problems
of sandra) can be based on a predicate named
"prerequisite_problems" (proposed_courses that have
prerequisites_not_taken, with their
prerequisites_not_taken) which contains a predicate named
"prerequisites_not_taken" (prerequisites that do not
include courses_taken).

In this query, "prerequisite_problems" is bound to the explicit subject of
the query, sandra. The other predicate used in its definition, prerequisites
_not_taken, is applied to proposed_courses through composition. So
prerequisites in its definition is bound to proposed_courses (i.e., we
are concerned with the prerequisites of the proposed courses). The issue arises with
courses_taken. These are not courses taken by the proposed courses, but by
Sandra. According to the syntax of the query, courses_taken is part of an
embedded query: courses_taken of X. The subject is left implicit, which to
English speakers means it refers to the previous main subject, sandra. This is in
fact the rule used for binding implicit subjects of embedded queries in the HERMES
Language as well.

 Tacit and Explicit Understanding in Computer Support 348

The HERMES language solves the binding problem through the two mechanisms
illustrated above. This allows predicates to exercise their power of leaving their
subjects implicit, to be bound at runtime. The solution maintains the language's
support of tacit understanding by corresponding to the intuitions of non-
programmers. While it cannot handle arcane examples requiring binding to
multiple or obscure subjects, it handles reasonable, humanly comprehensible
examples—including arbitrarily deep embedding of queries. The example of
prerequisite_problems is a realistic one, occurring in the academic
advising application described above. The HERMES language also provides syntax
options to specify bindings: the options that (last subject), this
(expression), and those items are part of the language’s syntax. These
options provide an explicit choice of variable bindings, that can be left to their tacit
defaults in many cases. These options fulfill some of the functions of variables
using the familiar terminology of deictic reference in English.

Recursive procedures. Recursive programming is a potentially powerful
technique. It is particularly useful for processing trees of data, like family trees. In
the academic advising application, tree structures appear in the list of course
prerequisites. A full set of tree elements is called the transitive closure.

A particularly interesting definition from the example domain of family relations
is that of descendants:

descendants: children with their descendants

A programmer would recognize this to be a recursive definition. That is, it not only
lists the descendants of the starting node, but the descendants of those descendants,
the descendants of descendants of descendants, etc. until there are no more
generations. A non-programmer might be able to see that this definition would
produce such a result, without having studied recursive function theory in the
abstract. Again, the non-programmer might not be able to generate recursive
definitions easily from scratch, yet might understand them when seen. Note that
the recursive halt condition is implicit: stop when there are no more of the specified
links to traverse. This is a convention that is built into the HERMES language
implementation. It relieves the end-user from worrying about the recursive out
condition that causes so many errors in programming languages that require its
explicit statement.

The two primary approaches to enumerating a transitive closure by navigation
through a tree structure are depth-first and breadth-first. Both of these approaches
can be programmed in the HERMES Language. The following Predicate and
DataList definitions produce a nested, depth-first listing of the transitive closure of
course prerequisites:

 Tacit and Explicit Understanding in Computer Support 349

prerequisite_trees: prerequisites with their
prerequisite_trees.

ENVD_4550 and ENVD_4560 with their prerequisite_trees.

The following Predicate and DataList definitions produce a flat, breadth-first
listing of course prerequisites:

prerequisite_lists: prerequisites and prerequisite_ lists
of them.

prerequisite_lists of ENVD_4550, without duplicates.

The computation through trees has important applications in practical problems.
For instance, in a hypermedia design rationale system of issues, subissues of the
issues, subissues of the subissues, etc., it is useful to define the issue_trees, a
depth-first listing of the whole tree of issues. If the issues can each have answers
and arguments for the answers (as in the popular hypertext IBIS systems), then one
wants to list deliberations—the tree of arguments on the issue tree. This is
straight-forward to do in the language. It is trickier to produce a list of the terminal
issues, that is subissues at the leaves of the issue tree that have no subissues
themselves. This can be done with a Predicate for terminal_issues:

terminal_issues: if there are issues of issues then
terminal_issues of issues, else issues.

