
Colla b ora tive Inform a tion E nvironm ents
for LifeLong Lea rning in Com m u nities

Gerry Stahl, Gerhard Fischer, Jonathan Ostwald
Center for LifeLong Learning and Design

University of Colorado at Boulder
Boulder, CO 80309-0430 USA

+1 303 492 3912
{gerry, gerhard, ostwald} @cs.colorado.edu

ABSTRACT
Computer-based design environments for skilled domain
workers have recently graduated from research prototypes
to commercial products, supporting the learning of indi-
vidual designers. Such systems do not, however, ade-
quately support the collaborative nature of work or the
evolution of knowledge within communities of practice. If
innovation is to be supported within collaborative efforts,
domain-oriented design environments must be extended to
become collaborative information environments, capable
of providing effective community memories for managing
information and facilitating lifelong learning within con-
stantly evolving community work contexts.

Keyw ord s
Collaborative information environment, domain-oriented
design environment, lifelong learning, organizational
learning, community memory, community of practice.

COM P UTE R SUP P ORT FOR IND IVID UALS
Th e Need for LifeLong Lea rning
The creation of innovative artifacts in our complex world–
with its refined division of labor and its flood of informa-
tion–requires continual learning. Learning can no longer
be conceived of as an activity confined to the classroom
and to an individual’s early years. Learning must continue
while one is a worker, a citizen and an engaged adult for
several reasons:

• Innovative tasks are ill-defined; their solution involves
the learning of information that could not have been
predicted [28].

• There is too much knowledge, even within specific
subject areas, for anyone to master it all in advance or
on one’s own [9].

• The knowledge in many domains evolves rapidly and
often depends upon the context of one’s task situation,
including one’s support community [6].

• Frequently, the most important information has to do
with a work group’s own structure and history, its
standard practices and roles, the details and design
rationale of its local accomplishments [24].

• People’s careers and self-directed interests require
various new forms of learning at different stages as
their roles in communities change [17].

• Learning— especially collaborative learning— has
become a new form of labor, an integral component of
work and organizations [36].

The contemporary need to extend the learning process
from schooling into organizational and community realms
is known as lifelong learning. Our past research explored
the computer support of lifelong learning with domain-
oriented design environments (DODEs). This paper argues
for extending that approach to support collaborative work
with collaborative information environments (CIEs).

Section 1 illustrates how computer support for lifelong
learning has already been developed for individuals such
as designers. It argues, however, that DODEs that deliver
domain knowledge to individuals when it is relevant to
their task are not sufficient for supporting innovative work
within collaborative communities. Section 2 sketches a
theory of how software productivity environments for
design work by individuals can be extended to support
lifelong learning in collaborative work settings known as
communities of practice. Section 3 provides a suggestive
scenario of a CIE being used by a community of computer
network managers. Finally, Section 4 touches on a set of
critical CSCW issues concerning the design of CIEs.

D om a in-Oriented D esig n E nvironm ents
Many creative work tasks can be conceived of as design
processes: elaborating a new idea, planning a presentation,
balancing conflicting proposals or writing a visionary
report. While designing can proceed on an intuitive level

based on tacit expertise, it periodically encounters break-
downs in understanding where explicit reflection on new
knowledge may be needed [29]. Designing entails learn-
ing.

For the past decade, we have explored the creation of
DODEs to support workers as designers. These systems are
domain-oriented: they incorporate knowledge specific to
the work domain [7]. They are able to recognize when a
breakdown in understanding may occur and can respond to
it with appropriate information [8].

To go beyond the power of pencil-and-paper representa-
tions, software systems for lifelong learning must “under-
stand” something of the tasks they are supporting. This is
accomplished by building into the system knowledge of the
domain, including design objects and design rationale. A
DODE typically provides a computational workspace
within which a designer can construct and represent an
artifact. Unlike a CAD system, in which the software only
stores positions of lines, a DODE maintains a representa-
tion of objects that are meaningful in the domain. For
instance, an environment for local-area network (LAN)
design (our primary example in this paper) allows a de-
signer to construct a network design by arranging items
from a palette of icons representing workstations, servers,
routers, cables and other devices from the LAN domain.