Defeasible reasoning. The HERMES language is also designed to take advantage
of defeasible reasoning in an intuitive way. Defeasible reasoning allows a system
to be designed with certain default behavior that results unless explicit action is
taken to change it. Suppose in a hypertext network of issues and answers one wants
to allow a user to accept, reject, or ignore answers by attaching status links to
nodes containing words like "accept", "reject", "ignore", "don't care", or no links.
One might also want to allow multiple status links from any given answer node.
So there may be contradictory information attached to an answer, or no information
at all. Suppose further that one wants to display an_important_issue unless
all its answers have been explicitly rejected with status links to "reject". This
would require defeasible reasoning, a very robust approach. The following query
could be used:

if there are not answers of an_important_issue that have
no statuses that contain "reject" then
an_important_issue, else rejection_message

This query has to do with the resolution of answers to issues in the issue-base. This
is a critical task for use of a PHI issue-base, yet it has not been supported in design
environments like JANUS and PHIDIAS in the past. If issues are explicitly resolved
by, for instance attaching status links, then related functions within a design

 Tacit and Explicit Understanding in Computer Support 350

environment like the display of palette items can respond to these decisions with
expressions like the preceding query.

Note that defeasible reasoning allows one to ignore all the possible combinations
of potentially redundant or contradictory conditions (e.g., multiple status links
from a given node) and express just the desired condition. This is supported by the
Quantifiers in the HERMES language, such as all, most, no, the only
one, at least one, etc. The end-user can formulate an expression based
on a tacit understanding; the explicit computations are left to the implementation
of the language.

C. Explicit Structure of the HERMES Language
Syntax of the HERMES language. This is a complete listing of the options of the
HERMES language in BNF format. This is the full advanced version of the
language, incorporating all the options for the beginner and intermediate levels as
described in Chapter 10. All Capitalized Terms are non-terminals. Underlined
terms are literal terminals. (Words in parentheses) are comments. Other terms
describe terminals. [Terms in square brackets] are optional. The start symbol is
DataList.

--------------language elements--

DataList ::= SimpleDataList | ComputedDataList

SimpleDataList ::= a node name | id: an object id | Character
| Number | Boolean | NodeKind | LanguageType | items | that (last
subject) | this (expression) | those items | contents of ResultList | a
DataList name

ComputedDataList ::= DataList Combination DataList |
Association of DataList | DataList with their Association |
DataList that Filter | Graphic [immediately] in Graphic | DataList
in context Context | either DataList or DataList | if Boolean then
DataList [, else DataList] | DataList, sorted | DataList, without
duplicates

Association ::= SimpleAssociation | InputAssociation |
ComputedAssociation | Predicate

SimpleAssociation ::= LinkType | name | id | creation date | creator | last
modification date | contexts | all associations | [immediate] parts |
Dimension | Distance in Units from Graphic [in Graphic] | an
Association name

Predicate ::= Association

InputAssociation ::= LinkType | InputAssociation with their
InputAssociation | InputAssociation and InputAssociation | an
input association name

 Tacit and Explicit Understanding in Computer Support 352

ComputedAssociation ::= Association of Association | Association
with their Association | Association that Filter | inverse
Association | either Association or Association | if Boolean then
Association [, else Association] | Association Combination
Association | the Number th Association | Association, sorted |
Association, without duplicates

Filter ::= SimpleFilter | CharacterFilter | NumberFilter |
BooleanFilter | ContextFilter | GraphicFilter |
ComputedFilter

SimpleFilter ::= equal DataList | named Character |
included in DataList | include DataList | of kind NodeKind | of
type LanguageType | a Filter name

CharacterFilter ::= include Character

NumberFilter ::= Counter

BooleanFilter ::= true

ContextFilter ::= view [Counter] DataList | inherit from
Context | are inherited by Context

GraphicFilter ::= [immediately] contain Graphic |
[immediately] contained in Graphic | Measure [Quantifier]
Graphic [in Graphic] | have Attribute is Value | have Attribute is
Number

ComputedFilter ::= have Counter Association [with those
items] | have Quantifier Association that Filter [with those items]
| if Boolean then Filter [else Filter] | Filter Connective Filter | are
Filter | are not Filter | do not Filter

---------------media elements--

Character ::= SimpleCharacter | ComputedCharacter

SimpleCharacter ::= character string | a Character name

ComputedCharacter ::= substring of Character from Number for
Number | Character append Character

 Tacit and Explicit Understanding in Computer Support 353

Number ::= SimpleNumber | ComputedNumber

SimpleNumber ::= real number | a Number name

ComputedNumber ::= count of DataList | minimum DataList | maximum
DataList | total of DataList | product of DataList | Number +
Number | Number - Number | - Number | Number x Number |
Number / Number | list of Distance in Units among Graphic,
Graphic[, Graphic] [in Graphic]

Boolean ::= SimpleBoolean | ComputedBoolean

SimpleBoolean ::= true | false | a Boolean name

ComputedBoolean ::= there are Counter DataList | Quantifier DataList
Filter | not Boolean | Boolean Connective Boolean | Graphic
Measure [Quantifier] Graphic [in Graphic]

Graphic ::= SimpleGraphic | ComputedGraphic

SimpleGraphic ::= polyline | a Graphic name

ComputedGraphic ::= DataList (of type graphic)

Image ::= bitmap image | an Image name

Pen ::= pen sketch | a Pen name

Sound ::= sound segment | a Sound name

Video ::= video segment | a Video name

Animation ::= animation segment | an Animation name

ComputedView ::= DataList arranged in a window | a ComputedView name

 Tacit and Explicit Understanding in Computer Support 354

-------------------network elements---

NodeKind ::= a NodeKind name

LinkType ::= a LinkType name

Context ::= a Context name

ResultList ::= name of an evaluated DataList

------------------namable terminology elements-----------------------------

Counter ::= (at least one) | more than Number | less than Number |
exact Number | not Counter | Counter Connective Counter
| a Counter name

Quantifier ::= no | any | all | most | the (only one) | Counter | a Quantifier
name

Measure ::= Distance is Counter Units | not Measure | Measure
Connective Measure | a Measure name

------------------simple terminology elements--

Connective ::= and (logical) | or (logical)

Combination ::= and (unique sorted union) | and also (intersection) | but not
(difference) | or (append) | with (and, indented)

 Tacit and Explicit Understanding in Computer Support 355

Distance ::= central distance | closest distance | x distance | y distance
| z distance

Units ::= inches | feet | cm | meters

Dimension ::= length | area | volume | x width | y height | z depth

Attribute ::= font | color | pen width | brush style | brush width |

Value ::= roman | helvetica | red | blue | striped | plaid |

LanguageType ::= data lists | associations | filters | characters | numbers |
booleans | graphics | images | pens | sounds | videos |
animations | computed views | node kinds | link types |
result lists | contexts | counters | quantifiers | measures

Denotational semantics of the HERMES language. The semantics of the HERMES
Language was formalized using the notation of Schmidt (1986), based on the
denotational semantics of Strachey and Scott. The abstract syntax, semantic
algebras, and valuation functions provide a formal specification for the HERMES
source code implementation. Each option in the abstract syntax is programmed as
an object. The semantic algebras are implemented by these objects, which are
given methods corresponding to the operations specified for the algebras.
Evaluation methods for the objects correspond very closely to the valuation
functions specified for the syntactic options. In addition, each object has methods
for displaying itself and each object can be given a name by the user when it is
defined.

For instance, a typical option in the syntax, DataList ::= Association
of DataList, might be programmed as follows in object-oriented Pascal:

DataListAofD := object(DataList)
 function Eval(InList: DataListPtr): DataListPtr; virtual;
 procedure Display; virtual;
private

 Tacit and Explicit Understanding in Computer Support 356

 TheAssociation : AssociationPtr;
 TheDataList : DataListPtr;
end;

function DataListAofD.Eval(InList: DataListPtr):

DataListPtr;
begin
 Eval := TheAssociation^.Eval(TheDataList^.Eval(nil));
end;

procedure DataListAofD.Display;
begin
 TheAssociation^.Display;
 write(' of ');
 TheDataList^.Display;
 writeln;
end;

This defines the Association of DataList option as an object that inherits
from the DataList object, has data items corresponding to its constituent
Association and DataList, and has methods for displaying and evaluating
itself. Note how the Eval method follows the same applicative process as the
valuation function from the denotational semantics:

 D[[A of D]] = ld. lz. A[[A]] (D[[D]] z
)