A DODE can contain domain knowledge about con-
straints, rules of thumb and design rationale. It uses this
information to respond to a current design state with active
advice. Our systems used a mechanism we call critiquing
[13]. The system maintains a representation of the seman-
tics of the design situation: usually the two-dimensional
location of palette items representing design components.
Critic rules are applied to the design representation. When
a rule “fires,” it posts a message alerting the designer that
a problem might exist. The message includes links to
information such as design rationale associated with the
critic rule.

For example, a LAN design DODE might notice that the
length of a cable in a network plan exceeds the specifica-
tions for that type of cable, that a router is needed to con-
nect two subnets or that two connected devices are incom-
patible. At this point, the system could signal a possible
design breakdown and provide domain knowledge relevant
to the cited problem. The evaluation of the situation and
the choice of action is up to the human designer, but now
the designer has been given access to information relevant
to making a decision [9].

Resea rc h P rototypes
We have explored the utility of DODEs in a variety of
domains. In a system for critiquing Lisp programs, we
found that a software development environment could
provide active suggestions backed up by rationale, but that
it was limited if there was no representation of the de-

signer’s task (e.g., what the Lisp program was designed to
do) [11]. An early DODE for constructing user interface
designs provided a construction kit consisting of a palette
of widgets so that the evolving design could be represented
in a form that the software could analyze [1100]. This led to
DODEs for architectural design [1133]], including compo-
nents for design rationale, end-user modifiability of palette
items and design specifications. Finally, a series of proto-
types for LAN design incorporated simulation and support
for long-term, indirect communication (design history or
community memory) [14].

These systems and others in diverse domains like lunar
habitat design [31] or voice dialog design [33] included
features to support collaborative design as well as the work
of individuals. They investigated a variety of mechanisms
for: seeding environments with catalogs of paradigmatic
designs as starting points, allowing designers to share
successful artifact designs, storing annotated design histo-
ries and archiving email design discussions They provided
for flexible delivery of this information, tailored to indi-
vidual design contexts. Such collaborative features will be
discussed later in the paper.

A Com m erc ia l P rod u c t
Many of the ideas of our DODEs are now appearing in
commercial products. In particular, there are shrink-wrap
environments for designing LANs. As an example, con-
sider NNEETTSSUUIITTEE, a highly rated system that illustrates cur-
rent best practices in LAN design support [21]. This is a
high-functionality system for skilled domain professionals
who are willing to learn to use its rich set of capabilities
(see Figure 1). NNEETTSSUUIITTEE contains a wealth of domain
knowledge. Its palette of devices numbers over 5,000, with
more downloadable from the vendor every month. Each
device has associated parameters defining its characteris-
tics, limitations and compatibilities domain knowledge
used by the critics that validate designs.

In NNEETTSSUUIITTEE, one designs a LAN from scratch, placing
devices and cables from the palette. As the design pro-
gresses, the system validates it, critiquing it according to
rules and parameters stored in its domain knowledge. The
designer is informed about relevant issues in a number of
ways: lists of devices to substitute into a design are re-
stricted by the system to compatible choices, limited design
rationale is displayed with the option of linking to further
details and technical terms are defined with hypertext
links. In addition to the construction area there are LAN
tools, such as an automated IP address generator and
utilities for reporting on physically existing LAN configu-
rations. When a design is completed, a bill-of-materials
can be printed out and an HTML page can be produced for
display on the Internet. NNEETTSSUUIITTEE is a knowledgeable, well
constructed system to support an individual LAN designer.

Th e Need to Go Fu rth er
Based on our understanding of organizational learning
[23] and our investigation of LAN design communities, we
believe that in a domain like LAN management no closed
system will suffice. The domain knowledge required to go
beyond the functionality of NNEETTSSUUIITTEE is too open-ended,
constantly changing and dependent upon local circum-
stances. The next generation of commercial DODEs will
have to support extensibility by end-users [20; 27] and
collaboration within communities of practice. While a
system like NNEETTSSUUIITTEE has its place in helping to design
complex networks from scratch, most work of LAN ad-
ministrators involves on-going management tasks. We
conducted informal ethnographic studies and found that
most time is spent extending existing networks, debugging
breakdowns in service and planning for future technolo-
gies.