First it evaluates D, the DataList, (using the hypertext database z, but ignoring
the input DataList d) and then applies the evaluation of A, the Association,
to this intermediate result. (The notation A[[A]] means the Association valuation
of A, that is the evaluation of a given Association instance in accordance with
whichever option of the Association syntax it instantiates.) The Display method
similarly displays the Association using whatever method corresponds to the
particular Association instance, displays the character string ' of ', and then displays
the DataList with the method appropriate to its instance. This approach to
polymorphic execution depending upon the particular form of the instances at
runtime provides the flexibility to define methods that handle nesting of phrases.
In other words, Association can take the form of any Association option and
DataList can take the form of any DataList option. This allows the HERMES
Language to have the kind of phrase structure that English has, with arbitrarily
deep nesting of phrases.

The denotational semantics of the HERMES language is extraordinarily simple
because the language has been designed to minimize the amount of programming

 Tacit and Explicit Understanding in Computer Support 357

doctrine required. In particular, there is no state change and no continuation
processing because there are no assignment statements and no explicit iteration
constructs. In fact, there is no store because there are no variables.29 Moreover,
there is no explicit typing. This all makes for a simple, straight-forward language
structure.

Balancing the structural simplicity of the language is the wealth of individual
syntax options. The quantity of options results from the history of design trade-
offs detailed in Appendix B. In particular, there was a concerted effort to provide
a broad range of useful functionality while restricting the possibilities for creating
problematic constructs. There are over a hundred options for the Advanced
Version of the HERMES Language. Most of them define permissible and useful
combinations of other options and are relatively self-explanatory. A few of them
require more explanation.

Informal semantics of the HERMES language.

In the following, the major options listed in the syntax above are explained briefly
and examples of their use is given.

Simple DataLists. These generate ordered lists of nodes from the database. Most
of the Simple options generate a list of one node. The options for DataLists signify
that these lists of nodes can be generated in the following ways:

By specifying the name of a node. Names are optional for nodes. For example:

archie’s lunar habitat

By giving the Id of a node. All nodes have unique numeric identifiers that are used
internally by the HERMES system.

id: 2345

By defining a Character node using any of the Character options.

substring of privacy message from 1 to 26

By defining a Number node using any of the Number options.

29 In fact, there is a very limited state change, implemented with a specific

associated store for the DataList options that (last subject), this
(expression), and those items. The first two of these each require a
special stack and the third requires a list to keep track of their changing values.
These are simple to implement and can be easily accounted for in the denotational
semantics without all the overhead of variable names and assignments.

 Tacit and Explicit Understanding in Computer Support 358

47

By defining a Boolean node using any of the Boolean options.

there are more than 3 grandchildren of sandra

All nodes in the database of a specified NodeKind

lunar habitats

All nodes in the database of a specified LanguageType

datalists that have authors that contain "Sandra"

All nodes in the database

items

that (last subject) stands for whatever the last explicitly specified
subject was during evaluation. This is used in the definition of predicates,
where it is not known what will be operated on by an expression

parts of inverse parts that do not equal that (last subject)

this (expression) means the item currently being operated upon. This is
similar to a reference to “self” in other languages

issue_trees: issues with their this (expression)

those items refers to the last list of intermediate result items computed. This
option saves intermediate results so they do not have to be recalculated in order
to be displayed

prerequisite_trees: prerequisites and prerequisite _trees
of those items

prerequisites and this (expression) of those items

The name of a stored DataList whose contents (not definition) is to be used

contents of archie’s problem areas

The name of a defined ResultList whose definition (not stored contents) is to be
evaluated

sandra’s prerequisite problems

Computed DataLists. These generate ordered lists of nodes from the database.
Most of these apply one operator to another to generate a DataList:

By combining two DataLists with a Combination

 Tacit and Explicit Understanding in Computer Support 359

men and women

By applying an Association to an existing DataList (and traversing links to arrive
at a new list).

answers of the privacy issue

By applying an Association to an existing DataList and listing the DataList with
the Associations of each item listed under that item and indented. The term
“with” indicates that indenting will take place for the results of the
Association. Note that the Association operator is applied to the DataList
results.

answers of the privacy issue with their arguments

By applying a Filter to an existing DataList (and eliminating nodes which do not
pass through).