Many LAN management organizations rely on home-
grown information systems because they believe that
critical parts of their local information are unique. A
community of practice has its own ways of doing things.
Generally, these local practices are understood tacitly and
are propagated through apprenticeship [17; 24]. This
causes problems when the old-timer who set things up is
gone and when a newcomer does not know who to ask or
even what to ask. A community memory [1; 18] is needed
that captures local knowledge when it is generated (e.g.,
when a device is configured) and delivers knowledge when
needed (when there is a problem with that device) without
being explicitly queried.

The burden of entering all this information in the system
must be distributed among the people doing the work and
must be supported computationally to minimize the effort

required. This means that the software environment must
be thoroughly interactive so that users can easily enter data
and comments. The information base should be seeded
with basic domain knowledge so that users do not have to
enter everything and so that the system is useful from the
start. As the information space grows, there should be
ways for people to restructure it so that its organization
and functionality keep pace with its evolving contents and
uses. DODEs must be extended to support processes of
“seeding, evolution and reseeding” [12] of information
within communities of practice, rather than being designed
based on a view of designers working in isolation with
relatively static domain knowledge.

SUP P ORTING LE ARNING IN COM M UNITIE S
Com m u nities of P ra c tic e
All work within a division of labor is social [19]. The job
that one person performs is also performed similarly by
others and relies upon vast social networks. Work is de-
fined by social practices that are propagated through
socialization, apprenticeship, training, schooling, and
culture [15; 3], as well as by explicit standards. Often,
work is performed by cooperating teams that form commu-
nities of practice within or across organizations [4].

Our interviews showed that computer network managers at
our university work in concert. They need to share infor-
mation about what they have done and how it is done with
other team members and with other LAN managers else-
where. For such a community, information about their own
situation may be even more important than generic domain
knowledge [24]. Support for LAN managers must provide
community memory about how individual local devices
have been configured as well as offer domain knowledge
about standards, protocols and compatibilities.

Figure 1. Two views of NNEETTSSUUIITTEE. In the left view, parts of the network are being connected in physical and logical repre-
sentations. In the right view, the system has noted that a cable length specification for a FDDI network has been exceeded
in the design and the system has delivered information about the specification and affected devices.

Communities of practice can be co-located within an
organization (e.g., at our university) or across a discipline
(e.g., all directors of university networks). Before the
World Wide Web existed, most computer support for
communities of practice targeted individuals with desktop
applications. The knowledge in the systems was mostly
static domain knowledge. With intranets and interactive
web sites, it is now possible to support distributed commu-
nities and also to maintain evolving information about
local circumstances and group history.

M em ories for Com m u nities of P ra c tic e
Human and social evolution can be viewed as the succes-
sive development of increasingly effective forms of mem-
ory for learning, storing and sharing knowledge. Biologi-
cal evolution gave us episodic, mimetic and mythical
memory; then cultural evolution provided oral and writ-
ten external and shared memory; finally modern tech-
nological evolution generates digital (computer-based) and
global (Internet-based) memories [5; 22].

At each stage, the development of hardware capabilities
must be followed by the adoption of appropriate skills and
practices before the potential of the new information
technology can be realized. External memories, incorpo-
rating symbolic representations, facilitated the growth of
complex societies and sophisticated scientific understand-
ings. Their effectiveness relied upon the spread of literacy
and industrialization. Similarly, while the proliferation of

networked computers ushers in the possibility of capturing
new knowledge as it is produced within work groups and
delivering relevant information on demand, the achieve-
ment of this potential requires the careful design of infor-
mation systems, software interfaces and new work prac-
tices. Computer-based community memories must be
matched with new social structures that produce and
reproduce patterns of organizational learning.

Community memories are to communities of practice what
human memories are to individuals. They make use of
explicit, external, symbolic representations that allow for
shared understanding within a community [25]. They
make organizational learning possible within the group.