chairs that are near tables

By specifying a Graphic that is internal to a hierarchical Graphic. If the optional
term “immediately” is used, then only the first level parts of the Graphic will
result, and not the parts of parts, etc. as when the “immediately” keyword is
absent.

chairs in (graphic) habitats
areas immediately in (graphic) habitats

By selecting a DataList as viewed within a context other than the currently active
perspective

habitats in context lunar gravity

By choosing between two existing DataLists depending upon whether the first has
any items when evaluated

either problem areas or approval message

By evaluating a Boolean and choosing between two existing DataLists; the second
DataList is optional.

if stove is near curtains then flammability issue, else
default_critic

By sorting a DataList

men and women, sorted

By removing duplicates from a DataList

 Tacit and Explicit Understanding in Computer Support 360

men and boys, without duplicates

Simple Associations. These are computations that map or transform one list of
nodes into another, based on the links coming into or out of the nodes in the first
list. The transformations can take place as follows:

All links of a specified Link Type

sons

The name of a node. This is a pseudo-Association that allows internally stored
names to be referenced in the HERMES language

name of sons of sandra

The id of a node. This is a pseudo-Association that allows internally stored ids to
be referenced in the HERMES language

id of sandra

The creation date of a node. This is a pseudo-Association that allows internally
stored names to be referenced in the HERMES language. Design environments
built on HERMES could make timestamping automatic

creation date of arguments of answers of an interesting
issue

The creator of a node. This is a pseudo-Association that allows internally stored
names to be referenced in the HERMES language. Design environments built
on HERMES could automatically stamp a newly created node with the user’s
login name

creator of an interesting issue

The last modification date of a node. This is a pseudo-Association that allows
internally stored names to be referenced in the HERMES language. Design
environments built on HERMES could make timestamping automatic

last modification date of arguments of answers of an
interesting issue

List the contexts in which something is defined. This is a pseudo-Association.

contexts that inherit from archie’s perspective

List every association

all associations of the privacy issue

 Tacit and Explicit Understanding in Computer Support 361

Parts of a graphical hierarchy. If the optional term “immediate” is used, then only
the first level parts will result, and not the parts of parts, etc. as when the
“immediate” keyword is absent.

immediate parts of archie’s habitat
parts of archie’s habitat

Any Dimension (see Dimensions below). This is a pseudo-Association

length of subparts of archie’s habitat

Distance from a specified graphical object. When applied to one or more graphical
objects, this returns the numeric distance(s). Distances are always measured
within some implicitly or explicitly specified encompassing graphic

closest distance in feet from table in archie’s habitat

The name of a defined Association

sons

Predicates. These are Computed Associations that display their resultant lists
differently in order to hide the computations that have been encapsulated in the
Predicate definition. Any Association definition can optionally be stored as a
Predicate. For instance, the Association

discussion: issues with their answers with their arguments

can be stored as an Association or as a Predicate. The same nodes would appear in
the lists generated by the use of either, but the lists would appear differently when
displayed. The results of the Association would be labeled as issues,
answers, and arguments, and they would be indented accordingly to show
the structure of the computation. The results of the Predicate, in contrast, would all
be labeled discussion and would not be indented. To the user, it would appear
that the results of the Predicate were all linked directly to the original nodes by
simple links of type discussion—so the complexity of the actual computation
would be hidden.

 InputAssociation. This is a subclass of Associations that is used for formulating
macros for input of structured data. Its definitions are identical to the
corresponding Association definitions, but they are limited as to the complexity of
their structure. In particular, they are limited to forms meaningful for prompting
input of new nodes. Any InputAssociation can be included wherever a Association
can be used, and it can be saved as an Association or a Predicate. However, the
reverse is not true, and only expressions saved as InputAssociation can be used for
eliciting the entry of new nodes. For instance, if discussion were saved as an

 Tacit and Explicit Understanding in Computer Support 362

InputAssociation, then the user could be prompted to enter a hierarchy of design
rationale automatically. First, the system would prompt for an issue. For each issue
entered, it would prompt for a series of answers. And as each answer was entered,
the user would be prompted for arguments to support it.

Computed Association. These combine Simple Associations with other
operations.