Th e P roc ess of Org a niza tiona l Lea rning
The ability of individual designers to proceed based on
their tacit existing expertise [26] periodically breaks down
and they have to rebuild their understanding of the situa-
tion through explicit reflection [29]. This reflective stage
can be helped if they have good community support or
effective computer support to bring relevant new informa-
tion to bear on their problem. When they have compre-
hended the problem and incorporated the new under-
standing in their personal memories, we say they have
learned. The process of design typically follows this cycle
of breakdown and reinterpretation (see Figure 2, cycle on
left) [30].

A similar process takes place at the group level, involving

explicit
reflection

community
memory

community
of practice

tacit
expertise

symbolic
representation

computer support

sharing

reinterpretation

community
support

capture

break
down articulation

organiz.
learning

design
computer
support

Figure 2. Cycles of design, computer support and organizational learning.

interaction between the community and its members.
When design tasks take place in a collaborative context,
the reflection results in articulation of solutions in lan-
guage or in other symbolic representations. The articu-
lated new knowledge can be shared within the community
of practice. Such knowledge, learned by the community,
can be used in future situations to help a member over-
come a breakdown in understanding. This cycle of col-
laboration is called organizational learning (see Figure 2,
upper cycle). The interaction of multiple personal per-
spectives and the collaborative articulation of shared
perspectives makes innovation possible [2; 34].

Organizational learning can be supported by computer-
based systems if the articulated knowledge is captured in a
digital symbolic representation. The information must be
stored and organized in a format that facilitates its subse-
quent identification and retrieval. In order to provide
computer support, the software must be able to recognize
breakdown situations when particular items of stored
information might be useful to human reflection (see
Figure 2, lower cycle) [31]. DODEs provide computer
support for design by individuals. They need to be ex-
tended to CIEs to support organizational learning in com-
munities of practice.

E xtend ing th e D O D E Approa c h to CIE s
The key to active computer support that goes significantly
beyond printed external memories is to have the system
deliver the right information at the right time in the right
way [13]. Somehow, the software must be able to analyze
the state of the work being undertaken, identify likely
breakdowns, locate relevant information and deliver that
information in a timely and useful manner.

DODEs like NNEETTSSUUIITTEE and our older prototypes used critics
based on domain knowledge to deliver information rele-
vant to the current state of a design artifact being con-
structed in the design environment work space (see Figure
3, left).

One can generalize from the critiquing approach of these
DODEs to arrive at an overall architecture for CIEs. The
core difference between a DODE and a CIE is that a
DODE focuses on delivering domain knowledge, con-
ceived of as relatively static and universal, while a CIE is
built around forms of community memory, treated as
constantly evolving and largely specific to a particular
community of practice. Where DODEs relied heavily on a
set of critic rules predefined as part of the domain knowl-
edge, CIEs generalize the function of the critiquing
mechanisms.

In a CIE it is still necessary to maintain some representa-
tion of the task as a basis for the software to take action.
This is most naturally accomplished if work is done within
the software environment. If communication about designs
takes place within the system where the design is con-

structed, then annotations and email messages can be
linked directly to the design elements they discuss. This
reduces problems of deixis (comments referring to “that”
object “over there” in a design). It allows related items to
be linked together by automatic analysis mechanisms. In a
rich community memory there may be many relationships
of interest between new work artifacts and items in the
information spaces. For instance, when a LAN manager
debugs a network then links between network diagrams,
topology designs, LAN diary entries, device tables or an
interactive glossary of local terminology can be browsed to
discover relevant information on demand.

The general problem for a CIE is to define analysis
mechanisms that can bridge from the task representation
to relevant community memory information items to sup-
port learning on demand (see Figure 3, right).

To take a very different example, suppose you are writing
a paper within a software environment that includes a
digital library of papers written by you and your col-
leagues. Then an analysis mechanism to support your
learning might compare sentences or paragraphs in your
draft (which functions as a task representation) to text
from other papers and from email discussions (the com-
munity memory) to find excerpts of potential interest to
deliver for your learning. We use latent semantic analysis
[16] to mine our email repository [18] and are exploring
similar uses of this mechanism to link task representations
to textual information to support organizational learning.