Apply one Association to the result of another Association

arguments of answers

Apply one Association to the result of another Association and list each item of
the result of the first Association with its Associations listed under it and
indented

answers with their arguments

First apply an Association and then apply a Filter
 sons that are contained in siblings of sandra

Follow the in-coming Association links instead of the usual out-going links

inverse parent

Choose between two existing Association results depending upon whether the first
has any items when evaluated

either sons or daughters

Evaluate a Boolean and choose between two existing Associations; the second
DataList is optional.

if stove is near curtains then arguments

Combine two Associations with a Combination

sons and daughters

Select the n-th Association

the 7th son

Sort the Association results

authors of novels, sorted

Remove duplicates from the Association results

authors of novels, without duplicates

 Tacit and Explicit Understanding in Computer Support 363

Simple Filters. Filters are conditional operators applied to each node in a DataList;
if the condition is true of the node, then the node is retained (from the input list, in
the output list). The following filtering operations are defined:

Check if an item is equal to (the same object as) an item specified by a DataList

habitats that have chairs that equal archie’s favorite
chair

Check if an item has a name specified by a defined Character

habitats that are named the secret word

Check if an item is included in a defined DataList

chairs that are included in habitats

Check if an item includes a defined DataList

habitats that include chairs

Check if an item is of a kind defined by a NodeKind

parts of habitats that are of kind chair

Check if an item is of a type defined by a LanguageType

items that are of type distances

The name of a defined Filter

are desirable

Multimedia Filters. These include filters specific to Characters, Numbers,
Booleans, Contexts, and Graphics.

Check if a substring is included that is defined by a Character

messages that include the warning string

Check if a numeric item equals an amount that is defined by a Count

that are more than 3

Check if a boolean value equals true

test conditionals that are true

Check if a specified DataList or Count of the DataList can be viewed in a Context

contexts that view more than 7 issues that include “bunk”

 Tacit and Explicit Understanding in Computer Support 364

Check if a Context inherits from another Context

contexts that inherit from archie’s context

Check if a Context is inherited by another Context

contexts that are inherited by archie’s context

Check if a graphical item contains the graphical items that are defined by a
DataList. The keyword “immediately” restricts the computation to the highest
level parts.

habitats that contain chairs

Check if a graphical item is contained in the graphical items that are defined by a
DataList. The keyword “immediately” restricts the computation to the highest
level parts.

chairs that are immediately contained in habitats

Check if graphical items are a distance defined by a Measure from items defined
by a DataList. This may optionally be quantified with a Quantifier. Distances
are implicitly or explicitly measured within a Graphic

that are near most stoves in the kitchen

Check if an Attribute value equals Value

that have color is red

Check if an Attribute value equals Number

that have pen width is 5

Computed Filters. These include Filters that combine other operators.

Check if there are a certain number defined by Count of Associations. Optionally
sublist the intermediate results

that have more then 3 grandchildren with those items

Check if there are a certain number defined by Quantifier of Associations that pass
a Filter. Optionally sublist the intermediate results

that have all grandchildren that are of kind boy

Check a Filter only if a Boolean is true. Optionally check an alternative Filter
otherwise

that if test conditional then are red, else are blue

 Tacit and Explicit Understanding in Computer Support 365

Check if items pass both of (or one of) two Filters, depending on the Connective,
logical and/or

that are more than 3 and (logical) are less than 7

Check if items do or do not pass a Filter

that are equal “bunk”
that are not named “my bunk”
that do not equal “bunk”

The semantics of the remaining media options, network options, namable
terminology, and simple terminology options are straight-forward and should be
clear from their BNF syntax. The media elements provide the primitive values for
the content of nodes and the terminal values for the language options. However,
they also include computations involving other object types. The network
elements define the graph structure of the database. Some node kinds and link
types have been pre-defined for internal use by the system. They are available to
the user, but cannot be modified. The namable terminology elements serve
mainly to provide choices for the language options. However, they can involve
computations. Just like any of the above options, these can be named and saved.
For example, some and several have already been defined in the HERMES seed
as supplementary Quantifiers this way. It has been assumed in the examples above
that several Measures have been defined, like too near or far away from.
These can be redefined and personalized by users in their interpretive perspectives.
In contrast, the simple terminology elements are fixed: they cannot be named or
redefined and extended by users.

 Tacit and Explicit Understanding in Computer Support 366