The impetus for our extending DODEs into CIEs came
partially from the advent of the World Wide Web. This
technology facilitates the sharing and collaborative evolv-
ing of information and computer support within a commu-
nity of practice— even within dispersed or virtual commu-
nities. In 1996/97 we prototyped WWEEBBNNEETT [35], a CIE for
LAN management communities, as a web-based intranet.
It includes a variety of communication media as well as

task representation

analysis mechanisms

learning on demand

design artifact

critics

info delivery

community memorydomain knowledge

DODE CIE

Figure 3. Generalization of DODE architecture (left)
to a CIE structure (right).

community memory repositories and collaborative produc-
tivity tools (see Figure 4, left frame). Our work on WWEEBBNNEETT

started with ProNet [32], a Mac-based DODE for LAN
design, and gradually adapted it to the web.

The web has the potential to support the interactivity
needed for CIEs to maintain community memories. Dy-
namic web pages can be interactive in the sense that they
accept user inputs through selection buttons and text entry
forms. Unlike most forms on the web that only provide
information (like product orders, customer preferences or
user demographics) to a site webmaster, intranet feedback
may be made immediately available to the user community

that generated it.

The following WWEEBBNNEETT scenario includes examples of
interactive community memories embedded in a set of
communication and information delivery components. It
demonstrates how intranet technology can be used by CIEs
in which community members deposit knowledge as they
acquire it so that other members can learn when they need
to or want to and can communicate about the new knowl-
edge.

SCE NARIO OF A CIE IN USE
D elivering W eb -b a sed Inform a tion
Kay is a graduate student who works part-time to maintain

Figure 4. The WWEEBBNNEETT LAN design and simulation workspace (upper-right frame) and information delivered by a
critic (lower-right frame). Note table of contents to the web site (left frame).

her department’s LAN. The department has a budget to
extend its network and has asked Kay to come up with a
design. Kay brings up WWEEBBNNEETT in her web browser at
http://www.cs.colorado.edu/~gerry/WebNet/webnet.htm.

She opens up the design of her department’s current LAN
in the LAN Design Environment, an AAGGEENNTTSSHHEEEETTSS [27]
simulation applet. Kay starts to add a new subnet. Noticing
that there is no icon for an Iris graphics workstation in her
palette, Kay selects the WWEEBBNNEETT menu item for the Simula-
tions Repository web page. This opens a web site that
contains simulation agents that other AAGGEENNTTSSHHEEEETTSS users
have programmed. WWEEBBNNEETT opens the repository to display
agents that are appropriate for WWEEBBNNEETT simulations. Kay
locates an agent that someone else has created with the
behavior of an Iris workstation. She adds this to her palette
and to her design.

When Kay runs the LAN simulation WWEEBBNNEETT proactively
[32] inserts a router (see Figure 4, upper right), and in-
forms Kay that a router is needed at the intersection of the
two subnets. WWEEBBNNEETT displays some basic information
about routers and suggests several web bookmarks with
details about different routers from commercial
vendors (see Figure 4, lower right). Here,
WWEEBBNNEETT has signaled a breakdown in Kay’s
designing and provided easy access to sources
of information for her to learn what she needs
to know on demand. This information includes
generic domain knowledge like definitions of
technical terms, current equipment details like
costs and community memory from related
historical emails.

WWEEBBNNEETT points to several email messages from
Kay’s colleagues that discuss router issues and
how they have been handled locally. The Email
Archive includes all emails sent to Kay’s LAN
management workgroup in the past. Relevant
emails are retrieved and ordered by the Email
Archive software [18] based on their semantic
relatedness to a query. In Kay’s situation,
WWEEBBNNEETT automatically generates a query de-
scribing the simulation context, particularly the
need for a router. The repository can also be
browsed, using a hierarchy of categories devel-
oped by the user community.

Kay reviews the email to find out which routers
are preferred by her colleagues. Then she looks
up the latest specs, options and costs on the web
pages of router suppliers. Kay adds the router
she wants to the simulation and re-runs the
simulation to check it. She saves her new
design in a catalog of local LAN layouts. Then
she sends an email message to her co-workers
telling them to take a look at the new design in

WWEEBBNNEETT’s catalog. She also asks Jay, her mentor at Net-
work Services, to check her work.

Intera c tive a nd E volving Know led g e
Jay studies Kay’s design in his web browser. He realizes
that the Iris computer that Kay has added is powerful
enough to perform the routing function itself. He knows
that this knowledge has to be added to the simulation in
order to make this option obvious to novices like Kay when
they work in the simulation. AAGGEENNTTSSHHEEEETTSS includes an end-
user programming language that allows Jay to reprogram
the Iris workstation agent. To see how other people have
programmed similar functionality, Jay finds a server agent
on the Simulations Repository and looks at its program. He
adapts it to modify the behavior of the Iris agent and stores
this agent back on the repository. Then he redefines the
router critic rule in the simulation. He also sends Kay an
email describing the advantages of doing the routing in
software on the Iris; WWEEBBNNEETT may make this email avail-
able to people in situations like Kay’s in the future.

When he is finished, Jay tests his changes by going
through the process that Kay followed. This time, the

Figure 5. A view of the WWEEBBNNEETT Glossary. The current definition of a term
is displayed. The history of definitions shows an earlier, modified defini-
tion. Note the ability to “See/Make Annotations” and to “Edit Defini-
tion.”

definition of router supplied by WWEEBBNNEETT catches his eye. He
realizes that this definition could also include knowledge
about the option of performing routing in workstation
software. The definitions that WWEEBBNNEETT provides are stored
in an interactive glossary (see Figure 5). Jay goes to the
WWEEBBNNEETT glossary entry for “router” and clicks on the “Edit
Definition” button. He adds a sentence to the existing
definition, noting that routing can sometimes be performed
by server software. He saves this definition and then clicks
on “Make Annotations”. This lets him add a comment
suggesting that readers look at the simulation he has just
modified for an example of software routing. Other com-
munity members may add their own comments, expressing
their views of the pros and cons of this approach. Any
glossary user can quickly review the history of definitions
and comments–as well as contribute their own thoughts.

Com m u nity M em ory
It is now two years later. Kay has graduated and been
replaced by Bea. The subnet that Kay had added crashed
last night due to print queue problems. Bea uses the LAN
Management Information component of WWEEBBNNEETT to trace
back through the history of problems and changes leading
up to the print queue problem.

The LAN Management Information component of WWEEBBNNEETT

consists of four integrated information sources: a Trouble
Queue of reported problems, a Host Table listing device
configurations, a LAN Diary detailing chronological
modifications to the LAN and a Technical Glossary de-
fining local hardware names and aliases. These four
sources are accessed through a common interface that
provides for interactivity and linking of related items.

The particular problem that Bea is working on was sub-
mitted to her through the Trouble Queue; her solution will
be added there to provide documentation. Bea starts her
investigation with the Host Table, reviewing how the
printer, routers and servers have been configured. This
information includes links to LAN Diary entries dating
back to Kay’s work and providing the rationale for how
decisions were made by the various people who managed
the LAN. Bea also searches the Trouble Queue for inci-
dents involving the print queue and related device configu-
rations. Many of the relevant entries in the four sources are
linked together, providing paths to guide Bea on an in-
sightful path through the community history. After suc-
cessfully debugging the problem using the community
memory stored in WWEEBBNNEETT, Bea documents the solution by
making entries and new cross links in the LAN Manage-
ment Information sources.

In this scenario, Kay, Jay and Bea have used WebNet as a
design, communication and memory system to support
both their immediate tasks and the future work of their
community.

CONCLUSION
The CIE concept arose from our work on the WWEEBBNNEETT

prototype and our investigations of the needs of LAN
management communities. WWEEBBNNEETT began as a port of a
DODE for LAN design to the web. In the process, we came
to recognize the importance of supporting evolving com-
munity memory with interactive intranet technology. The
DODE focus on domain-oriented simulations, critics and
design rationale had to be extended with more communi-
cation and information delivery mechanisms.

Technical domains are too complex, fast changing and
locally variable to expect a vendor of DODEs like NNEETTSSUUIITTEE

to maintain adequate knowledge repositories. Local infor-
mation is even harder than generic domain information for
outside knowledge engineers to compile, being largely tacit
expertise of community old-timers. So it is up to commu-
nity members to maintain information collaboratively in a
distributed fashion. But busy people cannot be burdened
with massive data entry tasks whose payoff seems remote.
In our current research, we are exploring the following
approaches to this problem:

• Allow community members to build knowledge by
commenting naturally on information as they en-
counter it in their regular work. Most information
(like glossary definitions) should be interactive, al-
lowing for immediate annotation and revision when-
ever appropriate.

• Embed communication about artifacts within the same
system as work on the artifact. Then the messages can
be archived and associated with the artifact automati-
cally.

• Allow community members to link and reorganize
information in order to build and update useful struc-
turing of the information space. Support these efforts
with automation where possible.

• Help community members to personalize information
delivery with adaptable features. Enhance this with
automatic adaptation of the system to a member's
preferences and needs.

A CIE should be a high-functionality software environ-
ment in which people work, communicate and learn col-
laboratively:

• It should incorporate tools for engaging in the work
practices of the group.

• It should support multiple modes of communication,
such as Internet chat, email, threaded discussions,
ubiquitous annotation.

• It should deliver timely, relevant information to sup-
port lifelong learning in collaborative settings.

Community memory may be most effective when embed-
ded in a CIE. Emerging intranet technology provides the

technological basis for effective systems built around
community memories for learning in communities of
practice. However, features, techniques and practices to
realize this potential are just beginning to be investigated.
While some of our early ideas for DODEs have matured
into current best practices, there are still many open re-
search issues surrounding how to realize the potential of
CIEs for supporting collaborative work within specific
communities of practice.

ACKNOW LE D GM E NTS
We would like to thank the other members of the Center
for LifeLong Learning and Design, particularly the Or-
ganizational Memory and Organizational Learning group,
including Jay Smith, Scott Berkebile, Sam Stoller, Jim
Masson and Tim Ohara who worked on the WWEEBBNNEETT sys-
tem. Our knowledge of LAN design benefited from our
domain ethnographers John Rieman and Ken Anderson
and local informants Kyle Kucson and Evi Nemeth. The
work reported here was supported in part by ARPA grant
N66001-94-C-6038 and NSF grant IRI-9711951.. NNEETTSSUUIITTEE

AADDVVAANNCCEEDD PPRROOFFEESSSSIIOONNAALL DDEESSIIGGNN is a trademark of NetSuite.

RE FE RE NCE S

1. Ackerman, M. S. (1994) Augmenting the organiza-
tional memory: A field study of Answer Garden. Pro-
ceedings of CSCW '94, ACM Press, 243-252.

2. Boland, R. J. Jr. & Tenkasi, R. V. (1995) Perspective
making and perspective taking in communities of
knowing. Organization Science. 6, 4, 350-372.

3. Bourdieu, P. (1972) Esquisse d‘une theorie de la
pratique. Switzerland: Librairie Droz, S. A.

4. Brown, J. S. & Duguid, P. (1991) Organizational
learning and communities of practice: Toward a unified
view of working, learning, and innovation. Organiza-
tion Science. 2, 1, 40-57.

5. Donald, M. (1991) Origins of the Modern Mind. Cam-
bridge, MA: Harvard University Press.

6. Fischer, G. (1996) Making learning a part of life:
Beyond the "gift wrapping" approach of technology. In:
Alheit & Kammler (Eds.) Lifelong Learning and its
Impact on Social and Regional Development. Bremen,
Germany: Donat Verlag. 435-462. Available at
http://www.cs.colorado.edu/~l3d/presentations/gf-wlf/.

7. Fischer, G. (1994) Domain-oriented design environ-
ments. Automated Software Engineering. 1, 2, 177-203.

8. Fischer, G. (1994) Turning breakdowns into opportu-
nities for creativity. Knowledge-Based Systems. 7, 4,
221-232.

9. Fischer, G. (1991) Supporting learning on demand
with design environments. International Conference on
the Learning Sciences. 165-172.

10. Fischer, G. (1989) Creativity enhancing design envi-
ronments. Proceedings of the International Conference
on Modeling Creativity and Knowledge-Based Creative
Design. Heron Island, Australia. 127-132.

11. Fischer, G. (1987) A critic for Lisp. IJCAI. 177-184.

12. Fischer, G., McCall, R., Ostwald, J., Reeves, B. &
Shipman F. (1996) Seeding, evolutionary growth and
reseeding: The incremental development of collabora-
tive design environments. In: Olson, G., Malone T. &
Smith, J. (Eds.): Coordination Theory and Collabora-
tion Technology.

13. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G. &
Sumner, T. (1993) Embedding critics in design envi-
ronments. The Knowledge Engineering Review. 8, 4,
285-307.

14. Fischer, G., Grudin, J., Lemke, A., McCall, R., Ost-
wald, J., Reeves, B., Shipman, F. (1992) Supporting
indirect, collaborative design with integrated knowl-
edge-based design environments. HCI. 7, 3, 281-314

15. Giddens, A. (1984) The Constitution of Society. Ber-
keley: University of California Press.

16. Landauer, T. K. & Dumais, S. T. (1997): A solution to
Plato's problem: The latent semantic analysis theory of
the acquisition, induction, and representation of knowl-
edge. Psychological Review. 104, 211-240.

17. Lave, J. & Wenger, E. (1991) Situated Learning:
Legitimate Peripheral Participation. New York: Cam-
bridge University Press.

18. Lindstaedt, S. (1997) Towards organizational learning:
Growing group memories in the workplace. Proceed-
ings of CHI '96. Doctoral Consortium. Vancouver,
British Columbia, Canada.

19. Marx, K. (1867) Das Kapital: Kritik der politischen
Oekonomie. Erster Band. Hamburg: Verlag von Otto
Meissner.

20. Nardi, B. (1993) A Small Matter of Programming.
Cambridge, MA: MIT Press.

21. NetSuite Advanced Professional Design home page.
Available at http://www.netsuite.com/products/docs/
napd.htm.

22. Norman, D. (1993) Things That Make Us Smart.
Reading, MA: Addison-Wesley.

23. Organizational Memory and Organizational Learning
project home page. Available at http://
www.cs.colorado.edu/~l3d/omol.

24. Orr, J. (1996) Talking about Machines. Ithaca, NY:
Cornell University Press.

25. Ostwald, J. (1996) Knowledge Construction in Software
Development: The Evolving Artifact Approach. Un-

published Ph.D. Dissertation. Department of Computer
Science. University of Colorado.

26. Polanyi, M. (1962) Personal Knowledge. London:
Routledge & Kegan Paul.

27. Repenning, A. (1994) Programming substrates to create
interactive learning environments. Journal of Interac-
tive Learning Environments. 4, 1, 45-74.

28. Rittel, H. & Webber, M. (1984) Planning problems are
wicked problems. In Cross, N., Developments in De-
sign Methodology. New York: Wiley. 135-144.

29. Schön, D. (1983) The Reflective Practitioner. New
York: Basic Books.

30. Stahl, G. (1993) Supporting situated interpretation.
Proceedings of the Cognitive Science Society. 965-970.
Available at http://www.cs.colorado.edu/~gerry/
HomePage/Publications/CogSci/CogSci.html.

31. Stahl, G. (1993) Interpretation in Design: The Problem
of Tacit and Explicit Understanding in Computer Sup-
port of Cooperative Design. Unpublished Ph.D. Dis-
sertation. Department of Computer Science. University
of Colorado.

32. Sullivan, J. (1994) A Proactive Computational Ap-
proach for Learning While Working. Unpublished
Ph.D. Dissertation. Department of Computer Science.
University of Colorado.

33. Sumner, T. (1995) Designers and their Tools: Com-
puter Support for Domain Construction. Unpublished
Ph.D. Dissertation. Department of Computer Science.
University of Colorado.

34. Tomasello, M., Kruger, A. C. & Ratner, H. (1993)
Cultural learning. Behavioral and Brain Sciences. 495-
552.

35. WebNet home page. Available at http://www.
cs.colorado.edu/~gerry/WebNet.

36. Zuboff, S. (1988) In the Age of the Smart Machine.
New York: Basic Books.

